Table of Contents for Eastman Chemical Resins, Inc. SIP Package

RACT 2 Case-by-Case Evaluation Installation Permit No. 0058-I026

Description	Page No.
RACT SIP Completeness Checklist	2-3
SIP Permit (redacted)	4-18
SIP Technical Support Document (review memo)	19-28
SIP Comment Response Document	29-35
Draft Installation Permit	36-66
Draft Technical Support Document	67-75
RACT Evaluation (ERG)	76-98
RACT Evaluation (facility)	99-226
RACT I Order	227-270
Final Issued Installation Permit	271-302

Pennsylvania Department of Environmental Protection Bureau of Air Quality

RACT SIP COMPLETENESS CHECKLIST

TO BE FILLED IN BY REGIONAL STAFF AND SUBMITTED TO CENTRAL OFFICE

Facility Name: <u>Eastman Chemical Resins, Inc.</u>

RACT Plan Approval/Permit Number: <u>Installation Permit No. 0058-I026</u>

Plan Approval/Permit Issuance Date: <u>April 21, 2020</u>

TECHNICAL MATERIALS

<u>Included</u>	<u>Not</u> Included	<u>Not</u> <u>Applicable</u>	
\boxtimes			Identification of all regulated (NOx and VOC) pollutants affected by the RACT plan (Review memo and RACT Permit)
\boxtimes			Quantification of the changes in plan allowable emissions from the affected sources as a result of RACT implementation. (Review Memo)
\boxtimes			Rationale as to why applicable CTG or ACT regulation is not RACT for the facility. (Review Memo)
		\boxtimes	Demonstration that the NAAQS, PSD increment, reasonable further progress demonstration, and visibility, as applicable, are protected if the plan is approved and implemented. (Review Memo)
			In the event of actual emission increase as a result of RACT SIP revision: Modeling information to support the proposed revision, including input data, output data, model used, ambient monitoring data used, meteorological data used, justification for use of offsite data (where used), modes of models used, assumptions, and other information relevant to the determination of adequacy of the modeling analysis. (Review Memo)
		\boxtimes	Include evidence, where necessary that emission limitations are based on continuous emission reduction technology. (Review Memo)
			State in RACT PA/OP that expiration date shown in PA or OP is for state purposes. Either use the statement below or redact the expiration date on the permit.
			(Sample: The expiration date shown in this permit is for state purposes. For federal enforcement purposes the conditions of this operating permit which pertain to the implementation of RACT regulations shall remain in effect as part of the State Implementation Plan (SIP) until replaced pursuant to 40 CFR 51 and approved by the U.S. Environmental Protection Agency (EPA). The operating permit shall become enforceable by the U.S. EPA upon its approval of the above as a revision to the SIP.) (RACT Permit)
		\boxtimes	Include evidence that the State has the necessary legal authority under State law to adopt and implement the RACT plan. (Reference of PA's Air Pollution Control Act (January 8, 1960, P.L. 2119, as amended and 25 PA Code Chapter 127 (NSR), and 25 PA Code Chapter 129 §§129.91 – 95 in RACT PA/OP). (Review memo or more likely operating permit)

		(Back)
\boxtimes		State that independent technical and economic justification for RACT determination <u>by the Department</u> was performed. As long as you reviewed the companies proposal you may agree with it but that must be stated. (Review memo)
		Confidential Business Information excluded, highlighted or marked. Please also redact all checks from the application. (Review Memo, RACT Permit, RACT Plan by the company)
\boxtimes		Adequate compliance demonstration, monitoring, recordkeeping, work practice standards, and reporting requirements. (Review memo and RACT Permit)

ADMINISTRATIVE DOCUMENTS

<u>Attached</u>	<u>Not</u> <u>Attached</u>	<u>Not</u> Applicable	
\boxtimes			Signed copy of final RACT Plan Approval/Operating Permit.
\boxtimes			Redacted copy of the RACT Plan Approval/Operating Permit. Reviewer should be able to read the redacted text. (We can do electronically if the PA/OP is uploaded in AIMS or available in pdf format). Make sure that the expiration date of the operating permit is redacted. SIPs do not expire.
			Signed Technical Support Document or Review Memorandum. The review memo should contain a discussion about previous case by case RACT determinations so that requirements can be compared
			Public Notice evidence: Include a copy of the actual published notice of the public hearing as it appeared in the local newspaper(s). The newspaper page must be included to show the date of publication. The notice must specifically identify by title and number each RACT regulation adopted or amended. A signed affidavit showing the dates of publication and the newspaper clipping is best. Next best is a copy of the newspaper clippings from all days the article was published. An email showing that the newspaper article was purchased is acceptable unless the EPA receives comments during their comment period stating that there is no proof of publication. The newspaper notice must say that the case by case requirements will be submitted to the EPA as an amendment to the SIP
\boxtimes			A separate formal certification duly signed indicating that public hearings were held. If no public hearings were held the review memo should state that.
			Public hearing minutes: This document must include certification that the hearing was held in accordance with the information in the public notice. It must also list the RACT regulations that were adopted, the date and place of the public hearing, and name and affiliation of each commenter. If there were no comments made during the notice period or at the hearing, please indicate that in the review memo.
\boxtimes			Comment and Response Document: A compilation of EPA, company, and public comments and Department's responses to these comments.
\boxtimes			Copy of RACT proposal, amendments, and other written correspondence between the Department and the facility.

AIR QUALITY PROGRAM 301 39th Street, Bldg. #7 Pittsburgh, PA 15201-1811

Major Source INSTALLATION PERMIT

Issued To:	Eastman Chemical Resins, Inc.
	Jefferson Site
	2200 State Highway 837
	West Elizabeth, PA 15088-0545

ACHD Permit#: 0058-1026 April 21, 2020

Date of Issuance:

Expiration Date:

(See Section III.12)

Issued By:

Digitally signed by JoAnn Truchan, PE Date: 2020.04.22 09:09:00 -04'00'

JoAnn Truchan, P.E. Section Chief, Engineering **Prepared By:**

Digitally signed by Helen Gurvich Date: 2020.04.22 08:54:50 -04'00'

Helen O. Gurvich **Air Quality Engineer**

Pages 2 through10 have been redacted.

IV. SITE LEVEL TERMS AND CONDITIONS

1. Reporting of Upset Conditions (§2103.12.k.2)

The permittee shall promptly report all deviations from permit requirements, including those attributable to upset conditions as defined in Article XXI §2108.01.e, the probable cause of such deviations, and any corrective actions or preventive measures taken.

2. Visible Emissions (§2104.01.a)

Except as provided for by Article XXI §2108.01.d pertaining to a cold start, no person shall operate, or allow to be operated, any source in such manner that the opacity of visible emissions from a flue or process fugitive emissions from such source, excluding uncombined water:

- a. Equal or exceed an opacity of 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- b. Equal or exceed an opacity of 60% at any time.

3. Odor Emissions (§2104.04) (County-only enforceable)

No person shall operate, or allow to be operated, any source in such manner that emissions of malodorous matter from such source are perceptible beyond the property line.

4. Materials Handling (§2104.05)

The permittee shall not conduct, or allow to be conducted, any materials handling operation in such manner that emissions from such operation are visible at or beyond the property line.

5. Operation and Maintenance (§2105.03)

All air pollution control equipment required by this permit or any order under Article XXI, and all equivalent compliance techniques approved by the Department, shall be properly installed, maintained, and operated consistently with good air pollution control practice.

6. Open Burning (§2105.50)

No person shall conduct, or allow to be conducted, the open burning of any material, except where the Department has issued an Open Burning Permit to such person in accordance with Article XXI §2105.50 or where the open burning is conducted solely for the purpose of non-commercial preparation of food for human consumption, recreation, light, ornament, or provision of warmth for outside workers, and in a manner which contributes a negligible amount of air contaminants.

7. Shutdown of Control Equipment (§2108.01.b)

a. In the event any air pollution control equipment is shut down for reasons other than a breakdown, the person responsible for such equipment shall report, in writing, to the Department the intent to shut down such equipment at least 24 hours prior to the planned shutdown. Notwithstanding the submission of such report, the equipment shall not be shut down until the approval of the Department is obtained; provided, however, that no such report shall be required if the source(s)

SITE LEVEL TERMS AND CONDITIONS

erosion or other means;

- d. The adoption of work or other practices to minimize emissions;
- e. Enclosure of the source; and

Pages 12 through 17 have been redacted.

f. The proper hooding, venting, and collection of fugitive emissions.

25. Episode Plans (§2106.02)

The permittee shall upon written request of the Department, submit a source curtailment plan, consistent with good industrial practice and safe operating procedures, designed to reduce emissions of air contaminants during air pollution episodes. Such plans shall meet the requirements of Article XXI §2106.02.

26. New Source Performance Standards (§2105.05)

- a. It shall be a violation of this permit giving rise to the remedies provided by §2109.02 of Article XXI for any person to operate, or allow to be operated, any source in a manner that does not comply with all requirements of any applicable NSPS now or hereafter established by the EPA, except if such person has obtained from EPA a waiver pursuant to Section 111 or Section 129 of the Clean Air Act or is otherwise lawfully temporarily relieved of the duty to comply with such requirements.
- b. Any person who operates, or allows to be operated, any source subject to any NSPS shall conduct, or cause to be conducted, such tests, measurements, monitoring and the like as is required by such standard. All notices, reports, test results and the like as are required by such standard shall be submitted to the Department in the manner and time specified by such standard. All information, data and the like which is required to be maintained by such standard shall be made available to the Department upon request for inspection and copying.

27. Miscellaneous Organic Chemical Manufacturing NESHAP (40 CFR Part 63, Subpart FFFF)

The permittee shall comply with all applicable requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart FFFF – the "Miscellaneous Organic Chemical Manufacturing NESHAP" or "MON". [25 PA Code §129.99; 25 PA Code §129.100]

V. EMISSION UNIT LEVEL TERMS AND CONDITIONS

A. <u>C-5 – Storage Tanks</u>

1. Restrictions:

The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the C5 VOC storage tanks. [§2102.04.b.5]

- a. The permittee shall do the following for all VOC storage tanks and associated equipment: [§2105.03, 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in according with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The VOC storage tanks shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

B. <u>C-5 Operations – Pastillating Belts #1 and #2 (8055)</u>

1. Restrictions:

The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with Pastillating Belts #1 and #2. [2102.04.b.5]

- a. The permittee shall do the following for Pastillating Belts #1 and #2 and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Pastillating Belts #1 and #2 shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

C. <u>MP Poly Unit (S034)</u>

1. **Restrictions**:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the MP Poly Unit. [2102.04.b.5]
- b. The permittee shall properly maintain and operate the condensers E-500-5, E-701-5, and E-701-4 at all times when emissions are routed to them. [§2105.03; RACT Order #257, condition 1.7; 25 PA Code §129.99]
- c. The inlet coolant temperature to the condenser E-701-4 (S034) shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.2.A; 25 PA Code §129.99]
- d. If measured one-hour block average exit vapor temperatures for the condenser E-701-4 (S034) exceed 35°C from the condenser, the permittee shall take the following actions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.C; 25 PA Code §129.99]
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-701-4 condenser that continuously monitors the coolant inlet temperature at all times when emissions are routed to it. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, condition 1.1 and 1.2; 25 PA Code §129.99]

3. Record Keeping Requirements:

a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for MP Poly Unit (filtrate system: filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The MP Poly Unit (filtrate system: filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

D. <u>WW Poly Unit (S013, S020, S023, S027)</u>

1. **Restrictions:**

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the WW Poly Unit. [2102.04.b.5]
- b. Refrigerated vent condensers [E-200-7 (S013), E-900-7 (S020), E-903-3 (S023), and E-901-7 (S027)]: The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - The inlet coolant temperature to each condenser shall not exceed 10°C in any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions;
 - The exit vapor temperature of each condenser shall not exceed 35°C over any one-hour block average when emissions are being routed through them, except as specified in condition V.A.1.e.3) below;
 - 3) If measured one-hour block average exit vapor temperatures exceed 35°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-200-7, E-900-7, E-901-7, and E-903-3 condensers that continuously monitor the coolant inlet temperature. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, conditions 1.1 -1.3; 25 PA Code §129.99]

3. Record Keeping Requirements:

- a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

- The permittee shall do the following for WW Poly Unit (feed dryers and regeneration, west filtrate receiver, solvent wash receiver, and east filtrate receiver) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The WW Poly Unit (feed dryers and regeneration, west filtrate receiver, solvent wash receiver, and east filtrate receiver) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

E. <u>WW Poly Storage Tanks (S025)</u>

- 1. **Restrictions:**
 - a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the WW Poly Storage Tanks. [2102.04.b.5]
 - b. The inlet coolant temperature to the condenser E-202-1 shall not exceed 10°C (50°F) over any onehour block average when emissions are routed through the condensers with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.4; 25 PA Code §129.99]

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for WW Poly storage tanks (73, 75, 76, 77) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The WW Poly storage tanks (73, 75, 76, 77) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

F. LTC Process Operations (S108, S109, S110, S111, S112, S113, S114)

- 1. **Restrictions**:
 - a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the LTC Process Operations. [2102.04.b.5]
 - b. Cooling tower water chilled vent condensers [E-301B-E3 (S109); E-301-4 (S108); E-607-2 (S110); E-RK5-4 (S111); E-RK6-3 (S112); E-RK7-4 (S113)]: The condensers shall be properly operated and maintained according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.H; 25 PA Code §129.99]
 - The inlet coolant temperature to each condenser shall not exceed 10°F (5.6°C) above ambient air temperature over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions and except that at no time will coolant temperature be required to be less than 50°F (10°C).
 - 2) The exit vapor temperature of each condenser shall not exceed 40°C over any one-hour block average when emissions are being routed through them, except as specified in paragraph 3).
 - 3) If measured one-hour block average exit vapor temperatures exceed 40°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the cooling tower is operating properly by reviewing current operating conditions (e.g. that the cooling system is operating and circulating cooling water, and that cooling water is being supplied at less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to less than 50°F (10 °C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature to less than 50°F (10 °C)). Exit vapor temperature exceeding 40°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 40°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to be less than 50°F (10°C)), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 40°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.
 - c. The vacuum leak rate from the #1 shall not exceed 10 lb/hr. The vacuum leak rate from #2 LTC Vacuum System shall not exceed 15 lb/hr. Compliance with this condition shall be demonstrated during regular compliance testing performed at least once every five years after the most recent stack test. [§2102.04.b.6; §2102.04.e; 25 PA Code §129.99 & §129.100]

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain the following data on-site for these operations [§2103.12.j
 & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]:
 - 1) All records of monitoring required by V.A.3 above.
 - 2) Records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment.
 - 3) Maximum resin (lb/min) and polymerizate (gal/min) feed rates (daily).
 - 4) Amount (lbs.) and type of resin and polymerizate (monthly, 12-month rolling total)
 - 5) Changes in #4 LTC Vacuum System vacuum pump status (upon occurrence).

- a. The permittee shall do the following for LTC Process (#1 and #2 Vacuum systems and #1/#2 Pastillator Belt) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The LTC Process (#1 and #2 Vacuum systems and #1/#2 Pastillator Belt) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

G. <u>Dresinate Production Line (S085)</u>

1. Restrictions:

The permittee shall continue to comply with all regulatory and Permit requirements. [2102.04.b.5]

- a. The permittee shall do the following for Dresinate Production Line (Double Drum Dryer) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Dresinate Production Line (Double Drum Dryer) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

H. Hydrogenation Unit (S004, S007, S012)

1. **Restrictions:**

- a. The maximum production rate for Hydrogenation Unit process shall not exceed 22 million pounds per 12-month rolling period. [§2102.04.e; 25 PA Code §129.99]
- Refrigerated vent condensers E-104-2 (S012), E-201-2 (S004), E-403-2 (S007): The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The outlet coolant temperature shall not exceed at any time 40° F.
 - 2) Instrumentation shall be provided to continuously monitor the coolant outlet temperature of each condenser to within one (1) degree Fahrenheit at all times.

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain production records and records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

3. Monitoring Requirements:

a. The permittee shall monitor and record the exit vapor temperature of each refrigerated vent condensers at least once every 15 minutes when the process is in operation. [§2102.04.b.6, §2102.04.e., §2103.12.i]

- a. The permittee shall do the following for Hydrogenation Unit (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank, Vent tanks, Autoclaves #1 and #2, Storage tanks 102, 105, 106) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Hydrogenation Unit (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank, Vent tanks, Autoclaves #1 and #2, Storage tanks 102, 105, 106) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

I. Wastewater Treatment Plant (F027, F033, F034, F035)

1. Work Practice Standard:

- a. The permittee shall do the following for Wastewater Treatment Plant (Bioaeration tank, tanks 702A, 702B, and 702C) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Wastewater Treatment Plant (Bioaeration tank, tanks 702A, 702B, and 702C) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

Pages 31 through 32 have been redacted.

ALLEGHENY COUNTY HEALTH DEPARTMENT AIR QUALITY PROGRAM

April 21, 2020

SUBJECT:Reasonably Available Control Technology (RACT II) Determination
Eastman Chemical Resins, Inc.
Jefferson Site
2200 State Highway 837,
West Elizabeth, PA 15088-7311
Allegheny County

Installation Permit No. 0058-I026

- TO: JoAnn Truchan, P.E. Section Chief, Engineering
- FROM: Helen O. Gurvich Air Quality Engineer

I. Executive Summary

Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) is defined as a major source of VOC emissions and was subjected to a Reasonable Achievable Control Technology (RACT II) review by the Allegheny County Health Department (ACHD) required for the 1997 and 2008 Ozone National Ambient Air Quality Standard (NAAQS). The findings of the review established that the facility has few technically feasible controls options for controlling VOC emissions from the processes, but they are deemed financially infeasible due to their high cost per ton removed.

These findings are based on the following documents:

- RACT analysis performed by ERG (Eastman Chemical RACT Evaluations_9-23-15.docs)
- RACT analysis performed by Eastman Chemical Resins, Inc. (Eastman_RACT2_Report_20200115.pdf)
- Installation Permit No. 0058-I011d dated 5/15/2019
- Installation Permit No. 0058-I018a dated 3/07/2019
- Installation Permit No. 0058-I022a dated 9/20/2019
- Installation Permit No. 0058-I023a dated 12/23/2019
- Installation Permit No. 0058-I016a dated 04/14/2020
- Installation Permit No. 0058-I012a dated 10/30/2008
- Installation Permit No. 0058-I017 dated 7/22/2010
- New Installation Permit Application submitted at December 13, 2019
- New Installation Permit Application submitted at January 24, 2020

II. <u>Regulatory Basis</u>

ACHD requested all major sources of NO_x (potential emissions of 100 tons per year or greater) and all major sources of VOC (potential emissions of 50 tons per year or greater) to reevaluate NO_x and/or VOC RACT for incorporation into Allegheny County's portion of the PA SIP. This document is the result of ACHD's determination of RACT for Eastman based on the materials submitted by the subject source and other relevant information.

III. <u>Facility Description</u>

The Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) produces synthetic hydrocarbon resins from C_5 feedstock, monomers, solvents and catalysts by way of cationic polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products.

The plant is comprised of three polymerization processes (C5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC1, LTC2, and C-5), and an emulsion process, five boilers ranging from 18.6 MM Btu/hr to 38.2 MM Btu/hr, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes.

The facility is a major source of Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAPs) as defined in Article XXI, 2101.20. Detailed descriptions of the relevant emissions units are provided in the following tables.

The installation permit numbers listed are just for reference and are not incorporated into the SIP.

Source ID	Description	Rating	VOC PTE (TPY)	VOC Presumptive Limit (RACT II)	VOC Limit (RACT I) – Consent Order No. 257
S055	Pastillating Belts, UHF Filter – C-5 operations (IP #0058-I018a)	22,000 lbs/hr	6.21	25 Pa Code 129.99	Good operating practices
S034	Filtrate system (filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) – MP Poly Unit (IP #0058-I022a)	103,000,000 lbs/yr	10.33	25 Pa Code 129.99	Condensers, good operating practices
S013	Feed dryers and regeneration – WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	4.86	25 Pa Code 129.99	Condensers, good operating practices
S020	West Filtrate Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	5.11	25 Pa Code 129.99	Condensers, good operating practices
S023	Solvent Wash Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	7.52	25 Pa Code 129.99	Good operating practices
S027	East Filtrate Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	5.11	25 Pa Code 129.99	Good operating practices
S025	Storage Tanks 73/75/76/77- WW Poly Unit (IP #0058-I023a)	75,200 gal each	5.4	25 Pa Code 129.99	Good operating practices
S109	#1 Vacuum System – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	3.80	25 Pa Code 129.99	Good operating practices
S110	#2 Vacuum System – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	8.09	25 Pa Code 129.99	Good operating practices
S114	#1/#2 Pastillator Belt – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	2.80	25 Pa Code 129.99	Good operating practices
S004	Metering Tanks (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank) – Hydrogenation Unit (based on December 2019 testing by Eastman)	22,500,000 lbs/yr	13	Throughput restriction of 22.5 MM lbs/yr, 25 Pa Code 129.99	Condensers, good operating practices
S012	Storage tanks 102, 105, 106 - Hydrogenation Unit (based on December 2019 testing by Eastman)	2 - 6,000 gal each; 1 – 10,000 gal	6.3	Throughput restriction of 22.5 MM lbs/yr, 25 Pa Code 129.99	Condensers, good operating practices
S007	Vent tanks, Autoclaves #1 and #2 - Hydrogenation Unit (based on December 2019 testing by Eastman)	Autoclaves - 1,000 gal each	15	Throughput restriction of 22.5	Condensers, good operating practices

Table 1Facility Sources Subject to Case-by-Case RACT II and Their Existing RACT I Limits

Source	Description	Rating	VOC PTE	VOC	VOC Limit
ID			(TPY)	Presumptive	(RACT I) –
				Limit (RACT II)	Consent Order
					No. 257
				MM lbs/yr, 25 Pa	
				Code 129.99	
F033,	Tanks 702A, 702B, 702C –	50,000 gal each	8.84	25 Pa Code 129.99	Good operating
F034,	Wastewater Treatment Plant (new IP				practices
F035	application)				
F027	Bio Aeration Tank - Wastewater	157,000 gal	15.25	25 Pa Code 129.99	Good operating
	Treatment Plant (new IP application)				practices
S085	Double Drum Dryer – Dresinate	500 lbs/hr	5.48	25 Pa Code 129.99	Good operating
	Production Line (IP #0058-I012a)				practices
	Fugitive Emissions from Equipment	NA	64.10	25 Pa Code 129.99	LDAR program
	Leaks (valves, pumps, pipe connectors,				
	etc.)				

Table 2 Facility Sources Subject to Presumptive RACT II per PA Code 129.97

Description	Rating	Stack ID	VOC PTE	Basis for	Presumptive RACT
			(TPY)	Presumptive	Requirement
	C-5 Oper	rations (Inst		it #0058-I011d)	•
Resin Kettles #9 and #10	140 MM	S053,	1.81	< 2.7 TPY	Install, maintain and operate the
	lbs/yr	S054		VOC	source in accordance with the
					manufacturer's specifications
					and with good operating
					practices
Resin Storage Tanks (121,	19,432 –	S064,	1.774	< 2.7 TPY	Install, maintain and operate the
123, 124, 366, 367, 601 & 602)	108,291	S066,		VOC	source in accordance with the
	gal	S097,			manufacturer's specifications
		S267 –			and with good operating
D : 0	60.014.0	S270	2.00		practices
Resin Storage Tank 504 and	60,914 &	S059,	2.00	< 2.7 TPY	Install, maintain and operate the
161	158,630	S238		VOC	source in accordance with the
	gal				manufacturer's specifications and with good operating
					practices
Raw material tank T-50	528,765	S216	2.8	25 PA Code	Install, maintain and operate the
Raw material tank 1-50	gal	5210	2.0	129.96(b)	source in accordance with the
	gai			127.70(0)	manufacturer's specifications
					and with good operating
					practices
Raw material tank T-54	1,469,451	S060	1.66	< 2.7 TPY	Install, maintain and operate the
	gal			VOC	source in accordance with the
	-				manufacturer's specifications
					and with good operating
					practices
Raw material tank T-55	579,586	S061	1.16	< 2.7 TPY	Install, maintain and operate the
	gal			VOC	source in accordance with the
					manufacturer's specifications
					and with good operating
	050	́т,	- II- 4' D	14 HOOFO TOTO	practices
	-	-		it #0058-I018a)	T 11
Pastillating Belts (Fugitive)	22,000	S055	1.09	< 2.7 TPY	Install, maintain and operate the
	lbs/hr			VOC	source in accordance with the
					manufacturer's specifications and with good operating
					practices
					practices

Description	Rating	Stack ID	VOC PTE	Basis for	Presumptive RACT				
		(T	(TPY)	Presumptive	Requirement				
C-5 Operations (Installation Permit #0058-I017)									
Storage tank 52	525,000 gal	S218	2.37	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
	MP Polymeri	zation Unit	(Installation I	Permit #0058-I02	2a)				
Reactor	103 MM lbs/yr	S029	1.65	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
	WW Polymer	ization Unit	(Installation	Permit #0058-102					
North and South Reactors	80 MM lbs/yr	S017	1.78	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
Storage tanks 68/69/74	75,200 gal each	S024	1.4	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
	WW Po	olymerizatio	on Unit (new I	P application)					
Storage Tank 35	169,000 gal	S075	1.0	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
	LTC Process	Operations	(Installation	<u>Permit #0058-I01</u>					
#4 Vacuum System	67.24 MM lb/yr	S124	1.46	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
	Hydrogena	tion Unit (b	ased on Decer	nber 2019 testing	g)				
Storage tanks 100 and 101	6,000 gal each	S001	1.2	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
			(new IP appli						
Neutralizer and reactor	21 acfm	S155	2.2	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
				testing in 2007)					
Tank RK2	1,000 gal	NA Pr Storage T	1.21	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices				
Other Storage Tank (new IP application)									

Description	Rating	Stack ID	VOC PTE	Basis for	Presumptive RACT
			(TPY)	Presumptive	Requirement
Storage Tank 78	169,000	\$232	1.0	< 2.7 TPY	Install, maintain and operate
	gal			VOC	the source in accordance with
					the manufacturer's
					specifications and with good
					operating practices

Table 3 Facility Sources Exempt from RACT II per PA Code 129.96(c) {< 1 TPY NOx; < 1 TPY VOC}</th>

Description	Rating	Stack ID	VOC PTE (TPY)
C-5 Operations (Installation		,	
Thermal Oxidizer or Carbon Beds for 500 battery tanks, if TO	140 MM lbs/yr	S044	0.26
downtime		S044A	
Hot Oil Furnace	10.33 MMBtu/hr	S056	0.29
Resin Kettle #8	140 MM lbs/yr	S052	0.38
Sparkler Filter with condenser	140 MM lbs/yr	S312	0.05
Sparkler Precoat	140 MM lbs/yr	NA	0.01
Resin Product Loading	140 MM lbs/yr	NA	0.94
Raw material tank T-500	112,251 gal	S058	0.19
Raw material tank T-511	15,228 gal	S274	0.1
MP Polymerization Unit (Insta		8-I022a)	
Storage tank T-301	75,202 gal	NA	0.46
Storage tank T-302	75,202 gal	NA	0.46
Storage tank T-303	75,202 gal	NA	0.46
Preblend Tank	103 MM lbs/yr	S035	0.99
Dryers regeneration, Precoat tank, Mole sieve drain tank	103 MM lbs/yr	S033	0.51
WW Polymerization Unit (Insta	allation Permit #005	8-I023a)	
Feed Dryer regeneration	404 reg/yr	S013a	0.01
East Preblend tank	80 MM lbs/yr	S014	0.57
North Preblend tank	80 MM lbs/yr	S015	0.57
Slurry tank	80 MM lbs/yr	S016	0.02
North Neutralizer	80 MM lbs/yr	S018	0.31
Funda Filter Steam Out/Flushing	80 MM lbs/yr	S019	0.01
Funda Filter Condensate Tank	80 MM lbs/yr	S019a	0.00
South Neutralizer	80 MM lbs/yr	S021	0.31
Reclaim Pot	80 MM lbs/yr	S022	0.13
Storage Tank 10	110,159 gal	S195	0.29
Storage Tank 22	15,863 gal	S206	0.03
Storage Tank 24	15,863 gal	S208	
Storage Tank 23	15,863 gal	S207	0.03
Storage Tank 25	15,863 gal	S209	
Storage Tank 27	16,257 gal	S211	0.04
Storage Tank 26	16,257 gal	S210	
Storage Tank 28	16,257 gal	S212	0.42
Storage Tank 29	16,257 gal	S213	
Storage Tank 34	169,000 gal	S074	0.27
Storage Tank 71	75,200 gal	S230	0.29
Storage Tank 72	75,200 gal	S231	0.42
Storage Tank 200	25,381 gal	S239	
Storage Tank 201	25,381 gal	S240	0.18
Storage Tank 202	25,381 gal	S241	
Storage Tank 204	41,878 gal		
Storage Tank 205	25,381 gal	S300	0.04
Storage Tank 206	25,381 gal		
Storage Tank 207	25,381 gal		
Storage Tank 66	75,200 gal	S228	0.3

Description	Rating	Stack ID	VOC PTE (TPY)
Storage Tank 67	75,200 gal	S026	0.9
LTC Process Operations (Inst	allation Permit #005	8-I016a)	•
Reclaim Solution Tank	67.24 MM lbs/yr	S108	0.58
Resin Kettle #5	67.24 MM lbs/yr	S111	0.32
Resin Kettle #6	67.24 MM lbs/yr	S112	0.24
Resin Kettle #7	67.24 MM lbs/yr	S113	0.68
Berndorf Belt	67.24 MM lbs/yr	S165	0.53
#1/#2 oil/water separator	67.24 MM lbs/yr	S110A	0.01
#4 oil/water separator	67.24 MM lbs/yr	S125	0.01
Drumming operation	67.24 MM lbs/yr	NA	0.18
Truck loading	67.24 MM lbs/yr	NA	0.37
LTC #2 Heater	8.8 MM Btu/hr	S107	0.25
LTC #4 Heater	10 MM Btu/hr	S119	0.28
Wastewater Treatment P			**
Tanks 701A and 701B, Back Porch Sumps	Tanks – 50,000	S147	0.48
	gal each; sumps	~~	
	– 17,500 gal total		
Bio Clarifier	55,000 gal	F028	0.11
Sludge Batch Tank	5,200 gal	F036	0.00
Sludge Solids Handling	6,000 gal	F037	0.00
Dresinate Production Line (Ins			0.00
Tank R-1-A	67,631 gal	S187	0.01
Tank 782	10,000 gal	S107	0.01
Emulsion Process (based			0.01
Tank RK1	1,000 gal	-	0.67
Blend tanks 1, 2, 3, and 4	1,2-6,000 gal	S162	0.28
	each; $3,4 - 5,000$	5102	0.20
	gal each		
Other Storage Tanks (Eastman jud		terial stored)	
Tank 4	88,122 gal	NA	<1
Tank 80	11,982 gal	NA	<1
Tank 151	1,503,943 gal	NA	<1
Tank 208	25,379 gal	NA	<1
Tank 252	30,455 gal	NA	<1
Tank 261	20,000 gal	NA	<1
Tank 262	20,079 gal	NA	<1
Tank 263	20,726 gal	NA	<1
Tank 264	20,000 gal	NA	<1
Tank 265	21,134 gal	NA	<1
Tank 365	20,000 gal	NA	<1
Tank 505	16,356 gal	NA	<1
Tank 761	10,000 gal	NA	<1
Tank 764	17,500 gal	NA	<1
Tank 766	3,800 gal	NA	<1
Tank 775	8,768 gal	NA	<1
Tank 783	11,400 gal	NA	<1
Combustio		1111	
Unilux Boiler 1 (IP #0058-I020)	18.6 MM Btu/hr	S141	0.44
Unilux Boiler 2 (IP #0058-1020)	18.6 MM Btu/hr	S141 S141	0.44
Unilux Boiler 3 (IP #0058-1020)	18.6 MM Btu/hr	S141 S143	0.44
Unilux Boiler 4 (IP #0058-1020)	18.6 MM Btu/hr	S143	0.44
Boiler house emergency generator (IP #0058-I020)	250 kW	F100	0.01
Trane Boiler	38 MM Btu/hr	S144	0.92
	JO IVIIVI DUU/III	5144	0.92

IV. RACT Determination

Two detailed RACT Reviews were performed to evaluate the Eastman facility; one was performed by Eastman, and one by Allegheny County Health Department (ACHD). Both submissions were considered in the final RACT disposition for the Facility and findings from each were incorporated into the ACHD RACT II Determination.

It has been determined that, based on the configuration and operation of these tanks, it is not technically feasible to enclose or capture and control the following sources that are subject to case-by-case analysis:

- Raw material tank T-50 (C-5 operations): this tank is internal floating roof tank. There is no reasonable method to capture emissions from floating roof tank.
- Tanks 702A, 702B, 702C (Wastewater Treatment Plant): all of these tanks are open-top tanks used for pretreatment prior to the biological treatment operations. There is no reasonable method to capture emissions from these open-top tanks. Enclosure or a floating roof is not technically feasible due to the tank configuration and operation.
- Bio Aeration Tank (Wastewater Treatment Plant): this biological treatment tank is open to the atmosphere. There is no reasonable method to capture the emissions from this operation. Enclosure or a floating roof is not technically feasible due to the tank configuration and operation.

The Technically Feasible Control Options for sources where is it was determined that an economic analysis is required for Eastman are detailed in Table 4. All control cost analyses were conducted pursuant to procedures provided in US EPA's Office of Air Quality Planning and Standards (OAQPS) Control Cost Manual, 7th Edition.

Control Option		S109 LTC	S110 LTC	S114 LTC	S013 & S013a WW Poly	S020 WW Poly	S023 WW Poly	S027 WW Poly
Thermal	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation	Cost	\$143,908	\$148,047	\$311,632	\$156,264	\$183,607	\$175,518	\$175,934
(98%)	\$/ton	40,137	19,443	118,251	34,162	38,176	24,798	36,653
Catalytic	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation	Cost	\$134,852	\$135,637	\$254,524	\$138,270	\$154,741	\$148,790	\$149,202
(98%)	\$/ton	37,705	17,814	96,581	30,228	32,174	21,022	31,084
Carbon Adsorption (fixed bed)	tpy VOC Removed	3.5	7.4	2.4	4.4	4.7	6.9	4.7
	Cost	\$181,762	\$179,679	\$180,804	\$154,297	\$156,903	\$156,790	\$155,442
(90-95%)	\$/ton	52,426	24,343	74,706	34,797	33,654	22,852	33,073
Rotary Concentrator/	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation (98%)	Cost	\$184,606	\$184,634	\$219,307	\$184,832	\$187,503	\$186,464	\$186,464
	\$/ton	51,616	24,249	83,218	40,408	38,986	26,345	38,847
Refrigerated Condenser (95%)	tpy VOC Removed	3.5	7.4	2.6	4.4	4.7	6.9	4.7
	Cost	\$136,399	\$138,457	\$1,296,659	\$149,704	\$219,179	\$189,142	\$192,802
	\$/ton	39,342	18,758	507,565	33,761	47,011	27,567	41,022

Table 4 – Technically Feasible VOC Control Cost Comparisons

Control Option		S025 WW Poly	S055 C-5	S034 MP Poly	S004 Hydro	S007 Hydro	S012 Hydro	S085 Dresinate
Thermal	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation (98%)	Cost	\$154,798	\$526,415	\$177,803	\$165,140	\$174,148	\$146,413	\$345,875
(9070)	\$/ton	30,178	90,761	18,288	13,536	12,335	24,692	66,816
Catalytic	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$137,691	\$412,727	\$150,236	\$142,844	\$147,584	\$135,286	\$280,531
(98%)	\$/ton	26,843	71,160	15,452	11,708	10,454	22,816	54,193
Carbon Adsorption	tpy VOC Removed	5.0	5.4	8.9	10.3	13.0	5.4	4.8
(fixed bed)	Cost	\$156,423	\$207,403	\$158,992	\$161,638	\$161,521	\$180,771	\$186,358
(90-95%)	\$/ton	31,458	38,408	17,807	15,693	12,458	33,197	39,200
Rotary Concentrator/ Oxidation (98%)	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
	Cost	\$184,776	\$285,728	\$186,833	\$185,480	\$186,486	\$184,620	\$229,409
	\$/ton	36,022	49,263	19,216	15,203	13,209	31,136	44,317
Refrigerated Condenser (95%)	tpy VOC Removed	5.0	5.7	9.4	11.5	13.7	5.7	5.0
	Cost	\$146,875	\$2,920,397	\$193,751	\$160,986	\$182,016	\$137,554	\$1,504,896
	\$/ton	29,538	512,350	20,557	13,999	13,300	23,931	299,894

 Table 4 – Technically Feasible VOC Control Cost Comparisons (continue)

ACHD has determined that thermal oxidation, catalytic oxidation, carbon adsorption (fixed bed), rotary concentrator/oxidation, and refrigerated condenser are technically feasible control options for controlling VOC emissions from the processes of the Eastman facility, but they are deemed financially infeasible due to their high cost per ton removed.

ACHD has determined that that it was unnecessary to conduct RACT evaluations on the equipment leak emissions for processes WW Poly, MP Poly, or the LTC process lines. The source is subject to the MON. Under the MON, the source is required to have a Leak Detection and Repair (LDAR) program. These requirements are relatively stringent, and ACHD does not believe more stringent requirements would be considered cost-effective. The LDAR requirements of the MON are considered RACT for the emissions from equipment leaks.

V. <u>RACT Summary</u>

Based on the findings in this RACT analysis, the Eastman facility has few technically feasible controls options for controlling VOC emissions from the processes, but they are deemed financially infeasible due to their high cost per ton removed.

The potential VOC emissions from the Hydro operations are based on the results of the stack test conducted in December 2019 and a throughput restriction of 22,500,000 lbs/year. Eastman proposes that RACT II for Hydro is a throughput limit of 22,500,000 lbs/year. The upcoming Installation Permit application for this process will be based on that limit.

The new RACT II conditions will not result in any additional reductions in VOC from the Eastman. The conditions of Plan Approval Order and Agreement #257 (RACT I), issued January 14, 1997, have been superseded by the case-by-case and presumptive RACT II conditions in this proposed permit. The RACT II conditions are at least as stringent as those from RACT I.

VI. RACT II Permit Conditions

Source ID	Description	Permit Condition 0058-I026	RACT II Regulations
NA	Site Level Terms and Conditions	Condition IV.27	25 PA Code §129.99 25 PA Code §129.100
Storage Tanks	C-5 Operations (Installation Permit #0058-I011d)	Condition V.A.2.a	25 PA Code §129.99 25 PA Code §129.100
	(Condition V.A.2.b	25 PA Code §129.99
S055	C-5 Operations	Condition V.B.2.a	25 PA Code §129.99 25 PA Code §129.100
5055	(Installation Permit #0058-I018a)	Condition V.B.2.b	25 PA Code §129.99
	MP Poly Unit	Condition V.C.1.b Condition V.C.1.c Condition V.C.1.d Condition V.C.2.a	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.99
S034	(Installation Permit #0058-I022a)	Condition V.C.3.a Condition V.C.4.a Condition V.C.4.b	25 PA Code §129.100 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.00
		Condition V.C.4.b Condition V.D.1.b Condition V.D.2.a	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.99
S013, S020, S023, S027	WW Poly Unit (Installation Permit #0058-I023a)	Condition V.D.2.a Condition V.D.3.a Condition V.D.3.b Condition V.D.4.a	25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.100 25 PA Code §129.99
		Condition V.D.4.b	25 PA Code §129.100 25 PA Code §129.99
S025	WW Poly Storage Tanks (Installation Permit #0058-I023a)	Condition V.E.1.b Condition V.E.2.a Condition V.E.2.b Condition V.E.3.a Condition V.E.3.b	25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.100 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
S109, S110, S114	LTC Process Operations (Installation Permit #0058-I016a)	Condition V.F.1.b Condition V.F.1.c Condition V.F.2.a Condition V.F.3.a	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.100 25 PA Code §129.99 25 PA Code §129.99
	Dresinate Production Line	Condition V.F.3.b Condition V.G.2.a	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100
5005	(Installation Permit #0058-I012a)	Condition V.G.2.b	25 PA Code §129.99
S004, S007, S012	Hydrogenation Unit	Condition V.H.1.a Condition V.H.1.b Condition V.H.2.a Condition V.H.2.b	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.100

Source ID	Description	Permit Condition 0058-I026	RACT II Regulations
		Condition V.H.3.a	25 PA Code §129.99
		Condition V.H.4.a	25 PA Code §129.99
			25 PA Code §129.100
		Condition V.H.4.b	25 PA Code §129.99
		Condition V.I.1.a	25 PA Code §129.99
F027, F033, F034, F035	Wastewater Treatment Plant		25 PA Code §129.100
		Condition V.I.1.b	25 PA Code §129.99

ALLEGHENY COUNTY HEALTH DEPARTMENT Air Quality Program

SUMMARY OF PUBLIC COMMENTS AND DEPARTMENT RESPONSES ON THE PROPOSED ISSUANCE OF EASTMAN CHEMICAL RESINS, INC., JEFFERSON SITE, INSTALLATION PERMIT NO. 0058-1026

[Notice of the opportunity for public comment appeared in the legal section of the Pittsburgh Post-Gazette on February 6, 2020. The public comment period ended on March 17, 2020.]

1. <u>COMMENT:</u> ACHD has indicated that the RACT II determinations for certain sources are based in part on information in a Draft Installation Permit (IP No. 0058-I016a) that hasn't been issued yet, and two Installation Permit applications that have been submitted by Eastman. All Installation Permits that are being relied on to inform the RACT II Determinations for the facility should be issued prior to issuing the final Installation Permit for RACT II.

<u>RESPONSE</u>: Installation Permit No, 0058-I016a was issued at April 14, 2020. The RACT II evaluation was not based on any other unissued permits.

2. <u>COMMENT:</u> In the permit review memo, ACHD indicated that Raw Material Tank T50 (C-5 Operations) is a raw material tank subject to case-by-case RACT. Please explain if the tank is subject to Source Standards for tanks found at 25 PA Code 129.56. Tanks that meet the criteria for sources subject to this regulation are not subject to RACT per the applicability criteria at 25 PA Code 129.96.(b).

<u>RESPONSE</u>: This tank is subject to Source Standards for tanks found at 25 PA Code 129.56, so this tank T50 will be removed from the Table 1 "Facility Sources Subject to Case-by-Case RACT II and Their Existing RACT I Limits" and put to the Table 2 "Facility Sources Subject to Presumptive RACT II per PA Code 129.97".

3. <u>COMMENT:</u> In the permit review memo, ACHD indicated that Tanks 702A, 702B, 702C, and the Bioaeration Tank associated with the Wastewater Treatment Plant are open-top tanks and that there are no reasonable methods for capturing emissions from these types of tanks. ACHD should indicate each control method evaluated for the tanks and justify whether they were technically infeasible or economically infeasible.

<u>RESPONSE</u>: The only viable method of control for these tanks would be to enclose the tanks or install a floating roof. Because of the configuration and operation of these tanks, neither enclosing them nor installing a floating roof is technically feasible.

4. <u>COMMENT:</u> In ACHD's review memo, ACHD has indicated that it did not perform a RACT evaluation for equipment leak emissions from Sources WW Poly, MP Poly, or the LTC process lines because these sources are subject to MON. While MON may be the most technically/cost feasible control option for these sources, ACHD still needs to perform a technical feasibility and cost evaluation for other possible control options as part of the RACT case by case analysis for these sources to demonstrate that there aren't other control options that are more cost effective and result in greater control of VOC emissions.

RESPONSE: A RACT evaluation was performed on the individual equipment and processes within each of these process lines. Beyond an LDAR program, there is no technically feasible means of controlling emissions from equipment leaks not otherwise accounted for in the RACT evaluations of the individual processes. A RACT citation was added to Condition IV.27 to incorporate the conditions of the MON.

5. <u>COMMENT</u>: Condition V.A. for C-5 Storage Tanks – Commenter notes that Work Practice Standard 2.a.1 states that Eastman should perform regular maintenance "considering the manufacturer's or the operator's

maintenance procedures". Commenter asked to explain and justify how this condition is enforceable as a practical matter. For instance, the condition could be revised to "Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures."

<u>RESPONSE:</u> The revision has been made to the final permit.

- 6. <u>COMMENT:</u> The permit conditions for the following sources should further define how the sources should be properly maintained and operated and include associated monitoring and recordkeeping requirements to ensure compliance with the work practices:
 - a. source V.B C-5 Operations Pastillating Belts #1 and #2 (S055)
 - b. V.C MP Poly Unit (S034)
 - c. V.D. WW Poly Unit (S013, S013a, S020, S023, and S027)
 - d. V.E. WW Poly Unit Storage Tanks (S025)
 - e. V.F LTC Process Operations (S109, S110, S114)
 - f. V.G Dresinate Production Line (S085)
 - g. V.H. Hydrogenation Unit (S004, S007, S012)
 - h. V.I Wastewater Treatment Plant (F027, F033, F034, F035)

<u>RESPONSE</u>: The Work Practice Standard conditions were added to all mentioned sources. The revision has been made to the final permit.

7. <u>COMMENT:</u> Permit Condition V.C MP Poly Unit (S034) - The permit should identify what corrective actions will be taken by Eastman when inlet coolant temperature requirements are not being met.

RESPONSE: The corrective actions for S034 was added and the revision has been made to the final permit.

8. <u>COMMENT:</u> The following sources use condensers as a VOC emissions control device: V.D. WW Poly Unit (S013, S013a, S020, S023, and S027), V.E. WW Poly Unit Storage Tanks (S025), and V.H. Hydrogenation Unit (S004, S007, S012). For these sources, please explain and justify the recordkeeping requirements. For instance, a recordkeeping condition similar to Condition No. V.F.3.a.2. for LTC Process Operations (S109, S110, S114) could be included for the above mentioned units. The condition requires Eastman to keep "records of operation, inspection, calibration, maintenance, and/or replacement of process or control equipment"

<u>RESPONSE</u>: The recordkeeping requirements were added, and the revision has been made to the final permit, with the exception of the Hydrogenation Unit (see comment #37 below).

9. <u>COMMENT:</u> Permit Condition V.E. WW Poly Unit Storage Tanks (S025) - ACHD should indicate the frequency at which Eastman should monitor and record condenser coolant temperatures in Condition V.E.2.

<u>RESPONSE</u>: Conditions for monitoring and recordkeeping for S025 are included in the Installation Permit No.0058-I023a and therefore do not need to be included in RACT Permit. No revisions were made.

10. <u>COMMENT:</u> Permit Condition V.F LTC Process Operations (S109, S110, S114) - ACHD should incorporate the short-term emission rate of VOC vacuum leak rate for the #4 LTC Vacuum system (10 lb/hr as proposed in Draft Installation Permit IP No. 0058-I016a) as part of the RACT II determination for this source. ACHD should also include the appropriate monitoring and recordkeeping in the permit as part of the RACT determination to ensure compliance with the VOC emission limit for the #4 LTC Vacuum.

<u>RESPONSE</u>: The #4 LTC Vacuum System is not subject to case-by-case RACT. As there is no feasible way to monitor the continuous vacuum leak rate, the case-by-case RACT determination for the #1 and #2 Vacuum System is proper operation and maintenance (condition V.F.3.a) and the LDAR requirements of the MON

(condition IV.27). See response to comment 4 above. In addition, Condition V.F.1.c was added to the permit for short-term emissions and testing requirements for #1 and #2 Vacuum System.

- **11.** <u>COMMENT:</u> Permit Condition V.H. Hydrogenation Unit (S004, S007, S012) ACHD should indicate the frequency at which Eastman should monitor and record condenser coolant temperatures in Condition V.H.2.
 - **<u>RESPONSE:</u>** Monitoring condition was added to the final permit. See also comment #37 below.
- 12. <u>COMMENT:</u> Section II: Facility Description. It should be noted in the facility description that this RACT II obligation will replace the 1997 RACT Order No. 257 (RACT I) and the requirement to determine RACT as set forth in paragraph 78 of the December 8, 2011 consent decree between Eastman Chemical and the US EPA (United States of America and Allegheny County Health Department vs. Eastman Chemical Resins, Inc., Civil Action No. 11-1240). 25 PA Code §129.99(g) requires that this RACT permit supersede the 1997 RACT Order unless the 1997 RACT Order contains more stringent requirements. As noted in Section V of the permit and technical support document, the requirements in this RACT IP are not more stringent than those found in the 1997 RACT Order. Moreover, the Consent Decree requires that this RACT Order "supersede in its entirety the 1997 RACT Order". See Paragraph 78 of the Consent Decree.

RESPONSE: The Department has the authority and statutory obligation to make a RACT determination and issue to this permit to meet the 2008 Ozone RACT (RACT II). Furthermore, there is nothing in the Consent Decree that prohibits the Department from doing so. Paragraph 78 of the Consent Decree states "Within ninety (90) Days after Eastman's receipt of the last of the Process Unit-wide Article XXI installation permits for the Facility required by this Consent Decree, Eastman shall submit to ACHD a VOC RACT Proposal for the Facility." As the conditions of the Consent Decree have not yet been fully met, the conditions of the 1997 Consent Order No. 257 (RACT I) are still in effect, except where the Department determined RACT to be the same as RACT I.

13. <u>COMMENT:</u> Section III: General Conditions and Section IV: Site Level Terms and Conditions. Eastman requests that the ACHD remove the terms and conditions found in Sections III and IV from this RACT Installation Permit. These terms and conditions are a recitation of the referenced Article XXI rules that are already part of the Pennsylvania State Implementation Plan (SIP). They should not be incorporated into the SIP as part of this case-by-case RACT SIP Amendment. Similarly, Sections I, II and VI should also not be incorporated into the SIP as they do not contain applicable requirements that must be incorporated into the SIP pursuant to 25 PA Code §129.99(h). Only the Section V Emission Unit Level Terms and Conditions need to be incorporated into the SIP pursuant to this requirement.

The commenter has also provided changes shown in Section III and IV to illustrate how these boilerplate conditions have been modified from what appears in Article XXI. Eastman is not requesting that the tracked changes shown in Sections III and IV be made in this Installation Permit.

<u>RESPONSE</u>: Prior to submission for incorporation into the SIP, the permit will be redacted such that only those conditions subject to 25 PA Code §129.99 will be included. However, as this is still an enforceable installation permit, the conditions in Sections I-IV, and VI are still included in the final issued permit.

As the commenter notes, Sections III and IV contain boilerplate language found in all installation permits, and therefore remain unchanged.

14. <u>COMMENT:</u> Section V: Emission Unit Level Terms and Conditions. The commenter notes that this RACT II obligation will replace the 1997 RACT Order No. 257 (RACT I) and the requirement to determine RACT as set forth in paragraph 78 of the December 8, 2011 consent decree. See comment #12 above.

<u>RESPONSE</u>: See response to comment #12 above.

- **15.** <u>COMMENT:</u> Condition V.A.1. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the C5 VOC storage tanks".
 - **<u>RESPONSE</u>**: The revision has been made to the final permit.
- 16. <u>COMMENT:</u> Conditions V.A.2.a and V.A.2.b. These conditions should be clarified to specify "VOC" storage tanks.

<u>RESPONSE</u>: The revision has been made to the final permit.

17. <u>COMMENT</u>: Conditions V.A.2.b, V.B.2, V.C.1.b, V.C.2, V.C.3, V.D.1.b, V.D.2, V.D.3, V.D.4, V.E.1.b, V.E.2, V.E.3, V.F.1.b, V.F.3, V.F.4, V.G.2, V.H.2, V.H.3, and V.I.1. Paragraph 78 of the consent decree states "The new RACT Order ... required by this Paragraph shall supersede [sic] in its entirety the 1997 RACT Order" unless the 1997 RACT Order contains more stringent requirements. That is not the case for 1997 RACT Order section 1.7, which is a general provision requiring that Eastman properly maintain and operate the equipment. Therefore, references to section 1.7 should be removed. This comment also applies other instances when conditions 1.1 through 1.7 are referenced.

<u>RESPONSE</u>: See response to comment #12 above. In these conditions, the RACT II requirement was determined to be continuation of RACT I. The permit remains unchanged for these conditions and all subsequent conditions where section 1.7 of the 1997 RACT Order is referenced.

18. <u>COMMENT:</u> Condition V.B.1. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC control requirements in the applicable Installation Permit associated with S055".

RESPONSE: The revision has been made to the final permit, with the exception of using "Pastillating Belts #1 and #2" instead of "S055".

19. <u>COMMENT:</u> Condition V.C.1.a. That this condition should be clarified to read "*Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with S034*"

<u>RESPONSE</u>: The revision has been made to the final permit, with the exception of using "MP Poly Unit" instead of "S055"

20. <u>COMMENT:</u> Conditions V.C.1.b, V.C.1.c, and V.C.2. Condensers E-400-6 and E-203-4 are not associated with the MP Poly Process stack S034 and should be removed from these conditions.

<u>RESPONSE</u>: The revision has been made to the final permit.

21. <u>COMMENT:</u> Condition V.C.2. This comment should clarify that it only applies when emissions are being routed to the condenser

RESPONSE: The Department agrees and the revision has been made to the final permit.

22. <u>COMMENT:</u> Condition V.C.3. The requirement to keep and maintain records of monthly and 12-month moving polymerizate production should be removed since there is no production limit subject to RACT.

<u>RESPONSE</u>: The Department agrees, and the revision has been made to the final permit.

23. <u>COMMENT:</u> Section V.D. Emission point S013a should be removed as there is no such emission point in Installation Permit #0058-I023a.

<u>RESPONSE</u>: Emission point S013a included in Technical Support Document for Installation Permit #0058-I023a. VOC emissions for this point is 0.01 tpy. This emission point included in Table 3 of Section III and removed from Table 1 of this Section and from Section VI. Also this emission point removed from the permit.

24. <u>COMMENT:</u> Condition V.D.1.a. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with S013, S020, S023, and S027".

<u>RESPONSE</u>: The revision has been made to the final permit, with the exception of using "WW Poly Unit" instead of "S013, S020, S023, and S027".

25. <u>COMMENT</u>: Condition V.D.1.b. The following condensers are not included in the table in Section VI of the Technical Support Document as subject to RACT II permit conditions and should be removed: E-600-9, E-601-11, E-700-6, and E-701-7.

<u>RESPONSE</u>: The revision has been made to the final permit.

26. <u>COMMENT</u>: Condition V.D.1.b.3.b). This condition should read "...when the coolant supply temperature is more less than 50°F (10°C), or when the coolant supply is interrupted."

<u>RESPONSE</u>: The Department disagrees. The purpose of this condition is to document instances of temperature exceedances due to problems with the coolant. This would be if the coolant is too hot or not properly flowing. The permit remains unchanged.

27. <u>COMMENT:</u> Condition V.D.2. The following condensers are not associated with the listed emission points of this section and should be removed: E-300-4, E-301-4, E-600-9, E-601-11, E-700-6, E-701-7, and E-800-3.

<u>RESPONSE</u>: The revision has been made to the final permit.

28. <u>COMMENT:</u> Condition V.D.3. The requirement to keep and maintain records of monthly and 12-month moving polymerizate production should be removed since there is no production limit subject to RACT.

<u>RESPONSE</u>: The revision has been made to the final permit.

29. <u>COMMENT:</u> Condition V.E.1.a. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with S025".

<u>RESPONSE</u>: The revision has been made to the final permit, with the exception of using "WW Poly Storage Tanks" instead of "S025".

30. <u>COMMENT:</u> Condition V.E.1.b. Condensers E-201-2 and E-67-3 are not associated with the WW Poly Storage Tanks and should be removed.

<u>RESPONSE</u>: The revision has been made to the final permit.

31. <u>COMMENT:</u> Section V.F. The LTC process should also include emission points S108, S111, S112, and S113. S114 should be corrected to S124.

<u>RESPONSE</u>: The revision has been made to the final permit.

32. <u>COMMENT:</u> Condition V.F.1.a. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with \$108, \$109, \$110, \$111, \$112, \$113, and \$124".

RESPONSE: The revision has been made to the final permit, with the exception of using "LTC Process Operations" instead of "S108, S109, S110, S111, S112, S113, and S114". Please note that the change from S114 to S124 is incorrect. S124 is the emission point for the #4 Vacuum System which is not subject to case-by-case RACT. S114 is the emission point for the LTC #1/#2 Pastillator Belts which are subject to case-by-case RACT.

33. <u>COMMENT:</u> Condition V.F.1.3.b). his condition should read "...when the coolant supply temperature is more less than 50°F (10°C), or when the coolant supply is interrupted."

<u>RESPONSE</u>: The Department disagrees. The purpose of this condition is to document instances of temperature exceedances due to problems with the coolant. This would be if the coolant is too hot or not properly flowing. The permit remains unchanged.

34. <u>COMMENT:</u> Condition V.F.3.a.6). This condition should be removed, as Eastman is not utilizing the Air Emissions Inventory Improvement Program (EIIP) and has no plans to do so.

<u>RESPONSE</u>: The revision has been made to the final permit.

35. <u>COMMENT:</u> Condition V.G.1. This condition should be clarified to read "*Continue to comply with all applicable regulatory-and Permit-requirements*". There are no control requirements in the applicable permit, so the phrase "and Permit" should be removed.

<u>RESPONSE</u>: The Department disagrees. The purpose of this condition is to reiterate that all conditions of the applicable permit still apply, and that this permit does not remove them. The permit remains unchanged.

36. <u>COMMENT:</u> Condition V.H.1.b. The following condensers are part of the Hydrogenation Unit and should be added: E-104-2 (S012), E-201-2 (S004), E-403-2 (S007).

<u>RESPONSE</u>: The revision has been made to the final permit.

37. <u>COMMENT:</u> Condition V.H.1.b.1)-3). This section conflicts with Consent Order paragraph 19 and Appendix A, which require condensers to comply with ACHD Permit # 0058-I001. ACHD Permit # 0058-I001 includes compliance temperatures for condenser water outlets, not inlets. Requiring the inlet coolant to be a higher temperature (50°F, as per this section) than the outlet temperature (40°F, as per IP #0058-I001, condition 3.b) is not logical and does not indicate compliance. Also, monitoring both inlet and outlet coolant temperatures is excessive and redundant and does not improve compliance. There currently is no instrumentation in place to monitor and comply with the proposed refrigerated inlet coolant temperature limits of this section. Section V.H.1.b.1) through 3) should be deleted; and Eastman will continue to comply with Consent Order paragraph 19 and Appendix A and ACHD Permit # 0058-I001.

RESPONSE: The Department partially agrees and partially disagrees. The purpose of this condition was to provide for a means of demonstrating if an exceedance of outlet vapor temperature is due solely to ambient conditions and to be consistent with other condensers and the language agreed upon between Eastman, ACHD, and the EPA. However, the Department does agree that the in the case of the Hydrogenation Unit, this language does not apply. The Department also agrees that the language in Installation Permit #0058-I001, along with the requirements from Appendix A of the consent decree constitute RACT. The permit has been amended to remove

the previous conditions and replace them with that of IP #0058-I001.

Name	Affiliation		
Gwendolyn Supplee	EPA, Region III		
	Permit Branch, 3AD10		
Cynthia Stahl, PhD	EPA, Region III		
	Permit Branch, 3AD10		
Janice S. Kane, P.E.	Eastman Chemical Resins, Inc.		
Environmental Coordinator	Jefferson Site		

LIST OF COMMENTERS

AIR QUALITY PROGRAM 301 39th Street, Bldg. #7 Pittsburgh, PA 15201-1811

Major Source INSTALLATION PERMIT

Issued To:	Eastman Chemical Resins, Inc. Jefferson Site	ACHD Permit#:	0058-1026
	2200 State Highway 837 West Elizabeth, PA 15088-0545	Date of Issuance:	
		Expiration Date:	(See Section III.12)

Issued By:

JoAnn Truchan, P.E. Section Chief, Engineering **Prepared By:**

Helen O. Gurvich Air Quality Engineer [This page left intentionally blank]

TABLE OF CONTENTS

I.	CONTACT INFORMATION	•••••••••••••••••••••••••••••••••••••••	4
II.	FACILITY DESCRIPTION		5
III.	GENERAL CONDITIONS		6
IV.	SITE LEVEL TERMS AND CO	ONDITIONS	11
V.	EMISSION UNIT LEVEL TER	RMS AND CONDITIONS	19
	B. C-5 OPERATIONS – PASTILLATIN	IG BELTS #1 AND #2 (S055)	20
	D. WW POLY UNIT (S013, S013A, S	5020, S023, S027)	22
		25)	
	F. LTC PROCESS OPERATIONS (S1	09, S110, S114)	
	G. DRESINATE PRODUCTION LINE (\$085)	
	H. HYDROGENATION UNIT (S004, S	007, S012)	
	I. WASTEWATER TREATMENT PLA	NT (F027, F033, F034, F035)	30
VI.	ALTERNATIVE OPERATING	SCENARIOS	31

AMENDMENTS:

DATE SECTION(S)

I. CONTACT INFORMATION

Eastman Chemical Resins, Inc. Jefferson Site 2200 State Highway 837 West Elizabeth, PA 15088-0545

Permittee/Owner:

Eastman Chemical Resins, Inc. Jefferson Site 2200 State Highway 837 West Elizabeth, PA 15088-0545

Eastman Chemical Resins, Inc.

West Elizabeth, PA 15088-0545

Senior Environmental Coordinator

Eugene M. Ingram

Jefferson Site

P.O. Box 545

412-384-2520

412-384-7311

Janice Kane

412-384-7311

Jefferson Site Manager

2200 State Highway 837

412-384-2520, ext. 2243

jsnyderkane@eastman.com

Responsible Official: Title: Company:

Address:

Telephone Number: Fax Number:

Facility Contact: Title: Telephone Number: Fax Number: E-mail Address:

AGENCY ADDRESSES:

ACHD Contact:

EPA Contact:

Chief Engineer Allegheny County Health Department Air Quality Program 301 39th Street, Building #7 Pittsburgh, PA 15201-1811 aqpermits@alleghenycounty.us

Enforcement Programs Section (3AP12) USEPA Region III 1650 Arch Street Philadelphia, PA 19103-2029

ip – template.doc

Proposed: February 15, 2020

II. FACILITY DESCRIPTION

FACILITY DESCRIPTION

The Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) produces synthetic hydrocarbon resins from C5 feedstock, monomers, solvents and catalysts by way of cationic polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products. The plant is comprised of three polymerization processes (C5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC1, LTC2, and C-5), and an emulsion process, five boilers ranging from 18.6 MM Btu/hr to 38.2 MM Btu/hr, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes.

The facility is a major source of volatile organic compounds (VOCs) and Hazardous Air Pollutants (HAPs); and a minor source of particulate matter (PM), particulate matter <10 μ m in diameter (PM₁₀), particulate matter <2.5 μ m in diameter (PM_{2.5}), nitrogen oxides (NO_X), sulfur oxides (SO_X), as defined in §2102.20 of Article XXI. The facility is also a minor source of greenhouse gas emissions (CO₂e) as defined in the U.S. EPA Greenhouse Gas Tailoring Rule.

INSTALLATION DESCRIPTION

This permit is an installation addressing the requirements for case-by-case RACT for this facility.

DECLARATION OF POLICY

Pollution prevention is recognized as the preferred strategy (over pollution control) for reducing risk to air resources. Accordingly, pollution prevention measures should be integrated into air pollution control programs wherever possible, and the adoption by sources of cost-effective compliance strategies, incorporating pollution prevention, is encouraged. The Department will give expedited consideration to any permit modification request based on pollution prevention principles.

The permittee is subject to the terms and conditions set forth below. These terms and conditions constitute provisions of *Allegheny County Health Department Rules and Regulations, Article XXI Air Pollution Control.* The subject equipment has been conditionally approved for operation. The equipment shall be operated in conformity with the plans, specifications, conditions, and instructions which are part of your application, and may be periodically inspected for compliance by the Department. In the event that the terms and conditions of this permit or the applicable provisions of Article XXI conflict with the application for this permit, these terms and conditions and the applicable provisions of Article XXI shall prevail. Additionally, nothing in this permit relieves the permittee from the obligation to comply with all applicable Federal, State and Local laws and regulations.

III. GENERAL CONDITIONS

1. **Prohibition of Air Pollution (§2101.11)**

It shall be a violation of this permit to fail to comply with, or to cause or assist in the violation of, any requirement of this permit, or any order or permit issued pursuant to authority granted by Article XXI. The permittee shall not willfully, negligently, or through the failure to provide and operate necessary control equipment or to take necessary precautions, operate any source of air contaminants in such manner that emissions from such source:

- a. Exceed the amounts permitted by this permit or by any order or permit issued pursuant to Article XXI;
- b. Cause an exceedance of the ambient air quality standards established by Article XXI §2101.10; or
- c. May reasonably be anticipated to endanger the public health, safety, or welfare.

2. Nuisances (§2101.13)

Any violation of any requirement of this Permit shall constitute a nuisance.

3. **Definitions (§2101.20)**

- a. Except as specifically provided in this permit, terms used retain the meaning accorded them under the applicable provisions and requirements of Article XXI or the applicable federal or state regulation. Whenever used in this permit, or in any action taken pursuant to this permit, the words and phrases shall have the meanings stated, unless the context clearly indicates otherwise.
- b. Unless specified otherwise in this permit or in the applicable regulation, the term "*year*" shall mean any twelve (12) consecutive months.

4. Certification (§2102.01)

Any report or compliance certification submitted under this permit shall contain written certification by a responsible official as to truth, accuracy, and completeness. This certification and any other certification required under this permit shall be signed by a responsible official of the source, and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

5. **Operation and Maintenance (§2105.03)**

All air pollution control equipment required by this permit or Article XXI, and all equivalent compliance techniques that have been approved by the Department, shall be properly installed, maintained, and operated consistent with good air pollution control practice.

6. Conditions (§2102.03.c)

It shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02, for any person to fail to comply with any terms or conditions set forth in this permit.

7. Transfers (§2102.03.e)

This permit shall not be transferable from one person to another, except in accordance with Article XXI §2102.03.e and in cases of change-in-ownership which are documented to the satisfaction of the Department, and shall be valid only for the specific sources and equipment for which this permit was issued. The transfer of permits in the case of change-in-ownership may be made consistent with the administrative permit amendment procedure of Article XXI §2103.14.b.

8. Effect (§2102.03.g)

Issuance of this permit shall not in any manner relieve any person of the duty to fully comply with the requirements of Article XXI or any other provision of law, nor shall it in any manner preclude or affect the right of the Department to initiate any enforcement action whatsoever for violations of Article XXI or this Permit, whether occurring before or after the issuance of such permit. Further, the issuance of this permit shall not be a defense to any nuisance action, nor shall such permit be construed as a certificate of compliance with the requirements of Article XXI or this Permit.

9. General Requirements (§2102.04.a)

It shall be a violation of this Permit giving rise to the remedies set forth in Article XXI §2109 for any person to install, modify, replace, reconstruct, or reactivate any source or air pollution control equipment to which this Permit applies unless either:

- a. The Department has first issued an Installation Permit for such source or equipment; or
- b. Such action is solely a reactivation of a source with a current Operating Permit, which is approved under \$2103.13 of Article XXI.

10. Conditions (§2102.04.e)

Further, the initiation of installation, modification, replacement, reconstruction, or reactivation under this

Installation Permit and any reactivation plan shall be deemed acceptance by the source of all terms and conditions specified by the Department in this permit and plan.

11. **Revocation** (§2102.04.f)

- a. The Department may, at any time, revoke this Installation Permit if it finds that:
 - 1) Any statement made in the permit application is not true, or that material information has not been disclosed in the application;
 - 2) The source is not being installed, modified, replaced, reconstructed, or reactivated in the manner indicated by this permit or applicable reactivation plan;
 - 3) Air contaminants will not be controlled to the degree indicated by this permit;
 - 4) Any term or condition of this permit has not been complied with;
 - 5) The Department has been denied lawful access to the premises or records, charts, instruments and the like as authorized by this Permit; or
- b. Prior to the date on which construction of the proposed source has commenced the Department may, revoke this Installation Permit if a significantly better air pollution control technology has become available for such source, a more stringent regulation applicable to such source has been adopted, or any other change has occurred which requires a more stringent degree of control of air contaminants.

12. Term (§2102.04.g)

This Installation Permit shall expire in 18 months if construction has not commenced within such period or shall expire 18 months after such construction has been suspended, if construction is not resumed within such period. In any event, this Installation Permit shall expire upon completion of construction, except that this Installation Permit shall authorize temporary operation to facilitate shakedown of sources and air cleaning devices, to permit operations pending issuance of a related subsequent Operating Permit, or to permit the evaluation of the air contamination aspects of the source. Such temporary operation period shall be valid for a limited time, not to exceed 180 days, but may be extended for additional limited periods, each not to exceed 120 days, except that no temporary operation shall be authorized or extended which may circumvent the requirements of this Permit.

13. Annual Installation Permit Administrative Fee (§2102.10.c & e)

No later than 30 days after the date of issuance of this Installation Permit and on or before the last day of the month in which this permit was issued in each year thereafter, during the term of this permit until a subsequent corresponding Operating Permit or amended Operating Permit is properly applied for, the owner or operator of such source shall pay to the Department, in addition to all other applicable emission and administration fees, an Annual Installation Permit Administration Fee in an amount of \$750.

14. Severability Requirement (§2103.12.l)

The provisions of this permit are severable, and if any provision of this permit is determined to by a court of competent jurisdiction to be invalid or unenforceable, such a determination will not affect the remaining provisions of this permit.

15. Reporting Requirements (§2103.12.k)

a. The permittee shall submit reports of any required monitoring at least every six (6) months. All

instances of deviations from permit requirements must be clearly identified in such reports. All required reports must be certified by the Responsible Official.

- b. Prompt reporting of deviations from permit requirements is required, including those attributable to upset conditions as defined in this permit and Article XXI §2108.01.c, the probable cause of such deviations, and any corrective actions or preventive measures taken.
- c. All reports submitted to the Department shall comply with the certification requirements of General Condition III.4 above.
- d. Semiannual reports required by this permit shall be submitted to the Department as follows:
 - 1) One semiannual report is due by July 31 of each year for the time period beginning January 1 and ending June 30.
 - 2) One semiannual report is due by February 1 of each year for the time period beginning July 1 and ending December 31.
 - 3) The first semiannual report shall be due July 31, 2020 for the time period beginning on the issuance date of this permit through June 30, 2020.
- e. Reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

16. Minor Installation Permit Modifications (§2102.10.d)

Modifications to this Installation Permit may be applied for but only upon submission of an application with a fee in the amount of \$300 and where:

- a. No reassessment of any control technology determination is required; and
- b. No reassessment of any ambient air quality impact is required.

17. Violations (§2104.06)

The violation of any emission standard established by this Permit shall be a violation of this Permit giving rise to the remedies provided by Article §2109.02.

18. Other Requirements Not Affected (§2105.02)

Compliance with the requirements of this permit shall not in any manner relieve any person from the duty to fully comply with any other applicable federal, state, or county statute, rule, regulation, or the like, including, but not limited to, any applicable NSPSs, NESHAPs, MACTs, or Generally Achievable Control Technology standards now or hereafter established by the EPA, and any applicable requirement of BACT or LAER as provided by Article XXI, any condition contained in this Installation Permit and/or any additional or more stringent requirements contained in an order issued to such person pursuant to Part I of Article XXI.

19. Other Rights and Remedies Preserved (§2109.02.b)

Nothing in this permit shall be construed as impairing any right or remedy now existing or hereafter created in equity, common law or statutory law with respect to air pollution, nor shall any court be deprived of such jurisdiction for the reason that such air pollution constitutes a violation of this permit

20. Penalties, Fines, and Interest (§2109.07.a)

A source that fails to pay any fee required under this Permit or article XXI when due shall pay a civil penalty of 50% of the fee amount, plus interest on the fee amount computed in accordance with of Article XXI §2109.06.a.4 from the date the fee was required to be paid. In addition, the source may have its permit revoked.

21. Appeals (§2109.10)

In accordance with State Law and County regulations and ordinances, any person aggrieved by an order or other final action of the Department issued pursuant to Article XXI shall have the right to appeal the action to the Director in accordance with the applicable County regulations and ordinances.

IV. SITE LEVEL TERMS AND CONDITIONS

1. Reporting of Upset Conditions (§2103.12.k.2)

The permittee shall promptly report all deviations from permit requirements, including those attributable to upset conditions as defined in Article XXI §2108.01.c, the probable cause of such deviations, and any corrective actions or preventive measures taken.

2. Visible Emissions (§2104.01.a)

Except as provided for by Article XXI §2108.01.d pertaining to a cold start, no person shall operate, or allow to be operated, any source in such manner that the opacity of visible emissions from a flue or process fugitive emissions from such source, excluding uncombined water:

- a. Equal or exceed an opacity of 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- b. Equal or exceed an opacity of 60% at any time.

3. Odor Emissions (§2104.04) (County-only enforceable)

No person shall operate, or allow to be operated, any source in such manner that emissions of malodorous matter from such source are perceptible beyond the property line.

4. Materials Handling (§2104.05)

The permittee shall not conduct, or allow to be conducted, any materials handling operation in such manner that emissions from such operation are visible at or beyond the property line.

5. **Operation and Maintenance (§2105.03)**

All air pollution control equipment required by this permit or any order under Article XXI, and all equivalent compliance techniques approved by the Department, shall be properly installed, maintained, and operated consistently with good air pollution control practice.

6. Open Burning (§2105.50)

No person shall conduct, or allow to be conducted, the open burning of any material, except where the Department has issued an Open Burning Permit to such person in accordance with Article XXI §2105.50 or where the open burning is conducted solely for the purpose of non-commercial preparation of food for human consumption, recreation, light, ornament, or provision of warmth for outside workers, and in a manner which contributes a negligible amount of air contaminants.

7. Shutdown of Control Equipment (§2108.01.b)

a. In the event any air pollution control equipment is shut down for reasons other than a breakdown, the person responsible for such equipment shall report, in writing, to the Department the intent to shut down such equipment at least 24 hours prior to the planned shutdown. Notwithstanding the submission of such report, the equipment shall not be shut down until the approval of the Department is obtained; provided, however, that no such report shall be required if the source(s)

served by such air pollution control equipment is also shut down at all times that such equipment is shut down.

- b. The Department shall act on all requested shutdowns as promptly as possible. If the Department does not take action on such requests within ten (10) calendar days of receipt of the notice, the request shall be deemed denied, and upon request, the owner or operator of the affected source shall have a right to appeal in accordance with the provisions of Article XI.
- c. The prior report required by Site Level Condition IV.7.a above shall include:
 - 1) Identification of the specific equipment to be shut down, its location and permit number (if permitted), together with an identification of the source(s) affected;
 - 2) The reasons for the shutdown;
 - 3) The expected length of time that the equipment will be out of service;
 - 4) Identification of the nature and quantity of emissions likely to occur during the shutdown;
 - 5) Measures, including extra labor and equipment, which will be taken to minimize the length of the shutdown, the amount of air contaminants emitted, or the ambient effects of the emissions;
 - 6) Measures which will be taken to shut down or curtail the affected source(s) or the reasons why it is impossible or impracticable to shut down or curtail the affected source(s) during the shutdown; and
 - 7) Such other information as may be required by the Department.
- d. Shutdown reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

8. Breakdowns (§2108.01.c)

- a. In the event that any air pollution control equipment, process equipment, or other source of air contaminants breaks down in such manner as to have a substantial likelihood of causing the emission of air contaminants in violation of this permit, or of causing the emission into the open air of potentially toxic or hazardous materials, the person responsible for such equipment or source shall immediately, but in no event later than sixty (60) minutes after the commencement of the breakdown, notify the Department of such breakdown and shall, as expeditiously as possible but in no event later than seven (7) days after the original notification, provide written notice to the Department.
 - To the maximum extent possible, all oral and written notices required shall include all pertinent facts, including:
 - 1) Identification of the specific equipment which has broken down, its location and permit number (if permitted), together with an identification of all related devices, equipment, and other sources which will be affected.
 - 2) The nature and probable cause of the breakdown.
 - 3) The expected length of time that the equipment will be inoperable or that the emissions will continue.
 - 4) Identification of the specific material(s) which are being, or are likely to be emitted, together with a statement concerning its toxic qualities, including its qualities as an irritant, and its potential for causing illness, disability, or mortality.
 - 5) The estimated quantity of each material being or likely to be emitted.

b.

- 6) Measures, including extra labor and equipment, taken or to be taken to minimize the length of the breakdown, the amount of air contaminants emitted, or the ambient effects of the emissions, together with an implementation schedule.
- 7) Measures being taken to shut down or curtail the affected source(s) or the reasons why it is impossible or impractical to shut down the source(s), or any part thereof, during the breakdown.
- c. Notices required shall be updated, in writing, as needed to advise the Department of changes in the information contained therein. In addition, any changes concerning potentially toxic or hazardous emissions shall be reported immediately. All additional information requested by the Department shall be submitted as expeditiously as practicable.
- d. Unless otherwise directed by the Department, the Department shall be notified whenever the condition causing the breakdown is corrected or the equipment or other source is placed back in operation by no later than 9:00 AM on the next County business day. Within seven (7) days thereafter, written notice shall be submitted pursuant to Paragraphs a and b above.
- e. Breakdown reporting shall not apply to breakdowns of air pollution control equipment which occur during the initial startup of said equipment, provided that emissions resulting from the breakdown are of the same nature and quantity as the emissions occurring prior to startup of the air pollution control equipment.
- f. In no case shall the reporting of a breakdown prevent prosecution for any violation of this permit or Article XXI.
- g. Breakdown reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

9. Cold Start (§2108.01.d)

In the event of a cold start on any fuel-burning or combustion equipment, except stationary internal combustion engines and combustion turbines used by utilities to meet peak load demands, the person responsible for such equipment shall report in writing to the Department the intent to perform such cold start at least 24 hours prior to the planned cold start. Such report shall identify the equipment and fuel(s) involved and shall include the expected time and duration of the startup. Upon written application from the person responsible for fuel-burning or combustion equipment which is routinely used to meet peak load demands and which is shown by experience not to be excessively emissive during a cold start, the Department may waive these requirements and may instead require periodic reports listing all cold starts which occurred during the report period. The Department shall make such waiver in writing, specifying such terms and conditions as are appropriate to achieve the purposes of Article XXI. Such waiver may be terminated by the Department at any time by written notice to the applicant. Cold start notifications may be emailed to the Department at <u>aqreports@alleghenycounty.us.</u>

10. Monitoring of Malodorous Matter Beyond Facility Boundaries (§2104.04)

The permittee shall take all reasonable action as may be necessary to prevent malodorous matter from becoming perceptible beyond facility boundaries. Further, the permittee shall perform such observations as may be deemed necessary along facility boundaries to insure that malodorous matter beyond the facility boundary in accordance with Article XXI §2107.13 is not perceptible and record all findings and corrective action measures taken.

11. Emissions Inventory Statements (§2108.01.e & g)

- a. Emissions inventory statements in accordance with §2108.01.e shall be submitted to the Department by March 15 of each year for the preceding calendar year. The Department may require more frequent submittals if the Department determines that more frequent submissions are required by the EPA or that analysis of the data on a more frequent basis is necessary to implement the requirements of Article XXI or the Clean Air Act.
- b. The failure to submit any report or update within the time specified, the knowing submission of false information, or the willful failure to submit a complete report shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

12. Orders (§2108.01.f)

In addition to meeting the requirements Site Level Conditions IV.7 through IV.11, inclusive, the person responsible for any source shall, upon order by the Department, report to the Department such information as the Department may require in order to assess the actual and potential contribution of the source to air quality. The order shall specify a reasonable time in which to make such a report.

13. Violations (§2108.01.g)

The failure to submit any report or update thereof required by Site Level Conditions IV.7 through IV.12 above, inclusive, within the time specified, the knowing submission of false information, or the willful failure to submit a complete report shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

14. Emissions Testing (§2108.02)

- a. **Orders:** No later than 60 days after achieving full production or 120 days after startup, whichever is earlier, the permittee shall conduct, or cause to be conducted, such emissions tests as are specified by the Department to demonstrate compliance with the applicable requirements of this permit and shall submit the results of such tests to the Department in writing. Upon written application setting forth all information necessary to evaluate the application, the Department may, for good cause shown, extend the time for conducting such tests beyond 120 days after startup but shall not extend the time beyond 60 days after achieving full production. Emissions testing shall comply with all applicable requirements of Article XXI, §2108.02.e.
- b. **Tests by the Department:** Notwithstanding any tests conducted pursuant to this permit, the Department or another entity designated by the Department may conduct emissions testing on any source or air pollution control equipment. At the request of the Department, the permittee shall provide adequate sampling ports, safe sampling platforms and adequate utilities for the performance of such tests.
- c. **Testing Requirements:** No later than 45 days prior to conducting any tests required by this permit, the person responsible for the affected source shall submit for the Department's approval a written test protocol explaining the intended testing plan, including any deviations from standard testing procedures, the proposed operating conditions of the source during the test, calibration data for specific test equipment and a demonstration that the tests will be conducted under the direct supervision of persons qualified by training and experience satisfactory to the Department to conduct such tests. In addition, at least 30 days prior to conducting such tests, the person responsible

shall notify the Department in writing of the time(s) and date(s) on which the tests will be conducted and shall allow Department personnel to observe such tests, record data, provide pre-weighed filters, analyze samples in a County laboratory and to take samples for independent analysis. Test results shall be comprehensively and accurately reported in the units of measurement specified by the applicable emission limitations of this permit.

- d. Test methods and procedures shall conform to the applicable reference method set forth in this permit or Article XXI Part G, or where those methods are not applicable, to an alternative sampling and testing procedure approved by the Department consistent with Article XXI §2108.02.e.2.
- e. **Violations:** The failure to perform tests as required by this permit or an order of the Department, the failure to submit test results within the time specified, the knowing submission of false information, the willful failure to submit complete results, or the refusal to allow the Department, upon presentation of a search warrant, to conduct tests, shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

15. Abrasive Blasting (§2105.51)

- a. Except where such blasting is a part of a process requiring an operating permit , no person shall conduct or allow to be conducted, abrasive blasting or power tool cleaning of any surface, structure, or part thereof, which has a total area greater than 1,000 square feet unless such abrasive blasting complies with all applicable requirements of Article XXI §2105.51.
- b. In addition to complying with all applicable provisions of §2105.51, no person shall conduct, or allow to be conducted, abrasive blasting of any surface unless such abrasive blasting also complies with all other applicable requirements of Article XXI unless such requirements are specifically addressed by §2105.51.

16. Asbestos Abatement (§2105.62, §2105.63)

In the event of removal, encasement, or encapsulation of Asbestos-Containing Material (ACM) at a facility or in the event of the demolition of any facility, the permittee shall comply with all applicable provisions of Article XXI §2105.62 and §2105.63.

17. Volatile Organic Compound Storage Tanks (§2105.12.a)

No person shall place or store, or allow to be placed or stored, a volatile organic compound having a vapor pressure of 1.5 psia or greater under actual storage conditions in any aboveground stationary storage tank having a capacity equal to or greater than 2,000 gallons but less than or equal to 40,000 gallons, unless there is in operation on such tank pressure relief valves which are set to release at the higher of 0.7 psig of pressure or 0.3 psig of vacuum or at the highest possible pressure and vacuum in accordance with State or local fire codes, National Fire Prevention Association guidelines, or other national consensus standard approved in writing by the Department. Petroleum liquid storage vessels that are used to store produced crude oil and condensate prior to lease custody transfer are exempt from these requirements.

18. Permit Source Premises (§2105.40)

a. **General.** No person shall operate, or allow to be operated, any source for which a permit is required by Article XXI Part C in such manner that emissions from any open land, roadway, haul road, yard, or other premises located upon the source or from any material being transported within such source

or from any source-owned access road, haul road, or parking lot over five (5) parking spaces:

- 1) Are visible at or beyond the property line of such source;
- 2) Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or
- 3) Have an opacity of 60% or more at any time.
- b. **Deposition on Other Premises:** Visible emissions from any solid or liquid material that has been deposited by any means from a source onto any other premises shall be considered emissions from such source within the meaning of Site Level Condition IV.18.a above.

19. Parking Lots and Roadways (§2105.42)

- a. The permittee shall not maintain for use, or allow to be used, any parking lot over 50 parking spaces or used by more than 50 vehicles in any day or any other roadway carrying more than 100 vehicles in any day or 15 vehicles in any hour in such manner that emissions from such parking lot or roadway:
 - 1) Are visible at or beyond the property line;
 - 2) Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any 60 minute period; or
 - 3) Have an opacity of 60% or more at any time.
- b. Visible emissions from any solid or liquid material that has been deposited by any means from a parking lot or roadway onto any other premises shall be considered emissions from such parking lot or roadway.
- c. Site Level Condition IV.19.a above shall apply during any repairs or maintenance done to such parking lot or roadway.
- d. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.19 may be enforced by any municipal or local government unit having jurisdiction over the place where such parking lots or roadways are located. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.19.

20. Permit Source Transport (§2105.43)

- a. No person shall transport, or allow to be transported, any solid or liquid material outside the boundary line of any source for which a permit is required by Article XXI Part C in such manner that there is any visible emission, leak, spill, or other escape of such material during transport.
- b. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.20 may be enforced by any municipal or local government unit having jurisdiction over the place where such visible emission, leak, spill, or other escape of material during transport occurs. Such enforcement shall be in accordance with the laws governing such municipal or local government

unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violation of Site Level Condition IV.20.

21. Construction and Land Clearing (§2105.45)

- a. No person shall conduct, or allow to be conducted, any construction or land clearing activities in such manner that the opacity of emissions from such activities:
 - 1) Equal or exceed 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or
 - 2) Equal or exceed 60% at any time.
- b. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.21 may be enforced by any municipal or local government unit having jurisdiction over the place where such construction or land clearing activities occur. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.21.

22. Mining (§2105.46)

No person shall conduct, or allow to be conducted, any mining activities in such manner that emissions from such activities:

- a. Are visible at or beyond the property line;
- b. Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- c. Have an opacity of 60% or more at any time.

23. Demolition (§2105.47)

- a. No person shall conduct, or allow to be conducted, any demolition activities in such manner that the opacity of the emissions from such activities equal or exceed 20% for a period or periods aggregating more than three (3) minutes in any 60 minute period.
- b. Notwithstanding any other provisions of this permit, the prohibitions of Site Level Condition IV.23 may be enforced by any municipal or local government unit having jurisdiction over the place where such demolition activities occur. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.23.

24. Fugitive Emissions (§2105.49)

The person responsible for a source of fugitive emissions, in addition to complying with all other applicable provisions of this permit shall take all reasonable actions to prevent fugitive air contaminants from becoming airborne. Such actions may include, but are not limited to:

- a. The use of asphalt, oil, water, or suitable chemicals for dust control;
- b. The paving and maintenance of roadways, parking lots and the like;
- c. The prompt removal of earth or other material which has been deposited by leaks from transport,

erosion or other means;

- d. The adoption of work or other practices to minimize emissions;
- e. Enclosure of the source; and
- f. The proper hooding, venting, and collection of fugitive emissions.

25. Episode Plans (§2106.02)

Allegheny County

Health Department

The permittee shall upon written request of the Department, submit a source curtailment plan, consistent with good industrial practice and safe operating procedures, designed to reduce emissions of air contaminants during air pollution episodes. Such plans shall meet the requirements of Article XXI §2106.02.

26. New Source Performance Standards (§2105.05)

- a. It shall be a violation of this permit giving rise to the remedies provided by §2109.02 of Article XXI for any person to operate, or allow to be operated, any source in a manner that does not comply with all requirements of any applicable NSPS now or hereafter established by the EPA, except if such person has obtained from EPA a waiver pursuant to Section 111 or Section 129 of the Clean Air Act or is otherwise lawfully temporarily relieved of the duty to comply with such requirements.
- b. Any person who operates, or allows to be operated, any source subject to any NSPS shall conduct, or cause to be conducted, such tests, measurements, monitoring and the like as is required by such standard. All notices, reports, test results and the like as are required by such standard shall be submitted to the Department in the manner and time specified by such standard. All information, data and the like which is required to be maintained by such standard shall be made available to the Department upon request for inspection and copying.

27. Miscellaneous Organic Chemical Manufacturing NESHAP (40 CFR Part 63, Subpart FFFF)

The permittee shall comply with all applicable requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart FFFF – the "Miscellaneous Organic Chemical Manufacturing NESHAP" or "MON".

V. EMISSION UNIT LEVEL TERMS AND CONDITIONS

A. <u>C-5 – Storage Tanks</u>

1. **Restrictions:**

Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]

2. Work Practice Standard:

- a. The permittee shall do the following for all storage tanks and associated equipment: [§2105.03; 25 PA Code §129.99]
 - 1) Perform regular maintenance considering the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The storage tanks shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

B. <u>C-5 Operations – Pastillating Belts #1 and #2 (S055)</u>

1. **Restrictions:**

Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]

2. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

C. <u>MP Poly Unit (S034)</u>

1. **Restrictions:**

- a. Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]
- b. The permittee shall properly maintain and operate the condensers E-400-6, E-500-5, E-701-5, E-701-4, and E-203-4 at all times when emissions are routed to them. [§2105.03; RACT Order #257, condition 1.7; 25 PA Code §129.99]
- c. The inlet coolant temperature to the condensers E-203-4 (S035) and E-701-4 (S034) shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condensers with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.2.A; 25 PA Code §129.99]

2. Monitoring Requirements:

The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-203-4, E-701-4, and E-400-6 condensers that continuously monitors the coolant inlet temperature. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, condition 1.1 and 1.2; 25 PA Code §129.99]

3. Record Keeping Requirements:

The permittee shall keep and maintain records of monthly and twelve months moving polymerizate production and condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

4. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

D. <u>WW Poly Unit (S013, S013a, S020, S023, S027)</u>

1. **Restrictions:**

- a. Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]
- Refrigerated vent condensers [E-200-7 (S013), E-600-9 and E-601-11 (S017), E-700-6 (S018), E-900-7 (S020), E-701-7 (S021), E-903-3 (S023), and E-901-7 (S027)]: The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°C any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions;
 - The exit vapor temperature of each condenser shall not exceed 35°C over any one-hour block average when emissions are being routed through them, except as specified in condition V.D.1.b.3) below;
 - 3) If measured one-hour block average exit vapor temperatures exceed 35°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-200-7, E-300-4, E-301-4, E-600-9, E-601-11, E-700-6, E-701-7, E-800-3, E-900-7, E-901-7, E-903-3, and E-1001-7 condensers that continuously monitor the coolant inlet temperature. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, conditions 1.1 -1.3; 25 PA Code §129.99]

3. Record Keeping Requirements:

The permittee shall keep and maintain records of monthly and twelve months moving polymerizate production and condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

4. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

E. <u>WW Poly Storage Tanks (S025)</u>

1. **Restrictions:**

- a. Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]
- b. The inlet coolant temperature to the condensers E-201-1, E-202-1, and E-67-3 shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condensers with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.4; 25 PA Code §129.99]

2. Record Keeping Requirements:

The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

3. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

F. LTC Process Operations (S109, S110, S114)

1. **Restrictions:**

- a. Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]
- b. Cooling tower water chilled vent condensers [E-301B-E3 (S109); E-301-4 (S108); E-607-2 (S110); E-RK5-4 (S111); E-RK6-3 (S112); E-RK7-4 (S113)]: The condensers shall be properly operated and maintained according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06(b)3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.H; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°F (5.6°C) above ambient air temperature over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions and except that at no time will coolant temperature be required to be less than 50°F (10°C).
 - 2) The exit vapor temperature of each condenser shall not exceed 40°C over any one-hour block average when emissions are being routed through them, except as specified in paragraph 3).
 - 3) If measured one-hour block average exit vapor temperatures exceed 40°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the cooling tower is operating properly by reviewing current operating conditions (e.g. that the cooling system is operating and circulating cooling water, and that cooling water is being supplied at less than 10° F (5.6° C) above ambient (except that at no time will coolant temperature be required to less than 50° F (10° C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10° F (5.6° C) above ambient (except that at no time will coolant temperature to less than 10° F (5.6° C) above ambient (except that at no time will coolant temperature be required to less than 50° F (10° C)). Exit vapor temperature exceeding 40° C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 40°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to be less than 50°F (10°C)), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 40°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall monitor and record the exit vapor temperature of each of the following condensers at least once every 15 minutes when the process is in operation: S108, S109, S110, S111, S112, S113, and S124. [§2102.04.b.6, §2102.04.e., §2103.12.i; 25 PA Code §129.100]

b. The permittee shall continuously monitor when the vacuum pump for each system is in operation. [§2102.04.b.6, §2102.04.e., §2103.12.i; 25 PA Code §129.100]

3. Record Keeping Requirements:

- a. The permittee shall keep and maintain the following data on-site for these operations [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]:
 - 1) All records of monitoring required by V.F.2 above.
 - 2) Records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment.
 - 3) Maximum resin (lb/min) and polymerizate (gal/min) feed rates (daily).
 - 4) Amount (lbs.) and type of resin and polymerizate (monthly, 12-month rolling total)
 - 5) Changes in #4 LTC Vacuum System vacuum pump status (upon occurrence).
 - 6) Any additional data/records not provided by items V.F.2.a.1) and V.F.2.a.2) above that are necessary to accurately assess emissions in accordance with the EIIP methodology.

4. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

G. <u>Dresinate Production Line (S085)</u>

1. **Restrictions:**

Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]

2. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

H. <u>Hydrogenation Unit (S004, S007, S012)</u>

1. **Restrictions:**

- a. The maximum production rate for Hydrogenation Unit process shall not exceed 22 million pounds per 12-month rolling period. [§2102.04.e; 25 PA Code §129.99]
- b. Refrigerated vent condensers: The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°C any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions;
 - The exit vapor temperature of each condenser shall not exceed 35°C over any one-hour block average when emissions are being routed through them, except as specified in condition V.H.1.b.3) below;
 - 3) If measured one-hour block average exit vapor temperatures exceed 35°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Record Keeping Requirements:

The permittee shall keep and maintain production records and records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

3. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate

emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

I. Wastewater Treatment Plant (F027, F033, F034, F035)

1. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices.[§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

VI. ALTERNATIVE OPERATING SCENARIOS

There are no alternative operating scenarios for this permit

ALLEGHENY COUNTY HEALTH DEPARTMENT AIR QUALITY PROGRAM

February 7, 2020

SUBJECT:Reasonably Available Control Technology (RACT II) Determination
Eastman Chemical Resins, Inc.
Jefferson Site
2200 State Highway 837,
West Elizabeth, PA 15088-7311
Allegheny County

Installation Permit No. 0058-I026

- TO: JoAnn Truchan, P.E. Section Chief, Engineering
- **FROM:** Helen O. Gurvich Air Quality Engineer

I. <u>Executive Summary</u>

Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) is defined as a major source of VOC emissions and was subjected to a Reasonable Achievable Control Technology (RACT II) review by the Allegheny County Health Department (ACHD) required for the 1997 and 2008 Ozone National Ambient Air Quality Standard (NAAQS). The findings of the review established that the facility has technically feasible controls options for controlling VOC emissions from the processes, but they are deemed financially infeasible due to their high cost per ton removed.

These findings are based on the following documents:

- RACT analysis performed by ERG (Eastman Chemical RACT Evaluations_9-23-15.docs)
- RACT analysis performed by Eastman Chemical Resins, Inc. (Eastman_RACT2_Report_20200115.pdf)
- Installation Permit No. 0058-I011d dated 5/15/2019
- Installation Permit No. 0058-I018a dated 3/07/2019
- Installation Permit No. 0058-I022a dated 9/20/2019
- Installation Permit No. 0058-I023a dated 12/23/2019
- Installation Permit No. 0058-I016a dated (not issue yet)
- Installation Permit No. 0058-I012a dated 10/30/2008
- Installation Permit No. 0058-I017 dated 7/22/2010
- Consent Order and Agreement No. 257 (RACT I) dated January 14, 1997
- New Installation Permit Application submitted December 13, 2019
- New Installation Permit Application submitted January 24, 2020

II. <u>Regulatory Basis</u>

ACHD requested all major sources of NO_x (potential emissions of 100 tons per year or greater) and all major sources of VOC (potential emissions of 50 tons per year or greater) to reevaluate NO_x and/or VOC RACT for incorporation into Allegheny County's portion of the PA SIP. This document is the result of ACHD's determination of RACT for Eastman based on the materials submitted by the subject source and other relevant information.

III. <u>Facility Description</u>

The Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) produces synthetic hydrocarbon resins from C_5 feedstock, monomers, solvents and catalysts by way of cationic polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products.

The plant is comprised of three polymerization processes (C5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC1, LTC2, and C-5), and an emulsion process, five boilers ranging from 18.6 MM Btu/hr to 38.2 MM Btu/hr, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes.

The facility is a major source of Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAPs) as defined in Article XXI, 2101.20. Detailed descriptions of the relevant emissions units are provided in the following tables.

Source ID	Description	Rating	VOC PTE (TPY)	VOC Presumptive Limit (RACT II)	VOC Limit (RACT I) – Consent Order No. 257
S216	Raw material tank T-50 – C-5 operations (IP #0058-I011d)	528,765 gal	2.8	Compliance with Article XXI, §2105.12	Compliance with Article XXI, §2105.12
S055	Pastillating Belts, UHF Filter – C-5 operations (IP #0058-I018a)	22,000 lbs/hr	6.21	25 Pa Code 129.99	Good operating practices
S034	Filtrate system (filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) – MP Poly Unit (IP #0058-I022a)	103,000,000 lbs/yr	10.33	25 Pa Code 129.99	Condensers, good operating practices
S013 & S013a	Feed dryers and regeneration – WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	4.86	25 Pa Code 129.99	Condensers, good operating practices
S020	West Filtrate Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	5.11	25 Pa Code 129.99	Condensers, good operating practices
S023	Solvent Wash Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	7.52	25 Pa Code 129.99	Good operating practices
S027	East Filtrate Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	5.11	25 Pa Code 129.99	Good operating practices
S025	Storage Tanks 73/75/76/77- WW Poly Unit (IP #0058-I023a)	75,200 gal each	5.4	25 Pa Code 129.99	Good operating practices
S109	#1 Vacuum System – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	3.80	25 Pa Code 129.99	Good operating practices
S110	#2 Vacuum System – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	8.09	25 Pa Code 129.99	Good operating practices
S114	#1/#2 Pastillator Belt – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	2.80	25 Pa Code 129.99	Good operating practices
S004	Metering Tanks (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank) – Hydrogenation Unit (based on December 2019 testing by Eastman)	22,500,000 lbs/yr	13	Throughput restriction of 22.5 MM lbs/yr, 25 Pa Code 129.99	Condensers, good operating practices
S012	Storage tanks 102, 105, 106 - Hydrogenation Unit (based on December 2019 testing by Eastman)	2 - 6,000 gal each; 1 - 10,000 gal	6.3	Throughput restriction of 22.5 MM lbs/yr, 25 Pa Code 129.99	Condensers, good operating practices

 Table 1
 Facility Sources Subject to Case-by-Case RACT II and Their Existing RACT I Limits

Source	Description	Rating	VOC PTE	VOC	VOC Limit
ID	_	_	(TPY)	Presumptive	(RACT I) –
				Limit (RACT II)	Consent Order
					No. 257
S007	Vent tanks, Autoclaves #1 and #2 -	Autoclaves -	15	Throughput	Condensers,
	Hydrogenation Unit (based on	1,000 gal each		restriction of 22.5	good operating
	December 2019 testing by Eastman)			MM lbs/yr, 25 Pa	practices
				Code 129.99	
F033,	Tanks 702A, 702B, 702C –	50,000 gal each	8.84	25 Pa Code 129.99	Good operating
F034,	Wastewater Treatment Plant (new IP				practices
F035	application)				
F027	Bio Aeration Tank - Wastewater	157,000 gal	15.25	25 Pa Code 129.99	Good operating
	Treatment Plant (new IP application)				practices
S085	Double Drum Dryer – Dresinate	500 lbs/hr	5.48	25 Pa Code 129.99	Good operating
	Production Line (IP #0058-I012a)				practices
	Fugitive Emissions from Equipment	NA	64.10	25 Pa Code 129.99	LDAR program
	Leaks (valves, pumps, pipe connectors,				
	etc.)				

Table 2	Facility Sources Subject	t to Presumptive R	ACT II ner PA (ode 129 97
	racinty sources subject	i io i i csumpuve n	АСТ П РСГГАС	Juc 147.71

Description							
Description	Kating	Stack ID	(TPY)	Presumptive	Tresumptive KACT Kequitement		
	C-5 Operations (Installation Permit #0058-I011d)						
Resin Kettles #9 and	140 MM	S053, S054	1.81	< 2.7 TPY	Install, maintain and operate the		
#10	lbs/yr	3055, 3054	1.01	VOC	source in accordance with the		
#10	105/ yi			VOC	manufacturer's specifications and with		
					good operating practices		
Resin Storage Tanks	19,432 -	S064,	1.774	< 2.7 TPY	Install, maintain and operate the		
(121, 123, 124, 366,	108,291	S064, S066,	1.//+	VOC	source in accordance with the		
367, 601 & 602)	gal	S000, S097, S267		voe	manufacturer's specifications and with		
$507,001 \approx 002)$	Sui	-S270			good operating practices		
Resin Storage Tank 504	60,914 &	S059, S238	2.00	< 2.7 TPY	Install, maintain and operate the		
and 161	158,630	,	2.00	VOC	source in accordance with the		
	gal				manufacturer's specifications and with		
	8				good operating practices		
Raw material tank T-54	1,469,451	S060	1.66	< 2.7 TPY	Install, maintain and operate the		
	gal			VOC	source in accordance with the		
	C				manufacturer's specifications and with		
					good operating practices		
Raw material tank T-55	579,586	S061	1.16	< 2.7 TPY	Install, maintain and operate the		
	gal			VOC	source in accordance with the		
					manufacturer's specifications and with		
					good operating practices		
		-	(Installation F	ermit #0058-I0			
Pastillating Belts	22,000	S055	1.09	< 2.7 TPY	Install, maintain and operate the		
(Fugitive)	lbs/hr			VOC	source in accordance with the		
					manufacturer's specifications and with		
					good operating practices		
		-		Permit #0058-10			
Storage tank 52	525,000	S218	2.37	< 2.7 TPY	Install, maintain and operate the		
	gal			VOC	source in accordance with the		
					manufacturer's specifications and with		
		•			good operating practices		
Develop		•		ion Permit #005			
Reactor	103 MM	S029	1.65	< 2.7 TPY	Install, maintain and operate the		
	lbs/yr			VOC	source in accordance with the		

Description	Rating	Stack ID	VOC PTE (TPY)	Basis for Presumptive	Presumptive RACT Requirement
				Tresumptive	manufacturer's specifications and with
					good operating practices
	WW Po	lymerization	Unit (Installat	tion Permit #00	58-I023a)
North and South Reactors	80 MM lbs/yr	S017	1.78	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
Storage tanks 68/69/74	75,200 gal each	S024	1.4	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
	V	VW Polymeriz	zation Unit (n	ew IP application	on)
Storage Tank 35	169,000 gal	S075	1.0	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
	LTC P	rocess Operat	ions (Installat	ion Permit #005	58-I016a)
#4 Vacuum System	67.24 MM lb/yr	S124	1.46	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
	Hydr	ogenation Un	it (based on D	ecember 2019 t	testing)
Storage tanks 100 and 101	6,000 gal each	S001	1.2	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
		Pilot Pl	ant (new IP a	pplication)	Brite Brite Brite Br
Neutralizer and reactor	21 acfm	S155	2.2	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
				ack testing in 2	
Tank RK2	1,000 gal	NA	1.21	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
				IP application)	
Storage Tank 78	169,000 gal	S232	1.0	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices

Table 3 Facility Sources Exempt from RACT II per PA Code 129.96(c) {< 1 TPY NOx; < 1 TPY VOC}</th>

Description	Rating	Stack ID	VOC PTE (TPY)				
C-5 Operations (Installation Permit #0058-I011d)							
Thermal Oxidizer or Carbon Beds for 500 battery tanks,	140 MM lbs/yr	S044	0.26				
if TO downtime		S044A					
Hot Oil Furnace	10.33 MMBtu/hr	S056	0.29				
Resin Kettle #8	140 MM lbs/yr	S052	0.38				
Sparkler Filter with condenser	140 MM lbs/yr	S312	0.05				
Sparkler Precoat	140 MM lbs/yr	NA	0.01				
Resin Product Loading	140 MM lbs/yr	NA	0.94				
Raw material tank T-500	112,251 gal	S058	0.19				
Raw material tank T-511	15,228 gal	S274	0.1				

Description	Rating	Stack ID	VOC PTE (TPY)
•	nit (Installation Permit #005		
Storage tank T-301	75,202 gal	NA	0.46
Storage tank T-302	75,202 gal	NA	0.46
Storage tank T-303	75,202 gal	NA	0.46
Preblend Tank	103 MM lbs/yr	S035	0.99
Dryers regeneration, Precoat tank, Mole sieve drain tan		S033	0.51
	Jnit (Installation Permit #005		
East Preblend tank	80 MM lbs/yr	S014	0.57
North Preblend tank	80 MM lbs/yr	S015	0.57
Slurry tank	80 MM lbs/yr	S016	0.02
North Neutralizer	80 MM lbs/yr	S018	0.31
Funda Filter Steam Out/Flushing	80 MM lbs/yr	S019	0.01
Funda Filter Condensate Tank	80 MM lbs/yr	S019a	0.00
South Neutralizer	80 MM lbs/yr	S021	0.31
Reclaim Pot	80 MM lbs/yr	S022	0.13
Storage Tank 10	110,159 gal	S195	0.29
Storage Tank 22	15,863 gal	S206	0.03
Storage Tank 24	15,863 gal	S208	
Storage Tank 23	15,863 gal	S207	0.03
Storage Tank 25	15,863 gal	S209	
Storage Tank 27	16,257 gal	S211	0.04
Storage Tank 26	16,257 gal	S210	
Storage Tank 28	16,257 gal	S212	0.42
Storage Tank 29	16,257 gal	S213	
Storage Tank 34	169,000 gal	S074	0.27
Storage Tank 71	75,200 gal	S230	0.29
Storage Tank 72	75,200 gal	S231	0.42
Storage Tank 200	25,381 gal	S239	
Storage Tank 201	25,381 gal	S240	0.18
Storage Tank 202	25,381 gal	S241	-
Storage Tank 204	41,878 gal		
Storage Tank 205	25,381 gal	S300	0.04
Storage Tank 206	25,381 gal		
Storage Tank 207	25,381 gal		
Storage Tank 66	75,200 gal	S228	0.3
Storage Tank 67	75,200 gal	S026	0.9
LTC Process Operation	ons (Installation Permit #005	8-I016a)	
Reclaim Solution Tank	67.24 MM lbs/yr	S108	0.58
Resin Kettle #5	67.24 MM lbs/yr	S111	0.32
Resin Kettle #6	67.24 MM lbs/yr	S112	0.24
Resin Kettle #7	67.24 MM lbs/yr	S113	0.68
Berndorf Belt	67.24 MM lbs/yr	S165	0.53
#1/#2 oil/water separator	67.24 MM lbs/yr	S110A	0.01
#4 oil/water separator	67.24 MM lbs/yr	S125	0.01
Drumming operation	67.24 MM lbs/yr	NA	0.18
Truck loading	67.24 MM lbs/yr	NA	0.37
LTC #2 Heater	8.8 MM Btu/hr	S107	0.25
LTC #4 Heater	10 MM Btu/hr	S119	0.28
Wastewater Trea	tment Plant (new IP applicat	ion)	
Tanks 701A and 701B, Back Porch Sumps	Tanks – 50,000 gal ea.; sumps – 17,500 gal total	S147	0.48
Bio Clarifier	55,000 gal	F028	0.11
Sludge Batch Tank	5,200 gal	F036	0.00
Sludge Solids Handling	6,000 gal	F037	0.00
0	-, 8m		

Description	Rating	Stack ID	VOC PTE (TPY)				
Dresinate Production Line (Installation Permit #0058-I012a)							
Tank R-1-A	67,631 gal	S187	0.01				
Tank 782	10,000 gal	S290	0.01				
Emulsion Process (based on stack testing in 2007)							
Tank RK1	1,000 gal	-	0.67				
Blend tanks 1, 2, 3, and 4	1,2-6,000 gal each;	S162	0.28				
	3,4 – 5,000 gal each						
Other Storage Tanks (Eastma		aterial stored)					
Tank 4	88,122 gal	NA	<1				
Tank 80	11,982 gal	NA	<1				
Tank 151	1,503,943 gal	NA	<1				
Tank 208	25,379 gal	NA	<1				
Tank 252	30,455 gal	NA	<1				
Tank 261	20,000 gal	NA	<1				
Tank 262	20,079 gal	NA	<1				
Tank 263	20,726 gal	NA	<1				
Tank 264	20,000 gal	NA	<1				
Tank 265	21,134 gal	NA	<1				
Tank 365	20,000 gal	NA	<1				
Tank 511	16,356 gal	NA	<1				
Tank 761	10,000 gal	NA	<1				
Tank 764	17,500 gal	NA	<1				
Tank 766	3,800 gal	NA	<1				
Tank 775	8,768 gal	NA	<1				
Tank 783	11,400 gal	NA	<1				
Com	oustion Sources						
Unilux Boiler 1 (IP #0058-I020)	18.6 MM Btu/hr	S141	0.44				
Unilux Boiler 2 (IP #0058-I020)	18.6 MM Btu/hr	S141	0.44				
Unilux Boiler 3 (IP #0058-I020)	18.6 MM Btu/hr	S143	0.44				
Unilux Boiler 4 (IP #0058-I020)	18.6 MM Btu/hr	S142	0.44				
Boiler house emergency generator (IP #0058-1020)	250 kW	F100	0.01				
Trane Boiler	38 MM Btu/hr	S144	0.92				

IV. <u>RACT Determination</u>

Two detailed RACT Reviews were performed to evaluate the Eastman facility; one was performed by Eastman, and one by Allegheny County Health Department (ACHD). Both submissions were considered in the final RACT disposition for the Facility and findings from each were incorporated into the ACHD RACT II Determination.

It has been determined that it is not technically feasible to capture and control the following sources that are subject to case-by-case analysis:

- Raw material tank T-50 (C-5 operations): this tank is internal floating roof tank. There is no reasonable method to capture emissions from floating roof tank.
- Tanks 702A, 702B, 702C (Wastewater Treatment Plant): all of these tanks are open-top tanks used for pretreatment prior to the biological treatment operations. There is no reasonable method to capture emissions from these open-top tanks.
- Bio Aeration Tank (Wastewater Treatment Plant): this biological treatment tank is open to the atmosphere. There is no reasonable method to capture the emissions from this operation.

The Technically Feasible Control Options for sources where is it was determined that an economic analysis is required for Eastman are detailed in Table 4. All control cost analyses were conducted pursuant to procedures provided in US EPA's Office of Air Quality Planning and Standards (OAQPS) Control Cost Manual, 7th Edition.

Control Option		S109 LTC	S110 LTC	S114 LTC	S013 & S013a WW Poly	S020 WW Poly	S023 WW Poly	S027 WW Poly
Thermal	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation (98%)	Cost	\$143,908	\$148,047	\$311,632	\$156,264	\$183,607	\$175,518	\$175,934
(98%)	\$/ton	40,137	19,443	118,251	34,162	38,176	24,798	36,653
Catalytic	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation (98%)	Cost	\$134,852	\$135,637	\$254,524	\$138,270	\$154,741	\$148,790	\$149,202
(9070)	\$/ton	37,705	17,814	96,581	30,228	32,174	21,022	31,084
Carbon Adsorption	tpy VOC Removed	3.5	7.4	2.4	4.4	4.7	6.9	4.7
(fixed bed)	Cost	\$181,762	\$179,679	\$180,804	\$154,297	\$156,903	\$156,790	\$155,442
(90-95%)	\$/ton	52,426	24,343	74,706	34,797	33,654	22,852	33,073
Rotary Concentrator/	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation	Cost	\$184,606	\$184,634	\$219,307	\$184,832	\$187,503	\$186,464	\$186,464
(98%)	\$/ton	51,616	24,249	83,218	40,408	38,986	26,345	38,847
Refrigerated	tpy VOC Removed	3.5	7.4	2.6	4.4	4.7	6.9	4.7
Condenser (95%)	Cost	\$136,399	\$138,457	\$1,296,659	\$149,704	\$219,179	\$189,142	\$192,802
(9570)	\$/ton	39,342	18,758	507,565	33,761	47,011	27,567	41,022

Table 4 – Technically Feasible VOC Control Cost Comparisons

 Table 4 – Technically Feasible VOC Control Cost Comparisons (continue)

	1					~~~	~ ~ ~ ~	~~~~
Control		S025	S055	S034	S004	S007	S012	S085
Option		WW Poly	C-5	MP Poly	Hydro	Hydro	Hydro	Dresinate
Thermal	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation (98%)	Cost	\$154,798	\$526,415	\$177,803	\$165,140	\$174,148	\$146,413	\$345,875
(90 70)	\$/ton	30,178	90,761	18,288	13,536	12,335	24,692	66,816
Catalytic	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$137,691	\$412,727	\$150,236	\$142,844	\$147,584	\$135,286	\$280,531
(98%)	\$/ton	26,843	71,160	15,452	11,708	10,454	22,816	54,193
Carbon Adsorption	tpy VOC Removed	5.0	5.4	8.9	10.3	13.0	5.4	4.8
(fixed bed)	Cost	\$156,423	\$207,403	\$158,992	\$161,638	\$161,521	\$180,771	\$186,358
(90-95%)	\$/ton	31,458	38,408	17,807	15,693	12,458	33,197	39,200
Rotary Concentrator/	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$184,776	\$285,728	\$186,833	\$185,480	\$186,486	\$184,620	\$229,409
(98%)	\$/ton	36,022	49,263	19,216	15,203	13,209	31,136	44,317
Refrigerated	tpy VOC Removed	5.0	5.7	9.4	11.5	13.7	5.7	5.0
Condenser	Cost	\$146,875	\$2,920,397	\$193,751	\$160,986	\$182,016	\$137,554	\$1,504,896
(95%)	\$/ton	29,538	512,350	20,557	13,999	13,300	23,931	299,894

ACHD has determined that thermal oxidation, catalytic oxidation, carbon adsorption (fixed bed), rotary concentrator/oxidation, and refrigerated condenser are technically feasible control options for controlling VOC

emissions from the processes of the Eastman facility, but they are deemed financially infeasible due to their high cost per ton removed.

ACHD has determined that that it was unnecessary to conduct RACT evaluations on the equipment leak emissions for processes WW Poly, MP Poly, or the LTC process lines. The source is subject to the MON. Under the MON, the source is required to have a Leak Detection and Repair (LDAR) program. These requirements are relatively stringent, and ACHD does not believe more stringent requirements would be considered cost-effective. The LDAR requirements of the MON are considered RACT for the emissions from equipment leaks.

V. <u>RACT Summary</u>

Based on the findings in this RACT analysis, the Eastman facility has few technically feasible controls options for controlling VOC emissions from the processes, but they are deemed financially infeasible due to their high cost per ton removed.

The potential VOC emissions from the Hydro operations are based on the results of the stack test conducted in December 2019 and a throughput restriction of 22,500,000 lbs/year. Eastman proposes that RACT II for Hydro is a throughput limit of 22,500,000 lbs/year. The upcoming Installation Permit application for this process will be based on that limit.

The new RACT II conditions will not result in any additional reductions in VOC from the Eastman. The conditions of Plan Approval Order and Agreement #257 (RACT I), issued January 14, 1997, have been superseded by the case-by-case and presumptive RACT II conditions in this proposed permit. The RACT II conditions are at least as stringent as those from RACT I.

Source ID	Description	Permit Condition 0058-I026	RACT II Regulations
Storage Tanks	C-5 Operations (Installation Permit #0058-I011d)	Condition V.A.2.a Condition V.A.2.b	25 PA Code §129.99 25 PA Code §129.99
S055	C-5 Operations (Installation Permit #0058-I018a)	Condition V.B.2	25 PA Code §129.99
S034	MP Poly Unit (Installation Permit #0058-I022a)	Condition V.C.1.b Condition V.C.1.c Condition V.C.2 Condition V.C.3 Condition V.C.4	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
S013, S013a, S020, S023, S027	WW Poly Unit (Installation Permit #0058-I023a)	Condition V.D.1.b Condition V.D.2 Condition V.D.3 Condition V.D.4	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
S025	WW Poly Storage Tanks (Installation Permit #0058-I023a)	Condition V.E.1.b Condition V.E.2 Condition V.E.3	25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99

VI. <u>RACT II Permit Conditions</u>

Source ID	Description	Permit Condition 0058-I026	RACT II Regulations
S109, S110, S114	LTC Process Operations (Installation Permit #0058-I016a)	Condition V.F.1.b Condition V.F.2.a Condition V.F.2.b Condition V.F.3.a Condition V.F.4	25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.100 25 PA Code §129.100 25 PA Code §129.99
S085	Dresinate Production Line (Installation Permit #0058-I012a)	Condition V.G.2	25 PA Code §129.99
S004, S007, S012	Hydrogenation Unit	Condition V.H.1.a Condition V.H.1.b Condition V.H.2 Condition V.H.3	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
F027, F033, F034, F035	Wastewater Treatment Plant	Condition V.I.1	25 PA Code §129.99

Allegheny County Health Department Office of Air Quality

Technical Support Document (TSD) -REASONABLY AVAILABLE CONTROL TECHNOLOGY (RACT) DETERMINATION

Source Information

Source Name:	Eastman Chemical Resins, Inc.
Source Location:	220 State Route 837, West Elizabeth, PA 15088
Mailing Address:	P.O. Box 545, West Elizabeth, PA 15088
County:	Allegheny County
SIC Code:	2821 (Plastics Materials, Synthetic Resins)
NAICS Code:	325211 (Plastics Material and Resin Manufacturing)
Part 70 Permit No.:	0058
Major Source:	VOC
Permit Reviewer:	ERG/ST

The Allegheny County Health Department (ACHD) has performed the following Reasonably Available Control Technology (RACT) analyses for a major source of VOC relating to a plastics material and synthetic resin manufacturing facility, located in West Elizabeth, Pennsylvania.

Background

Allegheny County was designated marginal nonattainment for the 2008 8-hour ozone on April 30, 2012 (published in 77 FR 30160, May 21, 2012). In order to implement the 2008 NAAQS for ozone, EPA issued a proposed rulemaking in June 2013 to provide steps and standards for states to develop and submit certain materials, dependent on each state's attainment status. Although Allegheny County is designated marginal nonattainment, Pennsylvania is also a part of the Ozone Transport Region (OTR), which must meet more stringent requirements, including submitting a RACT SIP for EPA approval. As such, Allegheny County must reevaluate the NOx and VOC RACT in the existing RACT SIP for the eight-hour ozone NAAQS.

ACHD requested all major sources of NOx (potential emissions of 100 tons per year or greater) and all major sources of VOC (potential emissions of 50 tons per year or greater) to reevaluate NOx and/or VOC RACT for incorporation into Allegheny County's portion of the PA State Implementation Plan (SIP). This document is the result of ACHD's review of the RACT re-evaluations submitted by the subject source and supplemented with additional information as needed by ACHD.

RACT Summary

VOC RACT evaluations were conducted for several equipment and operations at Eastman Chemical Resins, Inc. The RACT determinations are summarized below.

Unit Description	RACT	VOC PTE Before RACT (tpy)	VOC PTE After RACT (tpy)
Liquid Thermal Contact Unit: Continue operating as permitted, and a required by the Consent Decree.		10.2	10.2

Resin Kettles #5, #6, and #7			
C-5 Polymerization Unit: Pastillating Belts #1 and #2	Continue operating as permitted, and as required by the Consent Decree.	4.5	4.5
Hydrogenation Unit: Vent Tank	Continue operating as permitted, and as required by the Consent Decree.	7.45	7.45
Dresinate TX Production Line: Double Drum		5.48	5.48
Total:	27.6	27.6	
Emission Reduction		0	
Emission Reduction		0	

There are no provisions of the Proposed Pennsylvania Presumptive RACT that address VOC emissions from resin manufacturers.

Detailed documentation of the RACT evaluation follows.

RACT Evaluations

RACT is "the lowest emission limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility." (44 FR 53761, 9/17/1979)

ACHD provided the following guidance to the major sources of NOx and VOC in Allegheny County for performing the RACT analyses:

- 1. The analysis shall address all reasonably possible controls of VOCs and NOx including changes in operation and work practices.
- All control technology that is found to be technically infeasible must be accompanied by detailed and documented reason(s) as to why the technology is not feasible. General statements about the non-applicability of control technology to your industry will not be sufficient.
- 3. All changes in operation and work practices that are found not to be feasible require the same documentation as the controls in step #2 above.
- 4. All feasible control technology, changes in operation, work practices, etc. that are found to be cost prohibitive require a cost analysis demonstrating the cost per ton of pollutant controlled.
- The analysis shall be done according to the procedures in EPA's OAQPS Cost Manual, EPA's cost spreadsheets are recommended where applicable. The manual and spreadsheets may be found on the CATC/RBLC web page on EPA's Technology Transfer Network (TTN) at <u>http://www.epa.gov/ttn/catc/</u>.
- 6. All data used in cost estimates, such as exhaust flow rates or the amount of ductwork used need proper documentation. If vendor quotes are used in the analysis for equipment

costs, they are required to be supplied. Old analyses increased for inflation will not be acceptable. VATAVUK Air Pollution Control Cost Indexes shall be used with the aforementioned cost spreadsheets.

Each RACT analysis section is organized by the following 4 steps, which incorporate the guidance elements provided by Allegheny:

- Step 1 Identify Control Options (guidance element 1)
- Step 2 Eliminate Technically Infeasible Control Options (guidance elements 2 and 3)
- Step 3 Evaluate Control Options, including costs and emission reductions (guidance elements 4, 5, and 6)
- Step 4 Select RACT (guidance element 1)

Source/Process Description

The Eastman Chemical Resins, Inc., West Elizabeth facility produces synthetic hydrocarbon resins from C5 feedstock, C9 feedstock, monomers, solvents and catalysts by way of cationic or thermal polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products. The plant is comprised of three polymerization processes (C-5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC 1, LTC 2, LTC 4, and C-5), and an emulsion process, boilers providing process heat, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes. The facility is a major source of Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAPs) as defined in Article XXI, 2101.20. Detailed descriptions of the relevant emissions units are provided in the following sections.

Table 1 shows the emission units that were identified as emitting VOC from this source. This table was developed using the list of emission units included in the 2011 Consent Decree and adding any equipment listed in installation permits that were not addressed in the 2011 Consent Decree. Also, equipment or processes listed in the 2013 actual emissions report submitted by the source that did not appear in the Consent Decree or in past permits were added to the list. Given different naming conventions and especially the generic naming conventions used in the 2013 actual emissions report, it is possible that using these three sources of information has led to redundant entries in Table 1. All efforts were made to avoid redundant entries; however, the titles/descriptions of the equipment did not always have enough detail to determine whether units were the same equipment. Appendix A provides a document that shows the equipment listed in Table 1 and how it was matched with the 2013 actual emissions report.

Those equipment shown in Table 1 that are noted as coming from the "Consent Decree Tanks List" are those tanks listed in Appendix F of the Consent Decree, but are not listed elsewhere in the Consent Decree. Therefore, these tanks are identified as being located at the Eastman facility, but they were not tested as part of the Consent Decree, nor were there any additional information available about the tanks other than what was listed in Appendix F of the Consent Decree.

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source	
Process Unit: Water White Polymerization Unit (WW Poly)						
Feed Dryer	Condensers E-200-6 & E-200-7		2.3	S013	2011 Consent Decree	
West Pre-Blend Tank	Condenser E-301-4		0.13	S014	2011 Consent Decree	
North Pre-Blend Tank	Condenser E-300-4		0.13	S015	2011 Consent Decree	

Table 1: Listing of Emission Units That Emit VOC

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissionsª (tpy)	Stack I.D.	Primary Information Source
North Reactor	Condensers E-600-6 & E-600-9		1.3	S017	2011 Consent Decree
South Reactor	Condensers E-601-6 & E-601-11		1.2	S017	2011 Consent Decree
Neutralizer	Condensers E-700-4 & E-700-6		0.48	S018	2011 Consent Decree
Funda Filter Recycle Tank	Carbon Bed A-800-8		b	S019a	2011 Consent Decree
Funda Filter Steam Out Process	Condenser E-800-3		0.0002	S019	2011 Consent Decree
Filtrate Receiver	Condenser E-900-7		0.79	S020	2011 Consent Decree
Reclaimer	Condenser E-1001-7		0.57	S022	2011 Consent Decree
Tank 67	Condenser E-67-3	75,000 gal	0.15	S026	2011 Consent Decree
Tanks 68/69/74	Condenser E-201-1	75,000 gal (ea.)	0.12	S024	2011 Consent Decree
Tanks 73/75/76/77	Condenser E-202-1	75,000 gal (ea.)	1.3	S025	2011 Consent Decree
Tanks (Heated) 204/205/206/207	Condensers E-204- 4, E-205-4, E-206-4 and E-207-4 & Carbon Beds A-204- 5A and5B	25,000 gal (ea., except 204 is 40,000 gal)	0.0547 ^{c,d}	S300	2011 Consent Decree
Equipment Leaks (Process Unit Fugitives)			8 ^e		IP 93-1-0012-P
Water-White Poly Area/Slurry Tank			0.0160°		2013 Emissions Report
	Proces	s Unit: Multipurp	ose Poly Unit (I	VP Poly)	
Alumina Dryer Pre-Blend Tank/Calcium Chloride Dryer	Condenser E-203-4		0.35	S035	2011 Consent Decree 2011 Consent Decree
Heel Tank/Solvent Wash Tank/Filtrate Receiver/Funda Filter	Condensers E-701-5 & E-701-4		0.39	S034	2011 Consent Decree
Reactor	Condenser E-400-6		0.13	S029	2011 Consent Decree
Neutralizer	Condensers E-500- 5, E-701-5 & E-701- 4		1.71	S034	2011 Consent Decree
Equipment Leaks (Process Unit Fugitives)			62.6 ^f		IP-94-1-0069-P
	Process l	Jnit: Liquid Theri	mal Contact (LT	C #1/#2/#4)	
#1 Rectification Column/ Vacuum System	Condensers E- 301B-E2 & E-301B- E3	No Longer ir	n Operation	S109	2011 Consent Decree
#2 Rectification Column/ Vacuum System	Condensers E-607-1 & E-607-2		0.003	S110	2011 Consent Decree
#4 Rectification Column / Vacuum System	Condenser		0.001	S124	2011 Consent Decree
#1/#2 LTC Pastillating Belt	Scrubber S-127-3		0.9	S114	2011 Consent Decree
Berndorf (#4 LTC) Pastillating Belt	Scrubber S-105-1		0.66	S165	2011 Consent Decree
Reclaim Solution Tank	Condenser E-301-4		0.58	S108	2011 Consent Decree

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissionsª (tpy)	Stack I.D.	Primary Information Source
Resin Kettle 5	Condenser E-RK5-4		3.5 ⁹	S111	2011 Consent Decree
Resin Kettle 6	Condenser E-RK6-5		3.46 ^g	S112	2011 Consent Decree
Resin Kettle 7	Condenser E-RK7-4		3.24 ^g	S113	2011 Consent Decree
Drumming Operations			0.234 ^h		IP0058-I016
Equipment Leaks (Process Unit Fugitives)			12.605 ^h		IP0058-I016
#1 LTC Process heater (Natural Gas)		3 MMBtu/hr	_	S106	
#2 LTC Process heater (Natural Gas)		6.6 MMBtu/hr	0.465 ^h	S107	IP0058-I016
#4 LTC Process heater (Natural Gas)		10 MMBtu/hr		S119	
#3 LTC Unit/Flaker 4 Fume Scrubber			1.9100°		2013 Emissions Report
		Process Unit: C-	-5 Polymerizatio	n	
C-5 Pastillating Belt #1	UHF Filter S-751-1 and Fume Filter		4.5	S055	2011 Consent Decree
C-5 Pastillating Belt #2	Demister		4.5	5055	2011 Consent Decree
C-5 Pastillating Belt Fugitives	Fugitives venting to outdoors		0.22	Roof vents	2011 Consent Decree
Tank 504	None		0.24	S059	2011 Consent Decree
Resin Kettle 8	None		0.2	S052	2011 Consent Decree
Tank 500 Tanks 501/502/503/505/50	Thermal Oxidizer B- 411-1 or Carbon Beds A3631-1A and 2B Thermal Oxidizer B- 411-1 or Carbon Beds A3631-1A and		-		
6	2B		-		
CaCl2 Dryer R-302-1 Reactor					
T-401-1 #1 Neutralizer					
S-405-1A South Funda Filter			-		
T-40-1 Filtrate Receiver			0.009 ⁱ	S044	IP0058-I011a
T-412-1 Wash Solvent Receiver			0.000	0011	1 0000 10114
T-502-4 Depentanizer Overheads Receiver S-404-11 Pre-coat	Thermal Oxidizer B- 411-1, fired with natural gas		-		
Knockout Tank T-800-1 Reclaim			-		
Tank T-506-1 Inhibitor make-up tank			-		
R-303-1 Soaker	4		4		
T-402-1 #2 Neutralizer			-		
S-405-1B North Funda Filter					

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissionsª (tpy)	Stack I.D.	Primary Information Source
T-406-2 Filter					
Condensate Decanter					
T-412-1 Wash					
Solvent					
T-404-1 Filter Pre-					
coat Tank					
T-403-1 Solvent Flush Tank					
T-506-3 Inhibitor Tank					
T-402A-1#2 Neutralizer					
Tank 52 (piperylene)	Internal Floating Roof	525,000		S218	IP0058-I017
T-54	Floating Roof	125,000	3.6995 ^{c,j}		Consent Decree Tank List
T-55	Floating Roof	500,000			Consent Decree Tank List
C5 Hot Oil Heater (natural gas)		10.33 MMBtu/hr	0.24 ^k		
C-5 Finishing Area/Past Solid Handling			7.3309°		2013 Emissions Report
C-5 Finishing Area/Sparkler Filters			0.0225°		2013 Emissions Report
C-5 Finishing Area/Sparkler Precoat Tank			0.0121°		2013 Emissions Report
C-5 Finishing Area/Resin Kettle 9/10			0.6803°		2013 Emissions Report
	•	Process Unit:	Hydrogenation		
Metering Tank	Condensers E-200- 6, E-201-2 (aka E- 201-1)				2011 Consent Decree
Tank 103 (formerly Tank. 502)	Condensers E-200- 6, E-201-2 (aka E- 201-1)		0.02	S004	2011 Consent Decree
Tank 104 (formerly Tank 501)	Condensers E-501- 4, E-200-6, E-201-2 (aka E-201-1)		0.015	S004	2011 Consent Decree
Autoclave #1	Condensers E-401- 2, E-403-2	1000 gal.	0.15	S007	2011 Consent Decree
Autoclave #2	Condensers E-402- 2, E-403-2	1000 gal.	0.09	S007	2011 Consent Decree
Vent Tank	Condensers E-303-2 (aka E-303-3), E- 401-2, E-402-2, E- 403-2		7.45	S007	2011 Consent Decree
Tanks 100/101	Condenser E-101-4	6,000 gal. (ea)	0.52	S001	2011 Consent Decree
Tanks 102/105/106	Condensers E-104- 1, E-104-2	6,000 gal (102 & 105) 10,000 gal (106)	1.86	S012	2011 Consent Decree
Hydrogenation Hot Oil Heater (Natural Gas)		20 MMBtu/hr	0.47 ^k		
	Proc	ess Unit: Waste \	Nater Treatmen	t Plant	

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source
Tanks 701 A/B	Condenser E-701-3 & Carbon Beds A- 701-5A and 5B		0.68	S147	2011 Consent Decree
Raw/Final/Acid Sump/Flotation	Condenser E-713-2 & Carbon Beds A- 701-5A and 5B		0.00	5147	2011 Consent Decree
Biotreatment Tank			5.3210°		2013 Emissions Report
T-702A,702B 702C			2.1858°		2013 Emissions Report
Sludge Batch Tank			0.2810 ^c		2013 Emissions Report
Solids Handling Tank			0.2810°		2013 Emissions Report
Lime Flash Mix Tank			0.3460°		2013 Emissions Report
Bio Clarifier			0.2880 ^c		2013 Emissions Report
Storage Tanks/C5 WWTP Storage Tanks			0.9062°		2013 Emissions Report
Sumps/Assorted Plant Sumps			4.9221°		2013 Emissions Report
		Process Un	it: Pilot Plant		
Pilot Plant Reactor	Condenser E-113-6 and carbon bed achieving 95% control of VOC			S155	2011 Consent Decree
Pilot Plant Neutralizer and Funda Filter	Condenser E-150-7 and carbon bed achieving 95% control of VOC			S156	2011 Consent Decree
Pilot Plant/Building Exhaust			0.0004°		2013 Emissions Report
		Process Unit:	Storage Tanks		
Tank 34	Emergency wa	aste and storm wa	ater tank	S074	2011 Consent Decree
Tank 35		169,000 gal	0.7	S075	2011 Consent Decree
Tank 78		169,000 gal	0.16	S232	2011 Consent Decree
Tank 161		163,000	0.32	S238	2011 Consent Decree
Tanks 160/162	C	out of service		N/A	2011 Consent Decree
By-Product Fuel Tank No.4	Condenser and	84,150 gal	_		
By-Product Fuel Tank No. 21	Carbon Adsorption	22,500 gal	0.03 ⁱ	S190	IP 0058-1009
By-Product Fuel Tank No. 253		20,000 gal			
Storage Tanks/Controlled Tanks			0.6714°		2013 Emissions Report
Storage Tanks/Styrene Storage Tanks			0.1967°		2013 Emissions Report
Storage Tanks/AMS Storage Tanks			0.0904°		2013 Emissions Report
Storage Tanks/Toluene Storage Tanks			0.1211°		2013 Emissions Report
Storage Tanks/Fuel Oil Storage Tanks			0.0749°		2013 Emissions Report
Storage Tanks/RHS Storage Tanks			0.9437°		2013 Emissions Report
Storage Tanks/HVD Poly Storage Tanks			0.5645°		2013 Emissions Report

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source
Storage Tanks/RHS Poly Storage Tanks			0.5136°		2013 Emissions Report
Storage Tanks/SHP Storage Tanks			0.3110°		2013 Emissions Report
Storage Tanks/JRAF Storage Tanks			1.9325°		2013 Emissions Report
Storage Tanks/A- 100 Storage Tanks			0.1610 ^c		2013 Emissions Report
Sunpar Oil			0.1608°		2013 Emissions Report
PMS Tanks			0.0176°		2013 Emissions Report
VT Storage			0.0150 ^c		2013 Emissions Report
Emulsion Waste Storage			0.1984°		2013 Emissions Report
CTO Storage			0.0063°		2013 Emissions Report
T-4-3-A (Heated)		25,000			Consent Decree Tank List
T-4-3-B (Heated)		25,000			Consent Decree Tank List
Г-9		110,000			Consent Decree Tank List
T-10		110,000	1		Consent Decree Tank List
Г-16		107,000			Consent Decree Tank List
Г-22		15,500			Consent Decree Tank List
T-23		15,500			Consent Decree Tank List
Г-24		15,500			Consent Decree Tank List
Г-25		15,500			Consent Decree Tank List
Г-26		15,000			Consent Decree Tank List
Г-27		15,000			Consent Decree Tank List
Г-28		15,000			Consent Decree Tank List
Г-29		15,000			Consent Decree Tank List
Г-50	Floating Roof	52,500			Consent Decree Tank List
Г-53	r iouurig root	525,000			Consent Decree Tank List
T-66		75,000			Consent Decree Tank List
T-71		75,000			Consent Decree Tank List
T-72		75,000			Consent Decree Tank List
T-82 (Heated)		25,000			Consent Decree Tank List
Г-121		20,000			Consent Decree Tank List
Г-123		20,000			Consent Decree Tank List
Г-124		20,000			Consent Decree Tank List
Г-200		25,000			Consent Decree Tank List
T-201		25,000			Consent Decree Tank List
Г-202		25,000			Consent Decree Tank List
T-208		25,000			Consent Decree Tank List
T-252		30,000			Consent Decree Tank List
T-301		75,000			Consent Decree Tank List
T-302		75,000			Consent Decree Tank List
Г-303		75,000			Consent Decree Tank List
T-365 (Heated)		20,000			Consent Decree Tank List
T-366 (Heated)		25,000			Consent Decree Tank List
T-367 (Heated)		20,000	+ +		Consent Decree Tank List
T-511		15,000	+		Consent Decree Tank List
T-601 (Heated)		750,000	+		Consent Decree Tank List
T-602 (Heated)		750,000	+ +		Consent Decree Tank List
	Brosse	,	sinate TV Broduct	tion Line	
Tank R-1-A Crude Tall Oil Storage Tank	Proces		sinate TX Product	S187	

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source
Tank 782 Tall Oil Rosin Storage Tank			Insignificantm	S290	IP0058-I012a
Double Drum Dryer			5.48 ^m	S085	
		Support	Services		
B-U1 (Unilux water- tube boiler, Model ZF 1800HS)	Ultra-low NOx Burner - fired with natural gas	18.6 MMBtu/hr	0.44 ⁿ	S141	IP0058-1020
B-U2 (Unilux water- tube boiler, Model ZF 1800HS)	Ultra-low NOx Burner - fired with natural gas	18.6 MMBtu/hr	0.44 ⁿ	S141	IP0058-1020
B-U3 (Unilux water- tube boiler, Model ZF 1800HS)	Ultra-low NOx Burner - fired with natural gas	18.6 MMBtu/hr	0.44 ⁿ	S143	IP0058-1020
B-U4 (Unilux water- tube boiler, Model ZF 1800HS)	Ultra-low NOx Burner - fired with natural gas	18.6 MMBtu/hr	0.44 ⁿ	S143	IP0058-1020
Trane Boiler (Natural Gas)		38 MMBtu/hr	0.89 ^k		
Emulsion Ethylene Glycol Heater (Natural Gas)					
Boiler house emergency diesel generator		250 kw	0.01 ⁿ	F100	IP0058-1020
Misc. Natural Gas/Misc. Nat. Gas Usage			0.0400°		2013 Emissions Report
#1 & #2 LTC Unit/Truck Loading			0.0080°		2013 Emissions Report
Barge Dock			1.4242 ^c		2013 Emissions Report
Degreasers			0.8100 ^c		2013 Emissions Report

^a Emissions are from stack tests conducted between 2012 through 2014 in response to the Consent Decree, except where otherwise indicated. The emissions shown are considered potential-to-emit except where otherwise indicated.

^b It is not clear whether emissions from the Funda Filter Recycle Tank is included with the tested emissions from the Funda Filter Steam Out Process. The Consent Decree mentions this emission unit but does not specifically require testing.

^c Emissions data from 2013 Emissions Report. These emissions are assumed to be actual emissions.

^d Units called out in Consent Decree, but testing was not required. Emissions data is based on the 2013 Emissions Report for "Storage Tanks/200 Battery."

^e Emissions for the WWPoly fugitives based on July 30, 1993 permit, IP 93-1-0012-P. Fugitives are subject to the MON (40 CFR 63, Subpart FFFF). Note that fugitives from the entire site are listed as 53.19 tpy in the 2013 Emissions Report.

^f Emissions for the MP Poly fugitives are based on Installation Permit 94-1-0069-P issued April 13, 1995. Fugitives are subject to the MON (40 CFR 63, Subpart FFF). Note that fugitives from the entire site are listed as 53.19 tpy in the 2013 Emissions Report.

⁹ Note that these emissions are greater than permitted emissions in #0058-I016. However, these emissions were calculated based on the stack test results and assuming that the equipment is operated 8760 hours per year. Based on the permit limits for these equipment, these equipment must be operated much less than 8760 hours per year. The stack test results in lb/hr do not exceed the permitted emissions in lb/hr.

^h Emission values are from the IP 0058-I016, issued May 31, 2011. These emission units were not found in Consent Decree.

¹ Based on a stack test conducted July 31 through August 1, 2013 and reported October 17, 2013. Testing conducted pursuant to installation permit.

^j Emissions based on 2013 Emissions Report for "169-Storage Tanks/Piperylene Conc.." Based on IP0058-I017 issued July 22, 2010, tanks 52, 54, and 55 hold piperylene conc. In this permit emissions from tank 52 are limited to 2.37 tpy.

* Emissions calculated using AP-42 emission factor for VOC from boilers less than 100 MMBtu/hr (5.5 lbs of VOC per scf).

¹ Emission value based on permit limit in IP0058-I009 issued October 3, 2002.

^m Emission values based on technical support document for IP 0058-I012a issued October 30, 2008. The actual permit limit for the dryer is 2.23 tpy but this appears to be in error, based on the discussion in the technical support document.

ⁿ Emission values based on permit limits in IP0058-I020 issued July 28, 2011.

RACT Analyses Conducted in this Document

This source is a major source of VOC, but is not a major source of NOx; therefore, only VOC RACT analyses have been conducted and are provided in this document.

Information was not available to assess the 36 tanks listed in Table 1 that were identified from the "Consent Decree Tanks List". The information shown in Table 1 is the only information available for these tanks. These tanks could very well overlap with the tanks listed from the 2013 Emissions Report, but the information is not available to determine if they are duplicate entries or not. Also, no information on how they are used (e.g., number of turnovers, process tank or storage tank, etc.) Although, it is likely that the emissions from these tanks are relatively low, this could not be confirmed. A RACT evaluation was not conducted for these 26 tanks due to lack of information.

A RACT evaluation for the equipment listed in Table 1 that were identified from the "2013 Emissions Report" was also not conducted. There is no information available on these equipment, other than what is listed in Table 1 and it is unclear if these equipment are already included in other units listed in Table 1. It is very possible that the storage tanks and wastewater treatment equipment are subject to the National Emission Standards for Hazardous Air Pollutants (NESHAP): Miscellaneous Organic Chemical Manufacturing, 40 CFR 63, Subpart FFFF, often referred to as the "MON". The MON contains emission control requirements for certain tanks and wastewater streams; however, there is not enough information to determine which of the equipment are covered by the MON. If the MON applies, compliance with the MON would likely be RACT. There is also no information available to calculate potential-to-emit or determine the mechanism by which the emissions are released to determine possible control scenarios. RACT evaluations for the equipment listed in Table 1 that were identified from the "2013 Emissions Report" were not conducted due to lack of information.

ACHD determined that many of the equipment shown in Table 1 have relatively low emissions and considers it unlikely that additional controls would be technically and economically feasible for these emission units. Therefore, RACT for these equipment is compliance with current regulations, permit conditions, and the 2011 Consent Decree. A potential-to-emit of 15 pounds per day or 2.74 tons per year was used to assess equipment where the emissions were relatively low.

ACHD determined that it was unnecessary to conduct RACT evaluations on the equipment leak emissions for processes WW Poly, MP Poly, or the LTC process lines. The source is subject to the MON. Under the MON, the source is required to have a Leak Detection and Repair (LDAR) program. These requirements are relatively stringent and ACHD does not believe more stringent requirements would be considered cost effective. The LDAR requirements of the MON are considered RACT for the emissions from equipment leaks.

The RACT evaluations that were conducted are included in the sections indicated below:

- A. RACT for VOC Liquid Thermal Contact Unit: Resin Kettle 5 and Resin Kettle 6
- B. RACT for VOC C-5 Polymerization Unit: C-5 Pastillating Belts #1 and #2
- C. RACT for VOC Hydrogenation Unit: Vent Tank
- D. RACT for VOC Dresinate TX Production Line: Double Drum Dryer

A. RACT for VOC – Liquid Thermal Contact Unit: Resin Kettles #5, #6, and #7

In this section, ACHD examines the feasibility of controlling emissions from the three resin kettles at the liquid thermal contact unit with one control device.

In the Liquid Thermal Contact Unit, heated resin product is initially charged to the kettles, then transferred to the pastillating belts where it is cooled in a pastillated form, and then packaged for final shipment and delivery. The Liquid Thermal Contact Unit has three (3) resin kettles (#5, #6, and #7). The VOC emissions from these operations are characterized by a low VOC concentration and multiple emission constituents. The VOC emissions from resin kettles #5, #6, and #7 are currently controlled by condensers (Condenser E-RK5-4, Condenser E-RK6-5, and Condenser E-RK7-4, respectively).

VOC emissions from these three resin kettles are limited in Installation Permit 0058-I016, issued on May 31, 2011, as shown in Table 2. A stack test was conducted on the kettles on August 2 through 24, 2012. The results of stack testing are shown in Table 2.

Emission Unit	Permit Limit (Ib/hr)	Permit Limit (ton/yr)	Stack Test (lb/hr)	PTE Based on Stack Test (ton/yr) ^a
Resin Kettle #5	0.94	0.010	0.92	3.5
Resin Kettle #6	0.94	0.010	0.83	3.46
Resin Kettle #7	2.376	0.218	0.74	3.24
Total	4.256	0.228	1.77	10.2

Table 2. Emission Limits and Stack Test Results for Resin Kettles #5, #6, and #7

^a The PTE was calculated assuming 8,760 hours of operation per year per kettle and using the lb/hr stack test results. However, given the difference between the lb/hr and ton/yr emission limits in the Installation Permit 0058-1016. It is likely that these units do not operate 8760 hours per year and that the PTE is actually equal to the Permit Limit. A RACT evaluation was conducted assuming the PTE calculated from the stack test results.

The Installation Permit 0058-1016 requires that emissions from these three resin kettles shall be exhausted through a cooling tower water-chilled condenser at all times. The permit also requires that exit vapor temperature from the condenser shall not exceed 45 degrees Celcius (113 degrees Fahrenheit) at any time when emissions are being routed through it, and that the exit vapor temperature of each of the condensers shall be continuously monitored when the process is in operation.

The data on inlet and outlet VOC concentrations from the stack test results from the testing conducted on August 2 through 24, 2012 indicated that the VOC removal efficiency of the condensers on Resin Kettles #5 and #7 are about 19% and 49%, respectively. The stack testing showed that the condenser on Resin Kettle #6 did not reduce VOC emissions.

Step 1 – Identify Control Options

According to information available in EPA's Control Techniques for Volatile Compound Emissions from Stationary Sources¹ and Control of Volatile Organic Compound Emissions from Reactor Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing

¹ US EPA, EPA 453/R-92-018.

*Industry*², remaining VOC emissions from the resin kettles after the exhaust exits the condensers could be controlled further using any number of controls including:

- (a) Condenser
- (b) Thermal Oxidation
- (c) Catalytic Oxidation
- (d) Carbon Adsorption
- (e) Concentrator/Oxidation
- (f) Absorption (scrubbing)

A description of each of these technologies follows.

- (a) A refrigerated condenser is a control device that is used to cool an emission stream having organic vapors in it and to change the vapors to a liquid. The condensed organic vapors can be recovered, refined, and might be reused, preventing their release to the ambient air. A refrigerated condenser works best on emission streams containing high concentrations of volatile organic emissions. A refrigerated condenser works best in situations where the air stream is saturated with the organic compound, the organic vapor containment system limits air flow, and the required air flow does not overload a refrigeration system with heat. The removal efficiency of a condenser is directly related to lowest temperature that can be achieved in the condenser. Removal efficiencies range from 50-98%.
- (b) Thermal oxidizers are refractory lined enclosures with one or more burners in which the waste gas stream is routed through a high temperature combustion zone where it is heated and the combustible materials are burned. Thermal oxidizers typically operate at 1200 to 2100 degrees Fahrenheit with residence times typically ranging from 0.5 to 2 seconds. An efficient thermal oxidizer design must provide adequate residence time for complete combustion, sufficiently high temperatures for VOC destruction, and adequate velocities to ensure proper mixing without quenching combustion. The type of burners and their arrangement affect combustion rates and residence time; the more thorough the contact between the flame and VOC, the shorter the time required for complete combustion. Natural gas is required to ignite the flue gas mixtures and maintain combustion temperatures. Thermal oxidizers achieve 98% or more VOC reduction.
- (c) Catalytic oxidizers are similar to thermal oxidizers the units are enclosed structures that use heat to oxidize the combustible materials. However, in a catalytic oxidizer, a catalyst is used to lower the operating temperature needed to oxidize the VOCs by lowering the activation energy for oxidation. When a preheated gas stream is passed through a catalytic oxidizer, the catalyst bed initiates and promotes the oxidation of the VOC without being permanently altered itself. Note that steps must be taken to ensure complete combustion. The types of catalysts used include platinum, platinum alloys, copper chromate, copper oxide, chromium, manganese, and nickel. These catalysts are deposited in thin layers on an inert substrate, usually a honeycomb shaped ceramic. VOC destruction efficiency is dependent upon VOC composition and concentration, operating temperature, and the velocity of the gas passing through the bed. As the velocity increases, VOC destruction efficiency decreases. As temperature increases, VOC destruction efficiency increases. Catalytic oxidizers can achieve 98% or more VOC reduction.
- (d) Carbon adsorption is a process by which VOC is retained on a granular carbon surface, which is highly porous and has a very large surface-to-volume ratio. Organic vapors retained on the adsorbent are thereafter desorbed and both the adsorbate and absorbent are recovered. Carbon adsorption systems operated in two phases: adsorption and desorption. Adsorption is rapid and removes most of the VOC in the stream. Eventually, the adsorbent becomes saturated with the vapors and the system's efficiency drops. Regulatory

² US EPA, EPA-450/4-91-031.

considerations dictate that the adsorbent be regenerated or replaced soon after efficiency begins to decline. In regenerative systems, the adsorbent is reactivated with steam or hot air and the absorbate (solvent) is recovered for reuse or disposal. Non-regenerative systems require the removal of the adsorbent and replacement with fresh or previously regenerated carbon. Carbon adsorbers achieve 98% or more VOC reduction.

- (e) Concentrator/oxidation systems combine the actions of carbon adsorption systems with thermal oxidizers and are used when vent gas has a low concentration of organics. Vapors pass through an adsorbing surface, and are collected. When the adsorber is saturated, the surface is desorbed, and the absorbate is oxidized in a thermal oxidizer. Concentrator/oxidation systems can achieve 98% or more VOC reduction.
- (f) Absorption devices work by dissolving the soluble components of a gaseous mixture in a liquid. A gas may be removed from an emissions stream by entering into solution or by chemically-reacting with the absorbing solvent. The absorbing liquids (solvents) used must be carefully chosen for high solute (VOC) solubility and include liquids such as water, mineral oils, non-volatile hydrocarbon oils, and aqueous solutions of oxidizing agents like sodium carbonate and sodium hydroxide. Absorption may occur in spray towers, venturi scrubbers, packed columns, and plate columns. High removal efficiencies occur when the ratio of solvent to solute is high, and the surface area for reactions is high. In absorption systems, the solvent must be stripped of solute prior to reuse. Absorption devices can achieve 70% or more VOC reduction.

Step 2 – Eliminate Technically Infeasible Control Options

It was determined that condensation, thermal oxidation, catalytic oxidation, carbon adsorption, and concentrator/oxidation are technically feasible control options for controlling VOC emissions from the resin kettles at the Liquid Thermal Contact Unit. Absorption is not technically feasible for controlling organic emission streams with a wide range of constituents. Therefore, absorption is determined to be not technically feasible for controlling VOC from this source.

Step 3 - Evaluate Control Options

Emissions and Emission Reductions

The resin kettles at the Liquid Thermal Contact Unit have a potential to emit VOC as shown in Table 2 above. The technically feasible control options for the combined emissions from the resin kettles for the Liquid Thermal Contact Unit with their estimated control efficiency are shown in Table 3.

Control Technology	Туре	Control Efficiency
Condensation	Removal/recovery	90%
Thermal Oxidation	Destruction	98%
Catalytic Oxidation	Destruction	98%
Carbon Adsorption	Removal/recovery	98%
Concentrator/Oxidation	Destruction	98%

Table 3.	Technically	v Feasible Control O	ptions for Resin	Kettles #5, #6, and #7
	roomoun	y i ouoloio o o illi oi o		

These estimated efficiencies are based on information provided in the references cited in Step 1.

Economic Analysis

A thorough economic analysis of the technically feasible control options to control the combined VOC emissions from the resin kettles at the Liquid Thermal Contact Unit was conducted. See Appendix B for more information. The analysis estimates the total costs associated with the VOC control equipment, including the total capital investment of the various components intrinsic to the complete system, the estimated annual operating costs, and indirect annual costs. All costs, except for capital costs, were calculated using the methodology described in Section 6, Chapter 1 of the "EPA Air Pollution Control Cost Manual, Sixth Edition" (document # EPA 452-02-001). Capital costs are based on cost spreadsheets using the costing algorithms contained in the Cost Manual and EPA spreadsheets that were previously available from EPA. Information on exhaust stream physical properties (e.g. flowrate, temperature, density, heat content, etc) used in estimating the capital and annual costs of control came from stack test reports or, when not available, values used for performing the Neville Chemical RACT analyses were used, since Neville Chemical has a similar operation to Eastman's. Annualized costs are based on an interest rate of 7% and an equipment life of 15 years. The ductwork costs estimate only the capital cost for straight ductwork, and does not include costs for any structural supports, fire propagation prevention measures, exhaust mixing controls, engineering design, and other items.

The basis of cost effectiveness, used to evaluate the control option, is the ratio of the annualized cost to the amount of VOC (tons) removed per year. A summary of the cost figures determined in the analysis is provided in the Table 4.

Control Option	Total Capital Investment (\$)	Total Annualized Cost (\$/yr)	Potential Additional VOC Removal from Add-on Control (ton/yr)	Cost Effectiveness (\$/ton VOC Removed)
Condenser	263,000	149,000	9.2	16,200
Thermal Oxidation	151,000	127,000	10.0	12,700
Catalytic Oxidation	81,800	111,000	10.0	11,100
Carbon Adsorption	1,300,000	415,000	10.0	41,500
Concentrator/ Oxidation	397,000	152,000	10.0	15,200

Table 4. Cost Analysis Summary for Resin Kettles at the Liquid Thermal Contact Unit

Step 4 – Select RACT

Based on the economic analysis summarized in Table 4, it is not cost effective to control the three resin kettles at the Liquid Thermal Contact Unit. ACHD has determined that RACT is continued compliance with existing requirements for the Liquid Thermal Contact Unit as specified in Installation Permit 0058-I016, and with the terms of the Consent Decree.

B. RACT for VOC – C-5 Polymerization Unit: C-5 Pastillating Belts #1 and #2

At the C-5 Polymerization Unit's Pastillating Belts #1 and #2, resin product is formed into a solid pastillated form for shipment and delivery. Heated resin is initially charged to a resin kettle then transferred to the pastillating belts for pastillating where it is cooled, solidified, and placed in bags or supersacks. Emissions from the C-5 Polymerization Unit's Pastillating Belts #1 and #2 are vented to the UHF Filter S-751-1 and Fume Filter Demister. The VOC emissions from these operations are characterized by a low VOC concentration and multiple emission constituents.

VOC emissions from the C-5 Polymerization Unit's Pastillating Belt #2 are limited to 1.0 pounds per hour and 4.34 tons per year by Installation Permit 0058-I015, issued August 25, 2008, and Installation Permit 0058-I018, issued May 9, 2011. Pastillating Belt #1 does not appear to have a permit limit. Minimum capture efficiency of the UHF Filter/Fume Filter Demister is to be 90% and VOC control efficiency of the UHF Filter/Fume Filter Demister is to be 90%. A stack test was conducted on the UHF Filter/Fume Filter Demister controlling emissions from the Pastillating Belts #1 and #2 on May 22, 2012. The results of stack testing are shown in Table 5. The data on inlet and outlet VOC concentrations from the stack test results from the testing conducted on May 22, 2012 indicated that the VOC control efficiency of the UHF Filter and the Fume Filter Demister is 39.4%.

Emission Unit	Emission Limit (Ib/hr)	Emission Limit (ton/yr)	Stack Test Results (Ib/hr)	PTE Based on Stack Test (ton/yr)ª
C-5 Pastillating Belt #1	-	-	1.03	4.5
C-5 Pastillating Belt #2	1.0	4.34	1.05	4.5

^a Assuming 8,760 hours of operation per year.

<u>Step 1 – Identify Control Options</u>

According to information available in EPA's *Control Techniques for Volatile Compound Emissions* from Stationary Sources³ and Control of Volatile Organic Compound Emissions from Reactor *Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing Industry*⁴, VOC emissions from the C-5 Polymerization Unit's Pastillating Belts #1 and #2 could be controlled using any number of controls including:

- (a) Thermal Oxidation
- (b) Catalytic Oxidation
- (c) Carbon Adsorption
- (d) Concentrator/Oxidation
- (e) Condensation
- (f) Absorption (scrubbing)

A description of each of these control technologies is provided in RACT Section A.

Step 2 – Eliminate Technically Infeasible Control Options

It was determined that thermal oxidation, catalytic oxidation, carbon adsorption, concentrator/oxidation, and condensation are technically feasible control options for controlling VOC

³ US EPA, EPA 453/R-92-018.

⁴ US EPA, EPA-450/4-91-031.

emissions from the C-5 Polymerization Unit's Pastillating Belts #1 and #2. Absorption is not technically feasible for controlling organic emission streams with a wide range of constituents. Therefore, absorption is determined to be not technically feasible for controlling VOC from this source.

Step 3 - Evaluate Control Options

Emissions and Emission Reductions

The C-5 Polymerization Unit's Pastillating Belts #1 and #2 has a potential to emit VOC as shown in Table 5 above. These potential emissions are based on limits in the installation permit and stack test results. The technically feasible control options with their estimated control efficiency are as shown Table 6.

Table 6. Technically Feasible Control Options for the C-5 Polymerization Unit's Pastillating Belts #1 and #2

Control Technology	Туре	Control Efficiency
Thermal Oxidation	Destruction	98%
Catalytic Oxidation	Destruction	98%
Carbon Adsorption	Removal/recovery	98%
Concentrator/Oxidation	Destruction	98%
Condensation	Removal/recovery	90%

These estimated efficiencies are based on information provided in the references cited in Step 1.

Economic Analysis

A thorough economic analysis of the technically feasible control options to control the combined VOC emissions from the C-5 Polymerization Unit's Pastillating Belts #1 and #2 was conducted. See Appendix C for more information. The analysis estimates the total costs associated with the VOC control equipment, including the total capital investment of the various components intrinsic to the complete system, the estimated annual operating costs, and indirect annual costs. All costs, except for capital costs, were calculated using the methodology described in Section 6, Chapter 1 of the "EPA Air Pollution Control Cost Manual, Sixth Edition" (document # EPA 452-02-001). Capital costs are based on cost spreadsheets using the costing algorithms contained in the Cost Manual and EPA spreadsheets that were previously available from EPA. Information on exhaust stream physical properties (e.g. flowrate, temperature, density, heat content, etc) used in estimating the capital and annual costs of control came from stack test reports or, when not available, values used for performing the Neville Chemical RACT analyses were used, since Neville Chemical has a similar operation to Eastman's. Annualized costs are based on an interest rate of 7% and an equipment life of 15 years. The ductwork costs estimate only the capital cost for straight ductwork, and does not include costs for any structural supports, fire propagation prevention measures, exhaust mixing controls, engineering design, and other items.

The basis of cost effectiveness, used to evaluate the control option, is the ratio of the annualized cost to the amount of VOC (tons) removed per year. A summary of the cost figures determined in the analysis is provided in the Table 7.

Control Option	Total Capital Investment (\$)	Total Annualized Cost (\$/yr)	Potential Additional VOC Removal from Add-on Control (ton/yr)	Cost Effectiveness (\$/ton VOC Removed)
Thermal Oxidation	394,000	1,010,000	4.4	230,000
Catalytic Oxidation	429,000	623,000	4.4	141,000
Carbon Adsorption	796,000	449,000	4.4	102,000
Concentrator/Oxidation	572,000	364,000	4.4	82,600
Condensation	3,280,000	1,930,000	4.1	476,000

Table 7. Cost Analysis Summary for C-5 Polymerization Unit's Pastillating Belts #1 and #2

Step 4 – Select RACT

Based on the economic analysis summarized in Table 7, it is not cost effective to control the C-5 Polymerization Unit's Pastillating Belts #1 and #2.

ACHD has determined that RACT for the C-5 Polymerization Unit's Pastillating Belts #1 and #2 is continued compliance with existing requirements for the C-5 Polymerization Unit's Pastillating Belts #1 and #2 as specified in Installation Permit 0058-I015, Installation Permit 0058-I018, and with the terms of the Consent Decree.

C. RACT for VOC – Hydrogenation Unit: Vent Tank

The Hydrogenation Unit takes resins produced at the Water White Polymerization and Multipurpose Polymerization Processing units and further hydrogenates these resins to improve color and stability. Hydrogenation is a batch process. Feed is preheated, pumped into a metering tank, and then into an autoclave where hydrogen and a metal catalyst are added from the catalyst mix tank to react with the resin. Once the reaction is complete, the product is sent to the Vent Tank and then to tanks where the catalyst and solvents are filtered out. Emissions from the Vent Tank are vented to Condenser E-303-3 and then to Condensers E-401-2, Condenser E-402-2, and Condenser E-403-2 before being vented to the atmosphere via stack S007. This RACT analysis is for emissions from the Vent Tank.

There are no existing permits that specifically limit VOC emissions from the Hydrogenation Unit's Vent Tank. A stack test was conducted on the four condensers controlling VOC emissions from the Hydrogenation Unit's Vent Tank on April 10 and 11, 2013. VOC emissions at the inlet to the control devices were tested at 4.0 pounds per hour and VOC emissions at the outlet of the control devices were 1.7 pounds per hour. PTE for this unit is based on the stack testing results after the effect of controls.

Emission Unit	Stack Test Results (lb/hr)	PTE Based on Stack Test (ton/yr)ª
Hydrogenation Unit's Vent Tank	1.7	7.45

^a Assuming 8,760 hours of operation per year.

Step 1 – Identify Control Options

According to information available in EPA's *Control Techniques for Volatile Compound Emissions* from Stationary Sources⁵ and Control of Volatile Organic Compound Emissions from Reactor *Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing Industry*⁶, VOC emissions from the Hydrogenation Unit's Vent Tank could be controlled using any number of controls including:

- (a) Thermal Oxidation
- (b) Catalytic Oxidation
- (c) Carbon Adsorption
- (d) Concentrator/Oxidation
- (e) Condensation
- (f) Absorption (scrubbing)

A description of each of these control technologies is provided in RACT Section A.

Step 2 – Eliminate Technically Infeasible Control Options

It was determined that thermal oxidation, catalytic oxidation, carbon adsorption, concentrator/oxidation, and condensation are technically feasible control options for controlling VOC emissions from the Hydrogenation Unit's Vent Tank. Absorption is not technically feasible for controlling organic emission streams with a wide range of constituents. Therefore, absorption is determined to be not technically feasible for controlling VOC from this source.

⁵ US EPA, EPA 453/R-92-018.

⁶ US EPA, EPA-450/4-91-031.

Step 3 - Evaluate Control Options

Emissions and Emission Reductions

The Hydrogenation Unit's Vent Tank has a potential to emit VOC as shown in Table 8 above. These potential emissions are based on limits in the installation permit and stack test results. The technically feasible control options with their estimated control efficiency are as shown Table 9.

Control Technology	Туре	Control Efficiency
Thermal Oxidation	Destruction	98%
Catalytic Oxidation	Destruction	98%
Carbon Adsorption	Removal/recovery	98%
Concentrator/Oxidation	Destruction	98%
Condensation	Removal/recovery	90%

These estimated efficiencies are based on information provided in the references cited in Step 1.

Economic Analysis

A thorough economic analysis of the technically feasible control options to control the combined VOC emissions from the Hydrogenation Unit's Vent Tank was conducted. See Appendix D for more information. The analysis estimates the total costs associated with the VOC control equipment, including the total capital investment of the various components intrinsic to the complete system, the estimated annual operating costs, and indirect annual costs. All costs, except for capital costs, were calculated using the methodology described in Section 6. Chapter 1 of the "EPA Air Pollution Control Cost Manual, Sixth Edition" (document # EPA 452-02-001). Capital costs are based on cost spreadsheets using the costing algorithms contained in the Cost Manual and EPA spreadsheets that were previously available from EPA. Information on exhaust stream physical properties (e.g. flowrate. temperature, density, heat content, etc) used in estimating the capital and annual costs of control came from stack test reports or, when not available, values used for performing the Neville Chemical RACT analyses were used, since Neville Chemical has a similar operation to Eastman's. Annualized costs are based on an interest rate of 7% and an equipment life of 15 years. The ductwork costs estimate only the capital cost for straight ductwork, and does not include costs for any structural supports, fire propagation prevention measures, exhaust mixing controls, engineering design, and other items.

The basis of cost effectiveness, used to evaluate the control option, is the ratio of the annualized cost to the amount of VOC (tons) removed per year. A summary of the cost figures determined in the analysis is provided in the Table 10.

Control Option	Total Capital Investment (\$)	Total Annualized Cost (\$/yr)	Potential Additional VOC Removal from Add-on Control (ton/yr)	Cost Effectiveness (\$/ton VOC Removed)
Thermal Oxidation	122,000	118,000	7.3	16,200
Catalytic Oxidation	70,500	107,000	7.3	14,700
Carbon Adsorption	1,620,000	483,000	7.3	66,200
Concentrator/Oxidation	397,000	151,000	7.3	20,600
Condensation	213,000	137,000	6.7	20,400

Table 10. Cost Analysis Summary for Hydrogenation Unit's Vent Tank

Step 4 – Select RACT

Based on the economic analysis summarized in Table 10, it is not cost effective to control the Hydrogenation Unit's Vent Tank using either a thermal oxidizer, catalytic oxidizer, carbon absorption, a concentrator/oxidizer, or a condenser. ACHD has determined that RACT for the Hydrogenation Unit's Vent Tank is continued compliance with the terms of the Consent Decree.

D. RACT for VOC – Dresinate TX Production Line: Double Drum Dryer

The Dresinate TX Production Line's Double Drum Dryer drys liquid crude tall oil and tall oil rosin prior to grinding and packaging. Emissions from the Dresinate TX Production Line: Double Drum Dryer are not controlled. VOC emissions from the Dresinate TX Production Line are limited in Installation Permit 0058-I012, issued on September 13, 2006, and amended in Installation Permit 0058-I012a, issued October 30, 2008, as shown in Table 11.

Table 11. Emission Limits for Dresinate TX Production Line

Emission Unit	Emission Limit (Ib/hr)	Emission Limit (ton/yr)
Dresinate TX Production Line	1.25	5.5

<u>Step 1 – Identify Control Options</u>

According to information available in EPA's *Control Techniques for Volatile Compound Emissions from Stationary Sources*⁷ and *Control of Volatile Organic Compound Emissions from Reactor Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing Industry*⁸, VOC emissions from the Dresinate TX Production Line: Double Drum Dryer could be controlled using any number of controls including:

- (a) Thermal Oxidation
- (b) Catalytic Oxidation
- (c) Carbon Adsorption
- (d) Concentrator/Oxidation
- (e) Condensation
- (f) Absorption (scrubbing)

A description of each of these control technologies is provided in RACT Section A.

Step 2 – Eliminate Technically Infeasible Control Options

It was determined that thermal oxidation, catalytic oxidation, carbon adsorption, concentrator/oxidation, and condensation are technically feasible control options for controlling VOC emissions from the Dresinate TX Production Line: Double Drum Dryer. Absorption is not technically feasible for controlling organic emission streams with a wide range of constituents. Therefore, absorption is determined to be not technically feasible for controlling VOC from this source.

Step 3 - Evaluate Control Options

Emissions and Emission Reductions

The Dresinate TX Production Line: Double Drum Dryer has a potential to emit VOC as shown in Table 11 above. These potential emissions are based on limits in the installation permit. The technically feasible control options with their estimated control efficiency are as shown Table 12.

⁷ US EPA, EPA 453/R-92-018.

⁸ US EPA, EPA-450/4-91-031.

Table 12. Technically Feasible Control Options for the Dresinate TX Production Line: Double Drum Dryer

Control Technology	Туре	Control Efficiency
Thermal Oxidation	Destruction	98%
Catalytic Oxidation	Destruction	98%
Carbon Adsorption	Removal/recovery	98%
Concentrator/Oxidation	Destruction	98%
Condensation	Removal/recovery	90%

These estimated efficiencies are based on information provided in the references cited in Step 1.

Economic Analysis

A thorough economic analysis of the technically feasible control options to control the combined VOC emissions from the Dresinate TX Production Line: Double Drum Dryer was conducted. See Appendix E for more information. The analysis estimates the total costs associated with the VOC control equipment, including the total capital investment of the various components intrinsic to the complete system, the estimated annual operating costs, and indirect annual costs. All costs, except for capital costs, were calculated using the methodology described in Section 6, Chapter 1 of the "EPA Air Pollution Control Cost Manual, Sixth Edition" (document # EPA 452-02-001). Capital costs are based on cost spreadsheets using the costing algorithms contained in the Cost Manual and EPA spreadsheets that were previously available from EPA. Information on exhaust stream physical properties (e.g. flowrate, temperature, density, heat content, etc) used in estimating the capital and annual costs of control came from stack test reports or, when not available, values used for performing the Neville Chemical RACT analyses were used, since Neville Chemical has a similar operation to Eastman's. Annualized costs are based on an interest rate of 7% and an equipment life of 15 years. The ductwork costs estimate only the capital cost for straight ductwork, and does not include costs for any structural supports, fire propagation prevention measures, exhaust mixing controls, engineering design, and other items.

The basis of cost effectiveness, used to evaluate the control option, is the ratio of the annualized cost to the amount of VOC (tons) removed per year. A summary of the cost figures determined in the analysis is provided in Table 13.

Control Option	Total Capital Investment (\$)	Total Annualized Cost (\$/yr)	Potential Additional VOC Removal from Add-on Control (ton/yr)	Cost Effectiveness (\$/ton VOC Removed)
Thermal Oxidation	338,000	534,000	5.4	99,000
Catalytic Oxidation	305,000	338,000	5.4	62,700
Carbon Adsorption	805,000	344,000	5.4	63,900
Concentrator/Oxidation	480,000	252,000	5.4	46,800
Condensation	2,410,000	1,100,000	4.95	221,000

Table 13. Cost Analysis Summary for Dresinate TX Production Line: Double Drum Dryer

Step 4 - Select RACT

Based on the economic analysis summarized in Table 13, it is not cost effective to control the Dresinate TX Production Line: Double Drum Dryer using either a thermal oxidizer, catalytic oxidizer, carbon absorption, a concentrator/oxidizer, or a condenser. ACHD has determined that RACT for the Dresinate TX Production Line: Double Drum Dryer is continued compliance with the terms of Installation Permit 0058-I012a and the Consent Decree.

VOC RACT2 Analysis Eastman Chemical Resins, Inc. – Jefferson Site

Introduction

The Eastman Chemical Resins (Eastman) facility located in West Elizabeth, Pennsylvania, is classified as a major stationary source of both nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions. As such, the facility is subject to the Reasonably Available Control Technology (RACT) rules enacted in Pennsylvania on April 23, 2016, outlined in 25 Pa. Code §§129.96 – 129.100, *Additional RACT Requirements for Major Sources of NOx and VOCs*, referred to as RACT2. The RACT2 rule requires all existing major facilities of NOx and VOC emissions to assess the need to install new or additional emission controls, or implement work practice measures to reduce emissions of those two pollutants.

An initial RACT2 assessment of the Eastman facility was conducted by the Allegheny County Health Department (ACHD) in 2015. The results of that assessment were never incorporated into Allegheny County's portion of the Pennsylvania State Implementation Plan (SIP). In late 2019, ACHD requested that Eastman prepare and submit a re-evaluation of NO_X and VOC RACT2 for the current operations at the facility. The remainder of this document contains Eastman's RACT2 evaluation of VOC-emitting sources.

VOC Potential to Emit (PTE) and RACT2 Applicability Table

Attachment 1 contains a table listing all VOC-emitting sources at the Eastman facility and includes the source PTE, exhaust flow rate (where known), determination of applicability to RACT2, and explanatory comments. The source of the PTE values is indicated in the comments.

VOC sources with a PTE less than 1 ton/year are exempt from RACT2 requirements. Refer to the table in Attachment 1 to see which sources were determined to be exempt.

Any VOC sources with a PTE above 1 ton/year, but less than 2.7 tons/year, are subject to presumptive RACT2, pursuant §129.97(c)(2). This presumptive RACT requirement is: "The facility shall install, maintain, and operate the source in accordance with manufacturer's specifications and with good operating practices." Eastman interprets this to mean maintaining compliance with all pertinent requirements of the particular source's Installation and/or Operating Permit. The sources in Table 1 below are subject to this presumptive requirement:

Source	Process	Stack ID
#4 Vacuum System	LTC	S124
North & South Reactors	WW Poly	S017
Tanks 68, 69 & 74	WW Poly	S024
Tank 35	WW Poly	S075
Resin Kettle #10	C5 Process	n/a
Reactor	MP Poly	S029
Tanks 301, 302 & 303	MP Poly	n/a
Neutralizer and Reactor	Pilot Plant	S155
Resin Kettles and Blend Tanks	Emulsion	S162

Table 1: Presumptive RACT2 Sources

Any VOC source with PTE of 2.7 tons/year or greater is subject to a case-by-case technical and economic analysis to determine if additional emission control is feasible and reasonable. The sources in Table 2 below are subject to the case-by-case analysis requirement:

Source	Process	Stack ID
#1 Vacuum System	LTC	S109
#2 Vacuum System	LTC	S110
#1 & #2 Pastillator Belts	LTC	S114
Feed Dryers and Regeneration	WW Poly	S013 & S013a
Filtrate Receiver	WW Poly	S020
Solvent Wash Receiver	WW Poly	S023
Tanks 73, 75, 76 & 77	WW Poly	S025
East Filtrate Receiver	WW Poly	S027
Tanks 50, 52, 53, 54, 55 & 500	C5 Process	Fugitive
#1 & #2 Pastillator Belts	C5 Process	S055
Various MP Poly sources	MP Poly	S034
Pretreated Tanks 702A, 702B & 702C	WWTP	Fugitive
Bio Aeration Tank	WWTP	Fugitive
Various process and storage tanks	Hydro	S004 & S001
Autoclaves and Vent Tank	Hydro	S007
Product Tanks 102, 105 & 106	Hydro	S012
Double Drum Dryer and tanks	Dresinate	S085

Table 2: Sources subject to Case-by-case Analysis

Technical Feasibility of Capture and Control Technologies

Except for the sources noted below, in all instances where it was determined that Case-by-case (Alternative) RACT analysis was required, it was assumed that additional capture and control of VOC emissions was technically feasible. It is quite possible that further, in-depth analysis would show that to not be the case for some of the sources.

It has been determined that it is <u>not</u> technically feasible to capture and control the following sources that are subject to case-by-case analysis:

- *C5 Operation Raw Material Tanks 50, 52, 53, 54, 55, and 500*: all of these tanks are internal floating roof tanks. There is no reasonable method to capture emissions from floating roof tanks.
- Wastewater Treatment Plant Tanks 702A, 702B and 702C: all of these tanks are open-top tanks used for pre-treatment prior to the biological treatment operations. There is no reasonable method to capture emissions from these open-top tanks.
- *Wastewater Treatment Plant Bio-Aeration Tank*: this biological treatment tank is open to the atmosphere. There is no reasonable method to capture the emissions from this operation.

Economic Analysis Procedures

For sources where it was determined that an economic analysis is required, it was assumed, for the sake of simplicity, that each of the following control technologies was technically feasible. In actuality, that won't always be the case (depending on exhaust flow rates and types of chemicals being controlled).

- Thermal oxidation
- Catalytic oxidation
- Rotary concentrator with oxidation
- Carbon adsorption, with and without on-site regeneration

Note that any combined source exhausts are based mainly on proximity to each other. Full scale engineering studies would be needed to determine the actual technical feasibility from an operational standpoint.

For the sake of simplicity and in the interest of time, also note that the control cost analyses do <u>not</u> take into account any equipment and installation costs associated with capturing and routing source exhausts to add-on control devices. Auxiliary equipment, such as accumulators to gather emissions from batch source vents, is also not included in this study. Some of these non-included costs can be significant and would serve to increase the resulting costs/ton demonstrated in this analysis.

All control cost analyses were conducted pursuant to procedures provided in USEPA's OAQPS Control Cost Manual, 7th Edition (the most recent edition).

Economic Analysis Results

The economic analysis tables are provided in Attachment 2. A summary of the results is provided in Table 3 below.

		Control Costs (\$/ton of VOC removed)							
Source	Process	Thermal Ox.	Catalytic Ox	Rotary Conc Oxidizer	RTO	Refrig. Condenser	Carbon (fixed bed)	Carbon (drum)	
#1 Vacuum System	LTC	40,237	37,705	51,616	59,746	39,342	52,426	46,386	
#2 Vacuum System	LTC	19,443	17,814	24,249	27,956	18,758	24,343	25,799	
#1 & #2 Pastillator Belts	LTC	118,251	96,581	83,218	102,474	507,565	74,706	96,052	
Feed Dryers and Regeneration	WW Poly	34,162	30,228	40,408	46,758	33,761	34,797	94,151	
Filtrate Receiver	WW Poly	38,176	32,174	38,986	45,473	47,011	33,654	66,130	
Solvent Wash Receiver	WW Poly	24,798	21,022	26,345	30,563	27,567	22,852	56,657	
Tanks 73, 75, 76 & 77	WW Poly	30,178	26,843	36,022	41,653	29,538	31,458	70,147	
East Filtrate Receiver	WW Poly	33,925	28,770	35,955	41,791	38,352	30,920	74,948	
#1 & #2 Pastillator Belts	C5 Process	75,176	58,940	40,804	53,683	430,223	32,251	46,868	
Various MP Poly sources	MP Poly	18,288	15,452	19,216	22,260	20,557	17,807	35,325	
Various process and storage tanks	Hydro	12,356	10,688	13,878	15,950	12,426	13,169	32,192	
Autoclaves and Vent Tank	Hydro	12,335	10,454	13,209	15,218	13,300	12,458	34,939	

Table 3: Summary of Economic Analyses

		Control Costs (\$/ton of VOC removed)								
Source	Process	Thermal Ox.	Catalytic Ox	Rotary Conc Oxidizer	RTO	Refrig. Condenser	Carbon (fixed bed)	Carbon (drum)		
Product Tanks 102, 105 & 106	Hydro	24,692	22,816	31,136	35,956	23,931	33,197	74,607		
Double Drum Dryer and tanks	Dresinate	66,816	54,193	44,317	55,288	299,894	39,200	70,716		

Proposed RACT2

As shown in Table 3 above, there is not one single control option that is less than \$10,000 per ton of VOC removed. It is Eastman's contention that it is not economically feasible to install additional controls on any of these sources.

Eastman's proposed RACT2 requirements for <u>all</u> non-exempt sources are:

- 1. The facility shall install, maintain, and operate the sources in accordance with manufacturer's specifications and with good operating practices.
- 2. Attain and maintain compliance with all pertinent requirements of the particular source's current Installation and/or Operating Permit.
- 3. The potential VOC emissions from the Hydro operations are based on the results of the stack test conducted in December 2019 and a throughput restriction of 22,500,000 lbs/year. In addition to items 1 and 2 above, Eastman proposes that RACT2 for Hydro is a throughput limit of 22,500,000 lbs/year. The upcoming Installation Permit application for this process will be based on that limit.

ATTACHMENT 1 Source Emissions & RACT2 Applicability

VOC RACT2 Analysis - Emissions and Applicability

Existing VOC

Eastman Chemical Resins, Inc. - Jefferson Plant

VOC Process & Source Names	Controls	Stack ID	(acfm)	(tpy)	RACT2 Applicability	PTE Basis/Other Notes
LTC						PTE values from IP-16a TSD from ACHD
#1 Vacuum System	condenser	S109	0.8	3.80	Case-by-case Analysis req'd	
#2 Vacuum System	condenser	S110	3.3	8.09	Case-by-case Analysis req'd	
#4 Vacuum System	condenser	S124	2.2	1.46	Presumptive RACT; no cost analysis	
Reclaim Solution Tank	condenser	S108	1.1	0.58	exempt due to VOC < 1 tpy	
Resin Kettle 5	condenser	S111	14.4	0.32	exempt due to VOC < 1 tpy	
Resin Kettle 6	condenser	S112	14.4	0.24	exempt due to VUL < 1 tov	None of the exhaust points can reasonably be combined and routed
Resin Kettle 7	condenser	S113	3.7	0.68	exempt due to $V(0) < 1$ thy	to a common control device, due either to the possiblity of cross- contamination or to too great a distance between them. Therefore,
#1/#2 LTC Pastillator Belt	venturi scrubber	S114	3100	2.80	Caso by caso Analysis roadd	RACT applicability is based on the PTE of each individual source.
Berndorf Belt	venturi scrubber	S165	2500	0.53	exempt due to VOC < 1 tpy	
Truck Loading	none	N/A	1123	0.37	exempt due to VOC < 1 tpy	
Drumming	none	N/A	400	0.18	exempt due to VOC < 1 tpy	
LTC2 Barometric Tank	carbon bed	S110A	100	0.01	exempt due to VOC < 1 tpy	
LTC4 Oil/Water Separator	carbon bed	S125	100	0.01	exempt due to VOC < 1 tpy	
					· · · · · · · · · · · · · · · · · · ·	
WW Poly						PTE from IP-23 permit and ACHD TSD
Feed Dryers	condenser	S013	15	4.85	Caso by caso Analysis rog'd	Combine S013 & S013a for cost analysis; contaminants prevent
Feed Dryer Regeneration	none	S013a	6	0.01	case by case ranarysis requ	combining with any other vents
East Pre-Blend Tank	condenser	S014	6	0.57	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
North Pre-Blend Tank	condenser	S015	6	0.57	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Slurry Tank	none	S016	4.6	0.02	exempt due to VOC < 1 tpy	PM in exhaust could contaminate polymerizate
North & South Reactors	condenser	S017		1.78	Presumptive RACT; no cost analysis	Can't combine with other vents due to presence of BF3
North Neutralizer	condenser	S018	45	0.31	exempt due to VOC < 1 tpy	PM in exhaust could contaminate polymerizate
Funda Filter Steam Out/Flushing	condenser	S019	4.8	0.01	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Funda Condensate Tank	carbon bed	S019a	1.3	0.00	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Filtrate Receiver	condenser	S020	260	5.11	Case-by-case Analysis req'd	Cross-contamination prevents combining with other vents
South Neutralizer	condenser	S021	45	0.31	exempt due to VOC < 1 tpy	PM in exhaust could contaminate polymerizate
Reclaim Pot	condenser	S022	4.6	0.13	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Solvent Wash Receiver	condenser	S023	167	7.52	Case-by-case Analysis req'd	Cross-contamination prevents combining with other vents
Storage Tanks 68/69/74	condenser	S024	1.8	1.37	Presumptive RACT; no cost analysis	Vents need to be separate to prevent RHS/HVD contamination
Storage Tanks 73/75/76/77	condenser	S025	3.6	5.45	Case-by-case Analysis req'd	Vents need to be separate to prevent RHS/HVD contamination
Storage Tank 67	condenser	S026	0.4	0.20	exempt due to VOC < 1 tpy	Vents need to be separate to prevent RHS/HVD contamination
East Filtrate Receiver	condenser	S027	167	5.51	Case-by-case Analysis req'd	Cross-contamination prevents combining with other vents
T-66	none	S228	4.4	0.30	exempt due to VOC < 1 tpy	Vents need to be separate to prevent RHS/HVD contamination
T-10	none	S195	2	0.29	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-22	none	S206		0.02		
T-24	none	S208		0.03	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-23	none	S207				
T-25	none	S209		0.03	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-27	none	S211	7.4	0.04	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-26	none	S210	34			
T-28	none	S212	34	0.42	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-29	none	S213	34			
T-34	none	S074	2	0.27	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Tank 35	none	S075	5		Presumptive RACT; no cost analysis	PTE from Misc Equipment IP Application of 12/2019
T-71	none	\$230		0.29	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-72	none	S231		0.42	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
				=		

Flow VOC PTE

VOC RACT2 Analysis - Emissions and Applicability

Eastman Chemical Resins, Inc. - Jefferson Plant

	Existing VOC		Flow	VOC PTE		
VOC Process & Source Names	Controls	Stack ID	(acfm)	(tpy)	RACT2 Applicability	PTE Basis/Other Notes
T-200	none	S239	2			
T-201	none	S240	2	0.18	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-202	none	S241	2			
Tanks 204/205/206/207	carbon bed	S300	18.8	0.04	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
C5						PTE from IP-11d
		6044	20			
C5 Poly Operations & 500 Series Tanks	thermal oxidizer	S044	20	0.26	exempt due to VOC < 1 tpy	Tanks include 501, 502, 503, 505 & 506 (all controlled by T.O.)
Resin Kettle #8	none	S052	0.22	0.38	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Resin Kettle #9	none	n/a	3.3	0.74	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Resin Kettle #10	none	n/a	3.3	1.07	Presumptive RACT; no cost analysis	Cross-contamination prevents combining with other vents
Sparkler Filter	condenser	S312		0.05	exempt due to VOC < 1 tpy	Distance makes combining impractical.
Sparkler Precoat	none	n/a		0.01	exempt due to VOC < 1 tpy	Only emissions are fugitive when changing filters. Not feasible to
						capture.
Raw Material Tanks (50, 52, 53, 54, 55 and 500)	floating roof tanks	n/a	20	7.81	Case-by-case Analysis req'd	No reasonable way to capture and control floating roof tanks
Resin Storage Tanks (121, 123, 124, 161, 366, 367, 504, 601 &	none	n/a	36	3.78	exempt due to VOC < 1 tpy	Cross-contamination and distance prevents combining with other
602)						vents. Each tank is less than 1 tpy.
#1 & #2 Pastillating Belts & Drumming from Kettle 8	UHF Filter	S055	9000	7.44	Case-by-case Analysis req'd	
Truck/Railcar Loading from Kettles 9 & 10	none	n/a		0.80	exempt due to VOC < 1 tpy	Cross-contamination and distance prevents combining with other
						vents

MP Poly						PTE from IP-22 TSD from ACHD
Reactor	scrubber	S029	NA	1.65	Presumptive RACT; no cost analysis	Can't combine with other vents due to presence of BF3
Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk	none	S033	28 to 200	0.51	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter	condenser	S034	113 to 200	10.33	Case-by-case Analysis req'd	Cross-contamination prevents combining with other vents
Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer	condenser	S035	5	0.99	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Tanks 301/302/303	none		15	1.37	Presumptive RACT; no cost analysis	Cross-contamination and distance prevents combining with other
						vents. Each tank is less than 1 tpy.

WWTP						PTE values from WWTP IP application, Jan 2020
Tanks T-701A & T-701B and Back Porch Sumps	carbon bed	S147	9.5	0.48	exempt due to VOC < 1 tpy	Can't combine with any other WWTP source (all fugitive)
Tanks T-702A , T-702B, T-702C	none	F033, F034, F035	12	8.84	Case-by-case Analysis req'd	Open top tanks - not feasible to capture emissions
Bio Aeration Tank	none	F027		15.25	Case-by-case Analysis req'd	Open top tanks - not feasible to capture emissions
Bio Clarifier	none	F028		0.11	exempt due to VOC < 1 tpy	Open top tanks - not feasible to capture emissions
Sludge Batch Tank	none	F036		0	exempt due to VOC < 1 tpy	Open top tanks - not feasible to capture emissions
Sludge Solids Handling	none	F037		0	exempt due to VOC < 1 tpy	Open top tanks - not feasible to capture emissions

Pilot Plant					
Neutralizer & Reactor	carbon bed	S155	21	2.2	PTE from Misc Equipment IP Application of 12/2019
		Totals:	21	2.2 Presumptive RACT; no cost analysis	VOC > 1 tpy, but < 2.7 tpy

VOC RACT2 Analysis - Emissions and Applicability

Eastman Chemical Resins, Inc. - Jefferson Plant

VOC Process & Source Names	Existing VOC Controls	Stack ID	Flow (acfm)	VOC PTE (tpy)	RACT2 Applicability	PTE Basis/Other Notes
						Draliminary DTF based on Day 2010 testing ner larias Kana amail of
Hydro						Preliminary PTE based on Dec 2019 testing, per Janice Kane email of 1/15/2020
Metering Tank/Tanks 103&104/Catalyst Catch Tank/Mott	condenser	S004	78	13		For purposes of RACT applicability and cost analyses, assume vents
Filter/Heel Tank					Case-by-case Analysis req'd	Sold and Soll can be combined.
Storage Tanks 100/101	condenser	S001	1	1.2		
Storage Tanks 102/105/106	condenser	S012	2	6.3	Case-by-case Analysis req'd	Can't combine S012 with other vents due to contamination risk (102 and 105 are finished product tanks).
Vent Tank/Autoclave #1/Autoclave #2	condenser	S007	169	15	Case-by-case Analysis req'd	Can't combine with other vents due to presence of hydrogen (flammability and pressure issues)
Emulsion						PTE based on stack testing in 2007
RK1		unknown		0.67		Assume all vents can be combined
RK2		unknown		1.21		Assume all vents can be combined
Blend Tanks 1, 2, 3, and 4		S162		0.28		Assume all vents can be combined
		Totals:		2.16	Presumptive RACT; no cost analysis	VOC > 1 tpy, but < 2.7 tpy
Dresinate TX						
Double Drum Dryer	fume scrubber	S085	4000	5.48		Limit in IP-12a
Tank R-1-A	none	S187		0.01		
Tank 782	none	S290		0.01		
		Totals:		5.50	Case-by-case Analysis req'd	VOC > 2.7 tpy
Other Storage Tanks						
4	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
78	none	S232	5	< 1	exempt due to VOC < 1 tpy	PTE from Misc Equipment IP Application of 12/2019
80	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
151	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
208	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
252	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
261	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
262	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
263	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
264	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
265	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
365	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
511	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
761	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
764	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
766	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
775	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
783	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
Combustion Sources						PTE Combustion Sources draft 20191127.xlsx
Unilux Boiler 1	none	S141		0.45	exempt due to VOC < 1 tpy	
	none	5171		0.45		

VOC RACT2 Analysis - Emissions and Applicability Eastman Chemical Resins, Inc. - Jefferson Plant

	Existing VOC		Flow	VOC PTE		
VOC Process & Source Names	Controls	Stack ID	(acfm)	(tpy)	RACT2 Applicability	PTE Basis/Other Notes
Unilux Boiler 3	none	S143		0.45	exempt due to VOC < 1 tpy	
Unilux Boiler 4	none	S143		0.45	exempt due to VOC < 1 tpy	
Trane Boiler	none	S144		0.92	exempt due to VOC < 1 tpy	
LTC 2 Heater	none	S107		0.16	exempt due to VOC < 1 tpy	
LTC 4 Heater	none	S119		0.24	exempt due to VOC < 1 tpy	
C5 Hot Oil Heater	none	S056		0.25	exempt due to VOC < 1 tpy	
C5 Oxidizer	none	S044		0.26	exempt due to VOC < 1 tpy	
Hydro Heater	none			0.48	exempt due to VOC < 1 tpy	

ATTACHMENT 2 Economic Analysis Tables

LTC Sources

Table 1.VOC Control Technology Cost Analysis, LTC Operations, #1 Vacuum System
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	3.7	3.6
2.	Catalytic Oxidation	98.0	98.0	96.0	3.7	3.6
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	3.7	3.6
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	3.7	3.6
5.	Refrigerated Condenser	95.0	98.0	93.1	3.7	3.5
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	3.7	3.5
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	3.7	3.5
					*VOC Baseline =	3.8 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	4,410	425	119	134,852	37,705
2.	Refrigerated Condenser	14,851	1,431	413	136,399	39,342
3.	Thermal Oxidation	66,296	6,387	1,786	143,908	40,237
4.	Carbon Adsorption (Canister)	16,831	2,180	629	160,824	46,386
5.	Rotary Concentrator/Oxidizer	344,383	33,179	9,277	184,606	51,616
6.	Carbon Adsorption (Fixed Bed)	258,296	33,450	9,648	181,762	52,426
7.	Regenerative Thermal Oxidizer	548,250	52,820	14,768	213,682	59,746

* PTE based on ACHD's TSD for IP-16a.

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

Gas flowrate (scfm):	0.8	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	92662.0	based on Toluene
Waste gas heat content (BTU/scf):	392.6	Equation 2.16
Waste gas heat content (BTU/lb):	5312.1	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21
(scfm):	0.0	
Total Gas Flowrate (scfm):	1	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.30
@ 50 % heat recovery:	16,136	Equation 2.31
@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

-	
16,136	=EC + Auxiliary costs
35,559	=Base cost x inflation factor
41,959	=1.18A (Table 2.10)
66,296	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	2	
Electricity	1	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	3,315	
Capital recovery	6,387	=CRF x TCI
		_

143,908

Total Annual Cost

Table 3. **Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220 Equation 2.18	
Years since Cost Base Date:4Average inflation rate/year, %:2.5Inflation adjustment factor:1.10INPUT PARAMETERS1Exhaust Gas flowrate (scfm):1Reference temperature (oF):77Waste gas inlet temperature, Tw ₁ (oF):200Inlet gas density (lb/scf):0.0739 airPrimary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Gas heat capacity (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Tw ₀ (oF):1220Equation 2.18Fuel heat of combustion (BTU/lb):Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041	
Average inflation rate/year, %:2.5Inflation adjustment factor:1.10INPUT PARAMETERS1Exhaust Gas flowrate (scfm):1Reference temperature (oF):77Waste gas inlet temperature, Tw, (oF):200Inlet gas density (lb/scf):0.0739 airPrimary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Saste gas heat content (BTU/lb):Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Equation 2.18Euel heat of combustion (BTU/lb):Fuel heat of combustion (BTU/lb):21,502methane0.041	
Inflation adjustment factor:1.10INPUT PARAMETERSExhaust Gas flowrate (scfm):1Reference temperature (oF):77Waste gas inlet temperature, Tw ₁ (oF):200Inlet gas density (lb/scf):0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Tw ₀ (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):0.041methane0.041	
INPUT PARAMETERSExhaust Gas flowrate (scfm):1Reference temperature (oF):77Waste gas inlet temperature, Tw ₁ (oF):200Inlet gas density (lb/scf):0.0739air0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Tw ₀ (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041	
Exhaust Gas flowrate (scfm):1Reference temperature (oF):77Waste gas inlet temperature, Twi (oF):200Inlet gas density (lb/scf):0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):0.041methane0.041	
Reference temperature (oF):77Waste gas inlet temperature, Tw _i (oF):200Inlet gas density (Ib/scf):0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Tw _o (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel density (Ib/ft3):0.041	AN
Waste gas inlet temperature, Tw ₁ (oF):200Inlet gas density (Ib/scf):0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Tw ₀ (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):0.041methane	Оре
Inlet gas density (lb/scf):0.0739airPrimary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):0.041methane	Оре
Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Equation 2.18Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):0.041methane	Ma
Waste gas heat content, annual avg. (BTU/scf):392.57Equation 2.16Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):0.041methane	Оре
Waste gas heat content (BTU/lb):5312.1Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041	Mai
Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041	Eleo
Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041	Nat
Temperature leaving heat exchanger, Two (oF):1220Equation 2.18Fuel heat of combustion (BTU/lb):21,502methaneFuel density (lb/ft3):0.041methane	Anr
Fuel heat of combustion (BTU/lb):21,502methaneFuel density (lb/ft3):0.041methane	Cor
Fuel density (lb/ft3): 0.041 methane	Сар
	Тах
Pressure drop (in. w.c.): 19.0 Table 2.13	
	AN
CALCULATED UTILITY USAGES	
Auxiliary Fuel Requirement: (lb/min): -0.015 Equation 2.21	Ope
(scfm): -0.36	Sup
(mcf/yr): (188.6)	Ma
Total Maximum Exhaust Gas Flowrate: (scfm): 0	Mai
	Nat
CALCULATED CAPITAL COSTS	Eleo
Oxidizer Equipment Cost (EC):	Ove
@ 85% heat recovery: 266,406 Equation 2.33	Тах
@ 95% heat recovery: 0 Equation 2.33	Сар
Auxiliary equipment : 0	Tot
Total Equipment Costbase:266,406=EC + Auxiliary costs	
Total Equipment Costescalated (A): 294,063 =Base cost x inflation factor	
Purchased Equipment Cost (B): 346,994 =1.18A (Table 2.10)	
Total Capital Investment (TCI): 548,250 =1.58B (Table 2.10)	

NNUAL COST INPUTS

8,760	
48.00	
49.00	
0.5	Table 2.12
0.5	Table 2.12
0.055	
4.00	
0.050	
15	
0.0963	
0.05	
	48.00 49.00 0.5 0.055 4.00 0.050 15 0.0963

NNUAL COSTS

Item	Cost (\$/yr)
Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	(754)
Electricity	1 Section 2.5.2.1
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	27,413
Capital recovery	52,820 =CRF x TCI
Total Annual Cost	213,682

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

W:\Eastman_Chemical\19.056_RACT2_Analysis\Cost_Analysis_Tables\LTC\LTC_No1VacuumSystem_CostAnalysis_20200114.xlsx

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	8
Current Date:	1/15/2020)
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20)
INPUT PARAMETERS		
	1	
Gas flowrate (scfm):	1	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):		Equation 2.16
Waste gas heat content (BTU/lb):	5312.12	
Gas heat capacity (BTU/lb-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):		Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (Ib/min):	0.000	Equation 2.21
(scfm):	0.0	-4
Total Gas Flowrate (scfm):	1	
Catalyst Volume (ft3):	0.0	
Pressure drop (in. w.c.):		Table 2.13
	11.0	10510 2.15
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:		Equation 2.35
@ 50 % heat recovery:		Equation 2.36
@ 70 % heat recovery:	-	Equation 2.37
Other equipment :	-	
Total Equipment Costbase:	1,073	=EC + Auxiliary costs

Total Equipment Costbase:
Total Equipment Costescalated (A):
Purchased Equipment Cost (B):
Total Capital Investment (TCI):

2,365 =Base cost x inflation factor

ANNUAL COST INPUTS Operating factor (hr/yr):

Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

8760

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	1	
Electricity	1	Section 2.5.2.1
Catalyst replacement	1	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	221	
Capital recovery	425	=CRF x TCI

134,852

Total Annual Cost

2,791 =1.18A (Table 2.10) 4,410 =1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

W:\Eastman_Chemical\19.056_RACT2_Analysis\Cost_Analysis_Tables\LTC\LTC_No1VacuumSystem_CostAnalysis_20200114.xlsx

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)	
Control device input mass (tons/year)	
Concentration (avg. ppmv)	92,6
Facility operating schedule (hours/year)	
Thermal oxidizer temperature (F)	
Fuel cost, (\$/million BTU)	
Electricity cost, (\$/kwhr)	

ENERGY CALCULATIONS

Heat recovery (%)		
Pressure drop (inches WC)		
Electrical power (kW)		
Fuel usage (Btu/hr)		

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

1 3.7 92,661.96 based on Toluene 8,760 1,400 4.00 0.055

50 14 Table 2.13 (catalytic) 0.0 Section 2.5.2.1 120 Equation 2.21

175,663 inflation adjustment

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.50 Table 2.12
Maintenance labor factor (hr/sh):	0.50 Table 2.12
Electricity price (\$/kwh):	0.055
Natural gas price (\$/mscf):	4.00
Annual interest rate (fraction):	0.05
Control system life (years):	15
Capital recovery factor:	0.0963
Taxes, insurance, admin. factor:	0.05

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	4
Electricity	1
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,219
Capital recovery	33,179 =CRF x TCI

Total Annual Cost

184,606

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

97,120

0 279,036 sty-cost.wk3 344,383 sty-cost.wk3

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

1344.800 Table

7.6830 Equation 2.6

0.0113 Equation 2.9

0.001 Equation 2.10

0.010 inlet - outlet

16,763 Equation 2.14

234 Equation 2.12

127 Equation 2.17

20.0 Default value

59.7 Equation 2.19

0.3 Equation 2.18

23 Equation 2.22

1.3 Table 2.5 (see below)

0.03 Equation 2.23

7 Equation 2.16

368 sum of enthalpy changes

0.9 lb-moles x molecular weight

35.8 Equation 2.8

0.092662

A:

B:

C:

(lb/hr):

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CADITAL COSTS.

		CAPITAL COSTS:
1		Equipment Costs (\$):
200		Refrigeration unit/single-stage (< 10 tons):
Toluene		Refrigeration unit/single-stage (> 10 tons):
.092662		Multistage refrigeration unit:
0.90		Total equipment cost (\$)base:
		Total equipment cost (\$)escalated:
6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):
344.800	Table B below, for Toluene	Total Capital Investment (\$):
219.480	Table B below, for Toluene	
14,290.0	Table A below, for Toluene	
37.5	Table A below, for Toluene	ANNUAL COST INPUTS:
0.650	Default value	Operating factor (hr/yr):
231.0	Table A below, for Toluene	Operating labor rate (\$/hr):
1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):
92.1	Table A below, for Toluene	Operating labor factor (hr/sh):
7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):
6.95	Default value	Electricity price (\$/kWhr):

ANNUAL COST INPUTS.		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.4
Maintenance labor factor (hr/sh):	0.5	Table 2.4
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	23	
Overhead	50,326	
Taxes, insurance, administrative	743	
Capital recovery	1,431	-
Total Annual Cost (without credits)	136,399	
Recovery credits	0	
Total Annual Cost (with credits)	136,399	

5,547 Equation 2.26

6,934 Equation 2.29

8,685 Equation 2.30

14,851 Table 2.3

8,041 inflation adjusted

0 Equation 2.27

0 Equation 2.28

* Original equipment costs in EPA's OAOPS Control Cost Manual, 7th Edition, Section 3.1. Chapter 2, reflect this date, All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Si	team Regeneration
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

1	
200	
1	
Toluene	
0.85	
92	
9.27E-02	
92662.0	
1.3618	
0.90	
3.72	
12	Operating hours between carbon replacemen
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.570	Equation 1.1 and Table 1.2
0.285	50% of equilibrium capacity
1	Regenerated off-site
3	
54	Equation 1.14
18	
0	Vertical vessel, flow under 9000 cfm
0.08	Equation 1.18 or 1.21
116.86	Equation 1.19 or 1.23
30.27	Equation 1.24
111.753	Equation 1.31
378.942	Equation 1.30

 15,004
 Equation 1.25

 67
 Equation 1.16

 0

 90,356
 Equation 1.27

 151,760
 apply inflation factor

 174,524
 Table 1.4 (less sales taxes)

 258,296
 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS: Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	707	Section 1.8.1.3
Steam	130	Equation 1.28
Cooling water	317	Equation 1.29
Carbon replacement	39	Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	12,915	
Capital recovery	33,450	
Total Annual Cost (without credits) Recovery credits	181,762	Recovered solvent not re-sold
Total Annual Cost (with credits)	181,762	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):	
Inlet stream temperature (oF):	
Inlet stream pressure (atm):	
VOC to be condensed:	
Inlet VOC flowrate (avg. lb/hr):	
VOC molecular weight (lb/lb-mole):	
VOC inlet volume fraction:	
VOC inlet concentration (ppmv):	
VOC inlet partial pressure (psia):	
Required VOC removal (fraction):	
Annual VOC inlet (tons):	
Total Adsorption time per canister (hr):	
Desorption time (hr):	
Number of canisters:	
Superficial carbon bed velocity (ft/min):	
Carbon price (\$/lb):	

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

-	
200	
1	
Toluene	
0.85	
92	
9.27E-02	
92662.0	
1.3618	
0.90	
3.72	
500	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

16,831 Table 1.4

2018 1/15/2020 2 2.5 1.05

1

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.570	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.285	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
1,492	Equation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
18		Electricity	707	Section 1.8.1.3
26,848	Lbs per replacement times number of replacements	Carbon replacement	22,893	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	842	
1,570	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	2,180	
0				-
9,413	Equation 1.27	Total Annual Cost (without credits)	160,824	
9,889	apply inflation factor	Recovery credits		Recovered solvent not re-sold
11,373	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	160,824	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1.VOC Control Technology Cost Analysis, LTC Operations, #2 Vacuum System
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	7.9	7.6
2.	Catalytic Oxidation	98.0	98.0	96.0	7.9	7.6
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	7.9	7.6
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	7.9	7.6
5.	Refrigerated Condenser	95.0	98.0	93.1	7.9	7.4
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	7.9	7.4
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	7.9	7.4
					*VOC Baseline =	8.1 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	9,717	936	123	135,637	17,814
2.	Refrigerated Condenser	28,589	2,754	373	138,457	18,758
3.	Thermal Oxidation	94,508	9,105	1,196	148,047	19,443
4.	Rotary Concentrator/Oxidizer	344,461	33,186	4,358	184,634	24,249
5.	Carbon Adsorption (Fixed Bed)	242,352	31,386	4,252	179,679	24,343
6.	Carbon Adsorption (Canister)	12,786	1,656	224	190,426	25,79
7.	Regenerative Thermal Oxidizer	548,311	52,826	6,938	212,866	27,956

* PTE based on ACHD's TSD for IP-16a.

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

INT OT TANAMETERS		
Gas flowrate (scfm):	3	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	47823.6	based on Toluene
Waste gas heat content (BTU/scf):	202.6	Equation 2.16
Waste gas heat content (BTU/lb):	2741.6	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21
(scfm):	0.0	
Total Gas Flowrate (scfm):	3	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.30
@ 50 % heat recovery:	23,002	Equation 2.31
@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

-	
23,002	=EC + Auxiliary costs
50,691	=Base cost x inflation factor
59,815	=1.18A (Table 2.10)
94,508	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	10	
Electricity	4	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	4,725	
Capital recovery	9,105	=CRF x TCI
		-

148,047

Total Annual Cost

Table 3. **Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016		
Current Date:		1/15/2020		
Years since Cost Base Date:		4		
Average inflation rate/year, %:		2.5		
Inflation adjustment factor:		1.10		
INPUT PARAMETERS				ANNUAL COST INPL
Exhaust Gas flowrate (scfm):		3		Operating factor (hr
Reference temperature (oF):		77		Operating labor rate
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor
Inlet gas density (lb/scf):		0.0739	air	Operating labor fact
Primary heat recovery (fraction):		0.85		Maintenance labor
Waste gas heat content, annual avg. (BTU/scf):		202.61	Equation 2.16	Electricity price (\$/k
Waste gas heat content (BTU/lb):		2741.6		Natural gas price (\$
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate
Combustion temperature (oF):		1,400		Control system life
Temperature leaving heat exchanger, Tw_{o} (oF):		1220	Equation 2.18	Capital recovery fac
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, ac
Fuel density (lb/ft3):		0.041	methane	
Pressure drop (in. w.c.):		19.0	Table 2.13	
				ANNUAL COSTS
CALCULATED UTILITY USAGES				Item
Auxiliary Fuel Requirement:	(lb/min):	-0.031	Equation 2.21	Operating labor
	(scfm):	-0.75		Supervisory labor
	(mcf/yr):	(395.8)		Maintenance labor
Total Maximum Exhaust Gas Flowrate:	(scfm):	3		Maintenance mater
				Natural gas
CALCULATED CAPITAL COSTS				Electricity
Oxidizer Equipment Cost (EC):				Overhead
@ 85% heat recovery:		266,436	Equation 2.33	Taxes, insurance, ac
@ 95% heat recovery:		0	Equation 2.33	Capital recovery
Auxiliary equipment :		0		Total Annual Cost
Total Equipment Costbase:		266,436	=EC + Auxiliary costs	
Total Equipment Costescalated (A):		294,095	=Base cost x inflation factor	
Purchased Equipment Cost (B):		347,032	=1.18A (Table 2.10)	
Total Capital Investment (TCI):		548,311	=1.58B (Table 2.10)	

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Item	Cost (\$/yr)
Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	(1,583)
Electricity	5 Section 2.5.2.1
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	27,416
Capital recovery	52,826 =CRF x TCI
Total Annual Cost	212,866

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

W:\Eastman_Chemical\19.056_RACT2_Analysis\Cost_Analysis_Tables\LTC\LTC_No2VacuumSystem_CostAnalysis_20200108.xlsx

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	3
Current Date:	1/15/2020)
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20)
INPUT PARAMETERS		
Gas flowrate (scfm):	3	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	202.61	Equation 2.16
Waste gas heat content (BTU/lb):	2741.63	
Gas heat capacity (BTU/lb-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21
(scfm):	0.0	
Total Gas Flowrate (scfm):	3	
Catalyst Volume (ft3):	0.0	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	٥	Equation 2.34
@ 35 % heat recovery:		Equation 2.34
@ 50 % heat recovery:		
		Equation 2.36
@ 70 % heat recovery:	0	Equation 2.37
Other equipment :	-	
Total Equipment Costbase:	2,365	=EC + Auxiliary costs
Total Equipment Costescalated (A):	5,212	=Base cost x inflation fact
	e ·	

5,212 =Base cost x inflation factor 6,150 =1.18A (Table 2.10) 9,717 =1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	6	
Electricity	4	Section 2.5.2.1
Catalyst replacement	2	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	486	
Capital recovery	936	=CRF x TCI

Total Annual Cost

135,637

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Purchased Equipment Cost (B):

Total Capital Investment (TCI):

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)	
Control device input mass (tons/year)	
Concentration (avg. ppmv)	4
Facility operating schedule (hours/year)	
Thermal oxidizer temperature (F)	
Fuel cost, (\$/million BTU)	
Electricity cost, (\$/kwhr)	

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

3 7.9 47,823.62 based on Toluene 8,760 1,400 4.00 0.055

50 14 Table 2.13 (catalytic) 0.0 Section 2.5.2.1 495 Equation 2.21

97,141 175,701 inflation adjustment 0 279,101 sty-cost.wk3 344,461 sty-cost.wk3

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	17
Electricity	4
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,223
Capital recovery	33,186 =CRF x TCI

Total Annual Cost

184,634

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

> 3 200 Toluene

A:

B:

C:

(lb/hr):

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC condensed (Ib-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

0.047824 0.90 6.955 Table B below, for Toluene 1344.800 Table B below, for Toluene 219.480 Table B below, for Toluene 14,290.0 Table A below, for Toluene 37.5 Table A below, for Toluene 0.650 Default value 231.0 Table A below, for Toluene 1,065.0 Table A below, for Toluene 9.2.1 Table A below, for Toluene 9.2.1 Table A below, for Toluene

3.7981 Equation 2.6 16.6 Equation 2.8 0.0242 Equation 2.9 0.002 Equation 2.10 0.022 inlet - outlet 2.0 lb-moles x molecular weight 16,975 Equation 2.14 519 Equation 2.12 17 Equation 2.16 613 Equation 2.17 1,148 sum of enthalpy changes 20.0 Default value 64.7 Equation 2.19 0.9 Equation 2.18 71 Equation 2.22 0.10 Equation 2.23 1.3 Table 2.5 (see below)

6.95 Default value

CAPITAL COSTS:

CAFITAL COSTS.			
Equipment Costs (\$):			
Refrigeration unit/single-stage (< 10 tons):	10,679	Equation 2.26	
Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27	
Multistage refrigeration unit:	0	Equation 2.28	
Total equipment cost (\$)base:	13,348	Equation 2.29	
Total equipment cost (\$)escalated:	15,480	inflation adjusted	
Purchased Equipment Cost (\$):	16,718	Equation 2.30	
Total Capital Investment (\$):	28,589	Table 2.3	
ANNUAL COST INPUTS:			
Operating factor (hr/yr):	8760		
Operating labor rate (\$/hr):	48.00		
Maintenance labor rate (\$/hr):	49.00		
Operating labor factor (hr/sh):	0.5	Table 2.4	
Maintenance labor factor (hr/sh):	0.5	Table 2.4	

Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	0.00
Annual interest rate (fraction):	0.05
Control system life (years):	15
Capital recovery factor:	0.0963
Taxes, insurance, admin. factor:	0.05
ANNUAL COSTS:	
Operating labor	26,280
Supervisory labor	3,942
Maintenance labor	26,828

Maintenance labor	26,828
Maintenance materials	26,828
Electricity	71
Overhead	50,326
Taxes, insurance, administrative	1,429
Capital recovery	2,754
Total Annual Cost (without credits)	138,457
Recovery credits	0
Total Annual Cost (with credits)	138,457

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

3	
200	
1	
Toluene	
1.81	
92	
4.78E-02	
47823.6	
0.7028	
0.90	
7.93	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.530	Equation 1.1 and Table 1.2
0.265	50% of equilibrium capacity
1	Regenerated off-site
3	
123	Equation 1.14
41	
2	Vertical vessel, flow under 9000 cfm
0.17	Equation 1.18 or 1.21
67.09	Equation 1.19 or 1.23
35.32	Equation 1.24
62.030	Equation 1.31
210.780	Equation 1.30

 16,920
 Equation 1.25

 154
 Equation 1.16

 0

 84,778
 Equation 1.27

 142,392
 apply inflation factor

 163,751
 Table 1.4 (less sales taxes)

 242,352
 Table 1.4

ANNUAL COST INPUTS:

Supervisory labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	277 676	Section 1.8.1.3 Equation 1.28 Equation 1.29 Equation 1.38 Recovered solvent not re-sold
Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative	3,942 26,828 26,828 930 277 676 89 50,326 12,118	Equation 1.28 Equation 1.29
Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead	3,942 26,828 26,828 930 277 676 89 50,326 12,118	Equation 1.28 Equation 1.29
Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement	3,942 26,828 26,828 930 277 676 89	Equation 1.28 Equation 1.29
Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water	3,942 26,828 26,828 930 277 676	Equation 1.28 Equation 1.29
Supervisory labor Maintenance labor Maintenance materials Electricity Steam	3,942 26,828 26,828 930 277	Equation 1.28
Supervisory labor Maintenance labor Maintenance materials Electricity	3,942 26,828 26,828 930	
Supervisory labor Maintenance labor Maintenance materials	3,942 26,828 26,828	Section 1.8.1.3
Supervisory labor Maintenance labor	3,942 26,828	
Supervisory labor	3,942	
	-	
	20,280	
Operating labor	26,200	
ANNUAL COSTS:		
Taxes, insurance, admin. factor:	0.050	
Capital recovery factor (carbon):	0.5378	
Carbon life (years):	2.0	
Capital recovery factor (system):	0.1295	
Control system life (years):	10.0	
Annual interest rate (fraction):	0.05	
Overhead rate (fraction):	0.6	
Recovered VOC value (\$/lb):	-	
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manu
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manu
Electricity price (\$/kWhr):	0.055	
Maintenance labor factor (hr/sh):	0.5	
Operating labor factor (hr/sh):	0.5	
	45.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor rate (\$/hr): Maintenance labor rate (\$/hr):	48.00	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):
()
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

3	
200	
1	
Toluene	
1.81	
92	
4.78E-02	
47823.6	
0.7028	
0.90	
7.93	
350	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

0.530 Equation 1.1 and Table 1.2

12,786 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.530	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.265	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
2,391	Equation 1.14 (at 350 adsorption hrs/cycle)	Maintenance materials	26,828	
26	i	Electricity	930	Section 1.8.1.3
62,154	Lbs per replacement times number of replacements	Carbon replacement	52,998	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	639	
1,440	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	1,656	
0				-
7,150	Equation 1.27	Total Annual Cost (without credits)	190,426	
7,512	apply inflation factor	Recovery credits		Recovered solvent not re-sold
8,639	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	190,426	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1.VOC Control Technology Cost Analysis, LTC #1 and #2 Pastillation Belts
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	2.7	2.6
2.	Catalytic Oxidation	98.0	98.0	96.0	2.7	2.6
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	2.7	2.6
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	2.7	2.6
5.	Refrigerated Condenser	95.0	98.0	93.1	2.7	2.6
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	2.7	2.4
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	2.7	2.4
					*VOC Baseline =	2.8 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Carbon Adsorption (Fixed Bed)	255,487	33,087	13,671	180,804	74,706
2.	Rotary Concentrator/Oxidizer	442,303	42,612	16,170	219,307	83,218
3.	Carbon Adsorption (Canister)	304,382	39,419	16,287	232,465	96,052
4.	Catalytic Oxidation	443,144	42,284	16,045	254,524	96,581
5.	Regenerative Thermal Oxidizer	637,930	61,460	23,321	270,055	102,474
6.	Thermal Oxidation	525,682	50,645	19,218	311,632	118,251
7.	Refrigerated Condenser	3,997,791	385,156	150,766	1,296,659	507,565

* PTE based on sum of #1 and #2 LTC Belts; taken from ACHD's TSD for IP-16a.

** Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

Gas flowrate (scfm):	3,100	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	17.6	based on Toluene
Waste gas heat content (BTU/scf):	1.0	Equation 2.16
Waste gas heat content (BTU/lb):	13.5	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	1.881	Equation 2.21
(scfm):	46.1	
Total Gas Flowrate (scfm):	3,146	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:	-	
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.30

@ 35 % neat recovery:	0	Equation 2.30
@ 50 % heat recovery:	127,944	Equation 2.31
@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

-	
127,944	=EC + Auxiliary costs
281,958	=Base cost x inflation factor
332,710	=1.18A (Table 2.10)
525,682	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS	
Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	96,952
Electricity	3,547 Section 2.5.2.1
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	26,284
Capital recovery	50,645 =CRF x TCI

311,632

Total Annual Cost

Table 3. **Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS			
Exhaust Gas flowrate (scfm):		3,100	
Reference temperature (oF):		77	
Waste gas inlet temperature, Tw _i (oF):		200	
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/scf):		1.00	Equation 2.16
Waste gas heat content (BTU/lb):		13.5	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.041	methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):	0.717	Equation 2.21
	(scfm):	17.57	
	(mcf/yr):	9,232.6	
Total Maximum Exhaust Gas Flowrate:	(scfm):	3,118	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):		200.004	
@ 85% heat recovery:			Equation 2.33
@ 95% heat recovery:		0	Equation 2.33
Auxiliary equipment :		0	
Total Equipment Costbase:			=EC + Auxiliary costs
Total Equipment Costescalated (A):		-	=Base cost x inflation factor
Purchased Equipment Cost (B):			=1.18A (Table 2.10)
Total Capital Investment (TCI):		-	=1.58B (Table 2.10)
		007,000	1.000 (10010 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Item	Cost (\$/yr)
Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	36,930
Electricity	5,565 Section 2.5.2.1
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	31,897
Capital recovery	61,460 =CRF x TCI

270,055

Total Annual Cost

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020)
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20	
INPUT PARAMETERS		
Gas flowrate (scfm):	3,100	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (Ib/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	1.00	Equation 2.16
Waste gas heat content (BTU/Ib):	13.53	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.960	Equation 2.21
(scfm):	23.5	
Total Gas Flowrate (scfm):	3,124	
Catalyst Volume (ft3):	6.0	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:		Equation 2.35
@ 50 % heat recovery:	107,855	·
@ 70 % heat recovery:	0	Equation 2.37
C · · · · · · · · · · · · · · · · · · ·	-	

Other equipment :

Total Equipment Costbase:		
Total Equipment Costescalated (A):		
Purchased Equipment Cost (B):		
Total Capital Investment (TCI):		

.6 .8 1

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	49,487	
Electricity	4,108	Section 2.5.2.1
Catalyst replacement	2,284	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	22,157	
Capital recovery	42,284	=CRF x TCI

254,524

Total Annual Cost

107,855 =EC + Auxiliary costs 237,687 =Base cost x inflation factor 280,471 =1.18A (Table 2.10) 443,144 =1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

123,101 222,657 inflation adjustment 0 359,475 sty-cost.wk3 442,303 sty-cost.wk3

14 Table 2.13 (catalytic) 8.5 Section 2.5.2.1 465,154 Equation 2.21

3,100 2.7

8,760 1,400 4.00 0.055

50

17.62 based on Toluene

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	16,299
Electricity	4,077
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	22,115
Capital recovery	42,612 =CRF x TCI

Total Annual Cost

219,307

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

3,100 200 Toluene 0.000018 0.90

6.955 Table B below, for Toluene

1344.800 Table B below, for Toluene

219.480 Table B below, for Toluene

14,290.0 Table A below, for Toluene

1,065.0 Table A below, for Toluene

92.1 Table A below, for Toluene

7.20 Table A below, for Toluene

0.7 lb-moles x molecular weight

0.650 Default value 231.0 Table A below, for Toluene

6.95 Default value

0.0013 Equation 2.6

-116.8 Equation 2.8

0.0084 Equation 2.9

0.001 Equation 2.10

0.008 inlet - outlet

18,346 Equation 2.14

1,044,559 Equation 2.17 1,044,796 sum of enthalpy changes

227 Equation 2.12

20.0 Default value

96.7 Equation 2.19

540.4 Equation 2.18

64,295 Equation 2.22

87.07 Equation 2.23

11.7 Table 2.5 (see below)

10 Equation 2.16

37.5 Table A below, for Toluene

A:

B:

C:

(lb/hr):

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC condensed (Ib-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAPITAL COSTS:

Equipment Costs (\$):		
Refrigeration unit/single-stage (< 10 tons):	0	Equation 2.26
Refrigeration unit/single-stage (> 10 tons):	630,817	Equation 2.27
Multistage refrigeration unit:	1,493,300	Equation 2.28
Total equipment cost (\$)base:	1,866,625	Equation 2.29
Total equipment cost (\$)escalated:	2,164,712	inflation adjusted
Purchased Equipment Cost (\$):	2,337,889	Equation 2.30
Total Capital Investment (\$):	3,997,791	Table 2.3

ANNUAL COST INPUTS:

ANNUAL COST INPUTS.		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.4
Maintenance labor factor (hr/sh):	0.5	Table 2.4
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	577,410	
Overhead	50,326	
Taxes, insurance, administrative	199,890	
Capital recovery	385,156	_
		-
Total Annual Cost (without credits)	1,296,659	
Recovery credits	0	
Total Annual Cost (with credits)	1,296,659	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneration
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

3,100	
200	
1	
Toluene	
0.63	
92	
1.76E-05	
17.6	
0.0003	
0.90	
2.74	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.222	Equation 1.1 and Table 1.2
0.111	50% of equilibrium capacity
1	Regenerated off-site
3	
102	Equation 1.14
34	
1,550	Vertical vessel, flow under 9000 cfm
5.13	Equation 1.18 or 1.21
5.05	Equation 1.19 or 1.23
122.79	Equation 1.24
0.055	Equation 1.31
1.184	Equation 1.30

 44,607
 Equation 1.25

 127
 Equation 1.16

 0

 89,373
 Equation 1.27

 150,110
 apply inflation factor

 172,626
 Table 1.4 (less sales taxes)

 255,487
 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS: Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	,	Section 1.8.1.3
Steam	96	Equation 1.28
Cooling water		Equation 1.29
Carbon replacement	74	Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	12,774	
Capital recovery	33,087	
Total Annual Cost (without credits) Recovery credits	180,804	Recovered solvent not re-sold
Total Annual Cost (with credits)	180,804	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):
()
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

3,100		C
200		C
1		Ν
Toluene		C
0.63		Ν
92		E
1.76E-05		F
17.6		C
0.0003		A
0.90		C
2.74		C
1,000	Operating hours between carbon replacement	C
0	Regenerated off-site	C
2	Only one online at a time	Т
75.0	default, page 1-35	
1.25	reactivated, page 1-6	

304,382 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.222	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.111	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
5,641	Equation 1.14 (at 1000 adsorption hrs/cycle)	Maintenance materials	26,828	
9		Electricity	336	Section 1.8.1.3
50,767	Lbs per replacement times number of replacements	Carbon replacement	43,288	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	15,219	
85,200	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	39,419	
0				-
170,220	Equation 1.27	Total Annual Cost (without credits)	232,465	
178,838	apply inflation factor	Recovery credits		Recovered solvent not re-sold
205,663	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	232,465	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

WW Poly Sources

Table 1. VOC Control Technology Cost Analysis, WW Poly, Feed Dryers and Regeneration Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	4.8	4.6
2.	Catalytic Oxidation	98.0	98.0	96.0	4.8	4.6
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	4.8	4.6
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	4.8	4.6
5.	Refrigerated Condenser	95.0	98.0	93.1	4.8	4.4
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	4.8	4.4
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	4.8	4.4
					*VOC Baseline =	4.9 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	27,266	2,624	574	138,270	30,228
2.	Refrigerated Condenser	103,560	9,977	2,250	149,704	33,761
3.	Thermal Oxidation	150,160	14,467	3,163	156,264	34,162
4.	Carbon Adsorption (Fixed Bed)	107,591	13,933	3,142	154,297	34,797
5.	Rotary Concentrator/Oxidizer	345,018	33,240	7,267	184,832	40,408
6.	Regenerative Thermal Oxidizer	548,832	52,876	11,560	213,879	46,758
7.	Carbon Adsorption (Canister)	1,312,009	169,911	38,319	417,479	94,151

* PTE based on ACHD's TSD for IP-23.

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

Gas flowrate (scfm):	21.0	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	4514.7	based on Toluene
Waste gas heat content (BTU/scf):	19.1	Equation 2.16
Waste gas heat content (BTU/lb):	258.8	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.001	Equation 2.21
(scfm):	0.0	
Total Gas Flowrate (scfm):	21	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.30
@ 50 % heat recovery:	36,547	Equation 2.31
@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

-	
36,547	=EC + Auxiliary costs
80,541	=Base cost x inflation factor
95,038	=1.18A (Table 2.10)
150,160	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	63	
Electricity	24	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	7,508	
Capital recovery	14,467	=CRF x TCI
Total Annual Cost	156,264	

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2	2016
Current Date:	1/15/2	2020
Years since Cost Base Date:		4
Average inflation rate/year, %:		2.5
Inflation adjustment factor:	:	1.10
INPUT PARAMETERS		
Exhaust Gas flowrate (scfm):		21
Reference temperature (oF):		77
Waste gas inlet temperature, Tw _i (oF):		200
Inlet gas density (lb/scf):		739 air
Primary heat recovery (fraction):).85
Waste gas heat content, annual avg. (BTU/scf):		0.13 Equation 2.16
Waste gas heat content (BTU/lb):		8.8
Gas heat capacity (BTU/lb-oF):		255
Combustion temperature (oF):		400
Temperature leaving heat exchanger, Tw_{0} (oF):		220 Equation 2.18
Fuel heat of combustion (BTU/lb):		502 methane
Fuel density (lb/ft3):		041 methane
Pressure drop (in. w.c.):	1	.9.0 Table 2.13
CALCULATED UTILITY USAGES		
	o/min): -0.0	013 Equation 2.21
).32
	. ,	
	(scfm):	21
CALCULATED CAPITAL COSTS		
Oxidizer Equipment Cost (EC):		
@ 85% heat recovery:	266,6	689 Equation 2.33
@ 95% heat recovery:		0 Equation 2.33
Auxiliary equipment :		0
Total Equipment Costbase:	266,6	689 =EC + Auxiliary costs
Total Equipment Costescalated (A):	294,3	375 =Base cost x inflation factor
Purchased Equipment Cost (B):	347,3	362 =1.18A (Table 2.10)
Total Capital Investment (TCI):	548,8	832 =1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	26,280	-
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	(678)	
Electricity	37	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	27,442	
Capital recovery	52,876	=CRF x TCI
Total Annual Cost	213,879	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_FeedDryers_CostAnalysis_20200114.xlsx

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020	
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20	
INPUT PARAMETERS		
Gas flowrate (scfm):	21	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	19.13	Equation 2.16
Waste gas heat content (BTU/lb):	258.82	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.001	Equation 2.21
(scfm):	0.0	1
Total Gas Flowrate (scfm):	21	
Catalyst Volume (ft3):	0.0	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:	0	Foundation 2.24
@ 0 % heat recovery:		Equation 2.34
@ 35 % heat recovery:		Equation 2.35
@ 50 % heat recovery:		Equation 2.36
@ 70 % heat recovery:	0	Equation 2.37
Other equipment :	-	
Total Equipment Costbase:	6,636	=EC + Auxiliary costs
Total Equipment Costescalated (A):	14,624	=Base cost x inflation factor

14,624	=Base cost x inflation factor
17,257	=1.18A (Table 2.10)
27,266	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):

Electricity price (\$/kwh):

Natural gas price (\$/mscf):

Control system life (years):

Annual interest rate (fraction):

Capital recovery factor (system):

Capital recovery factor (catalyst):

Taxes, insurance, admin. factor:

CALCULATED ANNUAL COSTS

Catalyst price (\$/ft3):

Catalyst life (years):

Operating labor

Natural gas

Electricity

Overhead

Supervisory labor

Maintenance labor

Maintenance materials

Catalyst replacement

Capital recovery

Total Annual Cost

Taxes, insurance, administrative

Operating labor rate (\$/hr):

Maintenance labor rate (\$/hr):

Operating labor factor (hr/sh):

Maintenance labor factor (hr/sh):

8760

48.00

49.00

0.055

650 4.00

0.05

0.0963 0.5378

0.05

26,280

26,828

15

1,363

138,270

3,942 Table 2.12

26,828 Table 2.12 37

50.326 Table 2.12

2,624 =CRF x TCI

28 Section 2.5.2.1

15

2

0.5 Table 2.12

0.5 Table 2.12

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual

Purchased Equipment Cost (B): Total Capital Investment (TCI):

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_FeedDryers_CostAnalysis_20200114.xlsx

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)	
Pressure drop (inches WC)	
Electrical power (kW)	
Fuel usage (Btu/hr)	

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

21 4.8 4,514.66 based on Toluene 8,760 1,400 4.00 0.055

50 14 Table 2.13 (catalytic) 0.1 Section 2.5.2.1

3,151 Equation 2.21

175,968 inflation adjustment

97,288

0 279,558 sty-cost.wk3 345,018 sty-cost.wk3

ANNUAL COST INPUTS Operating factor (hr/yr).

	8,700	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50 Tabl	e 2.12
Maintenance labor factor (hr/sh):	0.50 Tabl	e 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	110
Electricity	28
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,251
Capital recovery	33,240 =CRF x TCI

Total Annual Cost

184,832

8 760

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAPITAL COSTS:

21		Equipment Costs (\$):
200		Refrigeration unit/single-stage (< 10 tons):
Toluene		Refrigeration unit/single-stage (> 10 tons):
0.004515		Multistage refrigeration unit:
0.90		Total equipment cost (\$)base:
		Total equipment cost (\$)escalated:
6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):
1344.800	Table B below, for Toluene	Total Capital Investment (\$):
219.480	Table B below, for Toluene	
14,290.0	Table A below, for Toluene	
37.5	Table A below, for Toluene	ANNUAL COST INPUTS:
0.650	Default value	Operating factor (hr/yr):
231.0	Table A below, for Toluene	Operating labor rate (\$/hr):
1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):
92.1	Table A below, for Toluene	Operating labor factor (hr/sh):
7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):
6.95	Default value	Electricity price (\$/kWhr):

0.3445	Equation 2.6
-36.7	Equation 2.8
0.0145	Equation 2.9
0.001	Equation 2.10
0.013	inlet - outlet
1.2	lb-moles x molecular weight
17,544	Equation 2.14
345	Equation 2.12
13	Equation 2.16
5,264	Equation 2.17
5,622	sum of enthalpy changes
20.0	Default value
78.0	Equation 2.19
3.6	Equation 2.18
346	Equation 2.22
0.47	Equation 2.23
1.3	Table 2.5 (see below)

5 5	,	
Total equipment cost (\$)base:	48,353	Equation 2.29
Total equipment cost (\$)escalated:	56,075	inflation adjusted
Purchased Equipment Cost (\$):	60,561	Equation 2.30
Total Capital Investment (\$):	103,560	Table 2.3
ANNUAL COST INPUTS:		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.4
Maintenance labor factor (hr/sh):	0.5	Table 2.4
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	345	
Overhead	50,326	
Taxes, insurance, administrative	5,178	
Capital recovery	9,977	_

38,683 Equation 2.26

27,030 Equation 2.28

0 Equation 2.27

ANNUAL CO

Operating labor	26,280
Supervisory labor	3,942
Maintenance labor	26,828
Maintenance materials	26,828
Electricity	345
Overhead	50,326
Taxes, insurance, administrative	5,178
Capital recovery	9,977
Total Annual Cost (without credits)	149,704
Recovery credits	0
Total Annual Cost (with credits)	149,704

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

A:

B:

C:

(lb/hr):

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Si	team Regeneration
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

21	
200	
1	
Toluene	
1.09	
92	
4.51E-03	
4514.7	
0.0663	
0.90	
4.76	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.409 Equation 1.1 and Table 1.2
0.204 50% of equilibrium capacity

Regenerated off-site
Bequation 1.14
Vertical vessel, flow under 9000 cfm
Vertical vessel, flow under 9000 cfm
Equation 1.18 or 1.21
Equation 1.19 or 1.23
Equation 1.24
Equation 1.31

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS: Operating labor	26,280	
Supervisory labor Maintenance labor	3,942 26,828	
Maintenance naterials	26,828	
Electricity	-	Section 1.8.1.3
Steam		Equation 1.28
Cooling water		Equation 1.29
Carbon replacement		Equation 1.38
Overhead	50,326	Equation 1.56
Taxes, insurance, administrative	5,380	
Capital recovery	13,933	
	10,000	_
	454 207	
Total Annual Cost (without credits) Recovery credits	154,297	Recovered solvent not re-sold

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

21	
200	
1	
Toluene	
1.09	
92	
4.51E-03	
4514.7	
0.0663	
0.90	
4.76	
1,750	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

0.409 Equation 1.1 and Table 1.2

1,312,009 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.409	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.204	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
9,309	Equation 1.14 (at 1750 adsorption hrs/cycle)	Maintenance materials	26,828	
6	i	Electricity	138	Section 1.8.1.3
55,854	Lbs per replacement times number of replacements	Carbon replacement	47,626	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	65,600	
189,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	169,911	
0				-
733,719	Equation 1.27	Total Annual Cost (without credits)	417,479	
770,863	apply inflation factor	Recovery credits		Recovered solvent not re-sold
886,493	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	417,479	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1. VOC Control Technology Cost Analysis, WW Poly, Filtrate Receiver Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	5.0	4.8
2.	Catalytic Oxidation	98.0	98.0	96.0	5.0	4.8
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	5.0	4.8
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	5.0	4.8
5.	Refrigerated Condenser	95.0	98.0	93.1	5.0	4.7
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	5.0	4.7
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	5.0	4.7
					*VOC Baseline =	5.1 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	111.246	10,683	2,221	154.741	32,174
2.	Carbon Adsorption (Fixed Bed)	121,953	15,793	3,388	156,903	33,654
3.	Thermal Oxidation	282,705	27,236	5,663	183,607	38,176
4.	Rotary Concentrator/Oxidizer	352,537	33,964	7,062	187,503	38,986
5.	Regenerative Thermal Oxidizer	555,755	53,543	11,133	218,702	45,473
6.	Refrigerated Condenser	548,251	52,820	11,329	219,179	47,011
7.	Carbon Adsorption (Canister)	655,711	84,918	18,214	308,314	66,130

* PTE based on ACHD's TSD for IP-23.

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

	Gas flowrate (scfm):	260.0	
	Reference temperature (oF):	77	
	Inlet gas temperature (oF):	200	
	Inlet gas density (lb/scf):	0.0739	air
	Primary heat recovery (fraction):	0.50	
	Predominant VOC constituent:	Toluene	
	Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
	Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
	Pollutant concentration (ppmv):	383.4	based on Toluene
	Waste gas heat content (BTU/scf):	1.6	Equation 2.16
	Waste gas heat content (BTU/lb):	22.0	
	Gas heat capacity (BTU/lb-oF):	0.255	air
	Combustion temperature (oF):	1,400	
	Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.0408	methane
	CALCULATED PARAMETERS		
	Auxiliary Fuel Needed (lb/min):	0.150	Equation 2.21
	(scfm):	3.7	
	Total Gas Flowrate (scfm):	264	
	Pressure drop (in. w.c.):	12.0	Table 2.13
	CALCULATED CAPITAL COSTS		
	Equipment Costs (EC):		
	Incinerator:		
	@ 0 % heat recovery:	0	Equation 2.29
	@ 35 % heat recovery:	0	Equation 2.30
	@ 50 % heat recovery:	68,807	Equation 2.31
	@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B):

Total Capital Investment (TCI):

-	
68,807	=EC + Auxiliary costs
151,633	=Base cost x inflation factor
178,927	=1.18A (Table 2.10)
282,705	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	7,735	
Electricity	297	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	14,135	
Capital recovery	27,236	=CRF x TCI
		-

183,607

Total Annual Cost

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_FiltrateReceiver_CostAnalysis_20200114.xlsx

Table 3. **Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*: 2016 Current Date: 1/15/2020 Years since Cost Base Date: 4 Average inflation rate/year, %: 2.5 Inflation adjustment factor: 1.10 INPUT PARAMETERS Exhaust Gas flowrate (scfm): Exhaust Gas flowrate (scfm): 260 Reference temperature (oF): 77 Waste gas inlet temperature, Tw, (oF): 0.0739 air Primary heat recovery (fraction): 0.85 Waste gas heat content, annual avg. (BTU/scf): 0.255 Combustion temperature (oF): 1.400 Temperature leaving heat exchanger, Tw ₀ (oF): 1.220 Gas heat capacity (BTU/lb-oF): 0.255 Combustion temperature (oF): 1.400 Temperature leaving heat exchanger, Tw ₀ (oF): 1.200 Fuel heat of combustion (BTU/lb): 21,502 Intel tags deny (lb/ft3): 0.041 Pressure drop (in. w.c.): 19.0 Total Maximum Exhaust Gas Flowrate: (scfm): 1.28 (mcf/yr): 675.4 200.053 Equation 2.33 Q 95% heat recovery: 0 Equation 2.33 Q Oxidizer Equip					
Years since Cost Base Date: 4 Average inflation rate/year, %: 2.5 Inflation adjustment factor: 1.10 <i>INPUT PARAMETERS</i> 260 Reference temperature (oF): 77 Waste gas inlet temperature, Twi (oF): 200 Inlet gas density (lb/scf): 0.0739 Primary heat recovery (fraction): 0.85 Waste gas heat content, annual avg. (BTU/scf): 1.62 Equation 2.16 Waste gas heat content, annual avg. (BTU/scf): Waste gas heat content, annual avg. (BTU/scf): 0.255 Combustion temperature (oF): 1.400 Temperature leaving heat exchanger, Two (oF): 1.200 Fuel density (lb/H3): 0.411 Fuel density (lb/H3): 0.041 Pressure drop (in. w.c.): 19.0 Total Maximum Exhaust Gas Flowrate: (scfm): 1.28 (mcf/yr): 675.4 Total Maximum Exhaust Gas: 0 Equation 2.33 Auxiliary equipment : 0 270,053 Equation 2.33 @ 95% heat recovery: 0 Equation 2.33 270,053 =C + Auxiliary costs Oxidizer Equipment Cost-base: 270,0	CO	ST REFERENCE DATE*:		2016	
Average inflation rate/year, %: 2.5 Inflation adjustment factor: 1.10 <i>INPUT PARAMETERS</i> 260 Reference temperature (oF): 77 Waste gas inlet temperature, Tw, (oF): 200 Inlet gas density (lb/scf): 0.0739 air Primary heat recovery (fraction): 0.85 Waste gas heat content, annual avg. (BTU/scf): 2.0 Gas heat content (BTU/lb): 2.15 Combustion temperature (oF): 1.400 Temperature leaving heat exchanger, Tw ₀ (oF): 1.20 Fuel density (lb/f3): 0.041 Pressure drop (in. w.c.): 19.0 Total Maximum Exhaust Gas Flowrate: (scfm): 1.28 (mcf/yr): 675.4 Total Maximum Exhaust Gas: 0 270,053 Equation 2.33 @ 95% heat recovery: 0 Equation 2.33 290,053 =EC + Auxiliary costs Total Equipment Costbase: 270,053 =EC + Auxiliary costs 104	Cu	rrent Date:		1/15/2020	
Inflation adjustment factor:1.10IMPUT PARAMETERSExhaust Gas flowrate (scfm):260Reference temperature (oF):77Waste gas inlet temperature, Tw, (oF):200Inlet gas density (lb/scf):0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.16Waste gas heat content (BTU/lb):22.0Gas heat capacity (BTU/lb-OF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041Pressure drop (in. w.c.):19.0Table 2.13CALCULATED UTILITY USAGESAuxiliary Fuel Requirement:(lb/min):	Yea	ars since Cost Base Date:		4	
Imput Parameters 260 Reference temperature (oF): 77 Waste gas inlet temperature, Tw, (oF): 200 Inlet gas density (lb/scf): 0.0739 Primary heat recovery (fraction): 0.85 Waste gas heat content, annual avg. (BTU/scf): 1.62 Explore temperature (oF): 0.0739 Waste gas heat content, annual avg. (BTU/scf): 1.62 Waste gas heat content (BTU/lb): 22.0 Gas heat capacity (BTU/b-OF): 0.255 Combustion temperature (oF): 1,400 Temperature leaving heat exchanger, Two, (oF): 1220 Eyel heat of combustion (BTU/lb): 21,502 Fuel heat of combustion (BTU/lb): 21,502 Pressure drop (in. w.c.): 19.0 Table 2.13 CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: (lb/min): 0.052 Equation 2.21 (scfm): 1.28 (mcf/yr): 675.4 Total Maximum Exhaust Gas Flowrate: (scfm): 261 CALCULATED CAPITAL COSTS 0 Equation 2.33 @ 95% heat recovery: 0 Equation 2.33 @ 95% heat recovery: 0 <t< td=""><td>Ave</td><td>erage inflation rate/year, %:</td><td></td><td>2.5</td><td></td></t<>	Ave	erage inflation rate/year, %:		2.5	
Exhaust Gas flowrate (scfm):260Reference temperature (oF):77Waste gas inlet temperature, Tw, (oF):200Inlet gas density (lb/scf):0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.1622.0Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1.400Temperature leaving heat exchanger, Two (oF):1220Equation 2.1821,502Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Pressure drop (in. w.c.):19.0Table 2.131.28CALCULATED UTILITY USAGES(mcf/yr):Auxillary Fuel Requirement:(lb/min):0.052Equation 2.21(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):1.28270,053Quidon 2.33@ 95% heat recovery:0Equation 2.33Auxilliary equipment 1:010553Fotal Equipment Costbase:270,053Total Equipment Costbase:270,053Total Equipment Cost-base:270,053Total Equipment Cost (B): <td>Inf</td> <td>ation adjustment factor:</td> <td></td> <td>1.10</td> <td></td>	Inf	ation adjustment factor:		1.10	
Exhaust Gas flowrate (scfm):260Reference temperature (oF):77Waste gas inlet temperature, Tw, (oF):200Inlet gas density (lb/scf):0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.1622.0Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1.400Temperature leaving heat exchanger, Two (oF):1220Equation 2.1821,502Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Pressure drop (in. w.c.):19.0Table 2.131.28CALCULATED UTILITY USAGES(mcf/yr):Auxillary Fuel Requirement:(lb/min):0.052Equation 2.21(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):1.28270,053Quidon 2.33@ 95% heat recovery:0Equation 2.33Auxilliary equipment 1:010553Fotal Equipment Costbase:270,053Total Equipment Costbase:270,053Total Equipment Cost-base:270,053Total Equipment Cost (B): <td>INF</td> <td>PUT PARAMETERS</td> <td></td> <td></td> <td></td>	INF	PUT PARAMETERS			
Reference temperature (oF):77Waste gas inlet temperature, Tw, (oF):200Inlet gas density (lb/scf):0.0739Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.16Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.16Waste gas heat content (BTU/lb):22.0Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1.400Temperature leaving heat exchanger, Two (oF):1220Equation 2.18Equation 2.18Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Pressure drop (in. w.c.):19.0Table 2.130.041CALCULATED UTILITY USAGES(mcf/yr):Auxiliary Fuel Requirement:(lb/min):00.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):0Equation 2.33@ 95% heat recovery:00Equation 2.33@ 95% heat recovery:00Equation 2.33Auxiliary equipment 1:010Total Equipment Costbase:10270,053=EC + Auxiliary costs1028,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	Ext	naust Gas flowrate (scfm):		260	
Waste gas inlet temperature, Tw, (oF):200Inlet gas density (lb/scf):0.0739 airPrimary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.1622.0Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1,220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/t3):0.041Pressure drop (in. w.c.):19.0Total Maximum Exhaust Gas Flowrate:(scfm):(lc/ryr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):@ 95% heat recovery:0Equation 2.33Auxiliary equipment Cost (EC):0State action 2.33Auxiliary equipment Cost-base:270,053Equation 2.33Auxiliary equipment Cost-base:270,053Total Equipment Cost-base:270,053Purchased Equipment Cost (B):351,744Hatta Action Equipment Cost (B):351,744Hatta Action Equipment Cost (B):351,744		. ,		77	
Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.16Waste gas heat content (BTU/lb):22.0Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):19.0Fuel density (lb/ft3):0.041Pressure drop (in. w.c.):19.0Table 2.13CALCULATED UTILITY USAGESAuxiliary Fuel Requirement:(lb/min):(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):@ 95% heat recovery:0Equation 2.33Quitiary equipment Cost - (EC):0Total Equipment Costbase:270,053Equation 2.33=EC + Auxiliary costsTotal Equipment Costbase:270,053Total Equipment Costbase:270,053Subsci Strict (B):351,744Total Equipment Cost (B):351,744Total Equipment Cost (B):351,744Total Equipment Cost (B):351,744Total Equipment Cost (B): <t< td=""><td></td><td></td><td></td><td>200</td><td></td></t<>				200	
Primary heat recovery (fraction):0.85Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.16Waste gas heat content (BTU/lb):22.0Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):19.0Fuel density (lb/ft3):0.041Pressure drop (in. w.c.):19.0Table 2.13CALCULATED UTILITY USAGESAuxiliary Fuel Requirement:(lb/min):(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):@ 95% heat recovery:0Equation 2.33Quitiary equipment Cost - (EC):0Total Equipment Costbase:270,053Equation 2.33=EC + Auxiliary costsTotal Equipment Costbase:270,053Total Equipment Costbase:270,053Subsci Strict (B):351,744Total Equipment Cost (B):351,744Total Equipment Cost (B):351,744Total Equipment Cost (B):351,744Total Equipment Cost (B): <t< td=""><td>Inle</td><td>et gas density (lb/scf):</td><td></td><td>0.0739</td><td>air</td></t<>	Inle	et gas density (lb/scf):		0.0739	air
Waste gas heat content, annual avg. (BTU/scf):1.62Equation 2.16Waste gas heat content (BTU/lb):22.0Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041Pressure drop (in. w.c.):19.0Table 2.13CALCULATED UTILITY USAGESAuxiliary Fuel Requirement:(lb/min):(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):@ 85% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment 1:0Total Equipment Costbase:270,053Fuel inprent Costbase:270,053Total Equipment Costbase					
Waste gas heat content (BTU/lb):22.0Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041Pressure drop (in. w.c.):19.0Table 2.13CALCULATED UTILITY USAGESAuxiliary Fuel Requirement:(lb/min):0.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261270,053Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment 1:0Total Equipment Costbase:270,053Total Equipment				1.62	Equation 2.16
Gas heat capacity (BTU/lb-oF):0.255Combustion temperature (oF):1,400Temperature leaving heat exchanger, Two (oF):1220Fuel heat of combustion (BTU/lb):21,502Fuel density (lb/ft3):0.041Pressure drop (in. w.c.):19.0Table 2.13CALCULATED UTILITY USAGESAuxiliary Fuel Requirement:(lb/min):0.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261261CALCULATED CAPITAL COSTSOxidizer Equipment Cost (EC):0@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Cost-base:270,053Equation 2.33261Auxiliary equipment :01010Purchased Equipment Cost-(B):298,088= Base cost x inflation factorPurchased Equipment Cost (B):351,744= 1.18A (Table 2.10)					
Temperature leaving heat exchanger, Two (oF):1220Equation 2.18Fuel heat of combustion (BTU/lb):21,502methaneFuel density (lb/ft3):0.041methanePressure drop (in. w.c.):19.0Table 2.13CALCULATED UTILITY USAGESAuxiliary Fuel Requirement:(lb/min):0.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261261CALCULATED CAPITAL COSTSOxidizer Equipment Cost (EC):@ 85% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33233Auxiliary equipment :0270,053=EC + Auxiliary costsTotal Equipment Costbase:270,053=EC + Auxiliary costs210,053Total Equipment Costescalated (A):298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)				0.255	
Fuel heat of combustion (BTU/lb):21,502 methaneFuel density (lb/ft3):0.041 methanePressure drop (in. w.c.):19.0 Table 2.13CALCULATED UTILITY USAGES1.28Auxiliary Fuel Requirement:(lb/min):0.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261261CALCULATED CAPITAL COSTSOxidizer Equipment Cost (EC):270,053@ 85% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053Total Equipment Costescalated (A):298,088Purchased Equipment Cost (B):351,744= 1.18A (Table 2.10)	Co	mbustion temperature (oF):		1,400	
Fuel density (lb/ft3):0.041methanePressure drop (in. w.c.):19.0Table 2.13CALCULATED UTILITY USAGES19.0Table 2.13Auxiliary Fuel Requirement:(lb/min):0.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261CALCULATED CAPITAL COSTS270,053Equation 2.33Oxidizer Equipment Cost (EC):@ 85% heat recovery:270,053Equation 2.33@ 95% heat recovery:0Equation 2.33@ 95% heat recovery:270,053=EC + Auxiliary costsTotal Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costbase:298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	Ter	nperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18
Pressure drop (in. w.c.):19.0 Table 2.13CALCULATED UTILITY USAGES1.28Auxiliary Fuel Requirement:(lb/min):0.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261CALCULATED CAPITAL COSTS261Oxidizer Equipment Cost (EC):@ 85% heat recovery:270,053Equation 2.33@ 95% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :01Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costbase:298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	Fue	el heat of combustion (BTU/lb):		21,502	methane
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: (lb/min): 0.052 Equation 2.21 (scfm): 1.28 (mcf/yr): 675.4 Total Maximum Exhaust Gas Flowrate: (scfm): 261 CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: 270,053 Equation 2.33 @ 95% heat recovery: 0 Equation 2.33 Auxiliary equipment : 0 Total Equipment Costbase: 270,053 =EC + Auxiliary costs Total Equipment Costbase: 270,053 =EC + Auxiliary costs 298,088 =Base cost x inflation factor Purchased Equipment Cost (B): 351,744 =1.18A (Table 2.10)	Fue	el density (lb/ft3):		0.041	methane
Auxiliary Fuel Requirement:(Ib/min):0.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261CALCULATED CAPITAL COSTS261Oxidizer Equipment Cost (EC):@ 85% heat recovery:270,053Equation 2.33@ 95% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Cost - inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	Pre	essure drop (in. w.c.):		19.0	Table 2.13
Auxiliary Fuel Requirement:(Ib/min):0.052Equation 2.21(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261CALCULATED CAPITAL COSTS261Oxidizer Equipment Cost (EC):@ 85% heat recovery:270,053Equation 2.33@ 95% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Cost - inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	CA	I CUILATED LITHITY USAGES			
(scfm):1.28(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261CALCULATED CAPITAL COSTSOxidizer Equipment Cost (EC):@ 85% heat recovery:270,053Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053Total Equipment Costbase:270,053Total Equipment Costescalated (A):298,088Purchased Equipment Cost (B):351,744=1.18A (Table 2.10)	-		(lh/min)·	0.052	Equation 2.21
(mcf/yr):675.4Total Maximum Exhaust Gas Flowrate:(scfm):261CALCULATED CAPITAL COSTSOxidizer Equipment Cost (EC):@ 85% heat recovery:@ 95% heat recovery:@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costbase:298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	710	kindly i dei nequilement.	,		24441011 2.21
Total Maximum Exhaust Gas Flowrate:(scfm):261CALCULATED CAPITAL COSTS270,053Equation 2.33Oxidizer Equipment Cost (EC):@ 85% heat recovery:270,053Equation 2.33@ 95% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costbase:298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)			. ,		
Oxidizer Equipment Cost (EC):270,053Equation 2.33@ 85% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costescalated (A):298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	Tot	al Maximum Exhaust Gas Flowrate:		261	
Oxidizer Equipment Cost (EC):270,053Equation 2.33@ 85% heat recovery:0Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costescalated (A):298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	C A	ICIU ATED CADITAL COSTS			
@ 85% heat recovery:270,053Equation 2.33@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costescalated (A):298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)					
@ 95% heat recovery:0Equation 2.33Auxiliary equipment :0Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costescalated (A):298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	UX.			270 053	Equation 2.33
Auxiliary equipment :0Total Equipment Costbase:270,053Total Equipment Costescalated (A):298,088Purchased Equipment Cost (B):351,744		- ,			
Total Equipment Costbase:270,053=EC + Auxiliary costsTotal Equipment Costescalated (A):298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)		e som heat recovery.		0	24441011 2.35
Total Equipment Costescalated (A):298,088=Base cost x inflation factorPurchased Equipment Cost (B):351,744=1.18A (Table 2.10)	Au	xiliary equipment :		0	
Purchased Equipment Cost (B): 351,744 =1.18A (Table 2.10)	Tot	al Equipment Costbase:		270,053	=EC + Auxiliary costs
	To	tal Equipment Costescalated (A):		298,088	=Base cost x inflation factor
Total Capital Investment (TCI): 555,755 =1.58B (Table 2.10)	Pu	rchased Equipment Cost (B):		351,744	=1.18A (Table 2.10)
	To	tal Capital Investment (TCI):		555,755	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	26,280	-
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	2,702	
Electricity	466	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	27,788	
Capital recovery	53,543	=CRF x TCI
Total Annual Cost	218,702	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_FiltrateReceiver_CostAnalysis_20200114.xlsx

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020)
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20	
INPUT PARAMETERS		
Gas flowrate (scfm):	260	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	1.62	Equation 2.16
Waste gas heat content (BTU/lb):	21.98	
Gas heat capacity (BTU/lb-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):		Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.073	Equation 2.21
(scfm):	1.8	
Total Gas Flowrate (scfm):	262	
Catalyst Volume (ft3):	0.5	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
	0	Employ 2.24
@ 0 % heat recovery:		Equation 2.34
@ 35 % heat recovery:		Equation 2.35
@ 50 % heat recovery:	-	Equation 2.36
@ 70 % heat recovery:	0	Equation 2.37
Other equipment :	_	
Total Faultament Cost have	27.070	

Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

27,076 =EC + Auxiliary costs 59,669 =Base cost x inflation factor 70,409 =1.18A (Table 2.10)

111,246 =1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	3,757	
Electricity	344	Section 2.5.2.1
Catalyst replacement	191	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	5,562	
Capital recovery	10,683	=CRF x TCI

Total Annual Cost

154,741

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

99,283 179,575 inflation adjustment 0 285,735 sty-cost.wk3 352,537 sty-cost.wk3

14 Table 2.13 (catalytic) 0.7 Section 2.5.2.1 39,013 Equation 2.21

260 5.0

8,760 1,400 4.00 0.055

50

383.40 based on Toluene

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	1,367
Electricity	342
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,627
Capital recovery	33,964 =CRF x TCI

Total Annual Cost

187,503

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

1344.800 Table

17,964 Equation 2.14

76,846 Equation 2.17 77,252 sum of enthalpy changes

20.0 Default value

87.7 Equation 2.19

44.0 Equation 2.18

4,754 Equation 2.22

6.44 Equation 2.23

1.3 Table 2.5 (see below)

390 Equation 2.12

16 Equation 2.16

0.000383

A:

B:

C:

(lb/hr):

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

		CAPITAL COSTS:
260		Equipment Costs (\$):
200		Refrigeration unit/single-stage (< 10 tons):
Toluene		Refrigeration unit/single-stage (> 10 tons):
.000383		Multistage refrigeration unit:
0.90		Total equipment cost (\$)base:
		Total equipment cost (\$)escalated:
6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):
.344.800	Table B below, for Toluene	Total Capital Investment (\$):
219.480	Table B below, for Toluene	
14,290.0	Table A below, for Toluene	
37.5	Table A below, for Toluene	ANNUAL COST INPUTS:
0.650	Default value	Operating factor (hr/yr):
231.0	Table A below, for Toluene	Operating labor rate (\$/hr):
1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):
92.1	Table A below, for Toluene	Operating labor factor (hr/sh):
7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):
6.95	Default value	Electricity price (\$/kWhr):
		Recovered VOC value (\$/lb):
		Annual interest rate (fraction):
0.0291	Equation 2.6	Control system life (years):
-77.9	Equation 2.8	Capital recovery factor:
0.0153	Equation 2.9	Taxes, insurance, admin. factor:
0.002	Equation 2.10	
0.014	inlet - outlet	ANNUAL COSTS:
1.3	lb-moles x molecular weight	Operating labor

Supervisory labor Maintenance labor	3,942 26,828
Maintenance materials	26,828
Electricity	4,744
Overhead	50,326
Taxes, insurance, administrative	27,413
Capital recovery	52,820
Total Annual Cost (without credits)	219,179
Recovery credits	0
Total Annual Cost (with credits)	219.179

167,923 Equation 2.26

204,789 Equation 2.28

255,986 Equation 2.29

320,615 Equation 2.30

0.5 Table 2.4

0.5 Table 2.4

548,251 Table 2.3

8760

48.00

49.00

0.055

0.00

0.05

0.0963

0.05

15

296,865 inflation adjusted

0 Equation 2.27

* Original equipment costs in EPA's OAOPS Control Cost Manual, 7th Edition, Section 3.1. Chapter 2, reflect this date, All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

260	
200	
1	
Toluene	
1.14	
92	
3.83E-04	
383.4	
0.0056	
0.90	
5.01	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.312	Equation 1.1 and Table 1.2
0.156	50% of equilibrium capacity
1	Regenerated off-site
3	
132	Equation 1.14
44	
130	Vertical vessel, flow under 9000 cfm
1.49	Equation 1.18 or 1.21
5.85	Equation 1.19 or 1.23
30.75	Equation 1.24
0.846	Equation 1.31
3.860	Equation 1.30

 15,192
 Equation 1.25

 165
 Equation 1.16

 0

 42,661
 Equation 1.27

 71,653
 apply inflation factor

 82,400
 Table 1.4 (less sales taxes)

 121,953
 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	110	Section 1.8.1.3
Steam	175	Equation 1.28
Cooling water	427	Equation 1.29
Carbon replacement	96	Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	6,098	
Capital recovery	15,793	-
Total Annual Cost (without credits) Recovery credits	156,903	Recovered solvent not re-sold
Total Annual Cost (with credits)	156,903	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

260		
200		(
1		I
Toluene		
1.14		I
92		I
3.83E-04		I
383.4		
0.0056		
0.90		
5.01		
1,000	Operating hours between carbon replacement	
0	Regenerated off-site	
2	Only one online at a time	-
75.0	default, page 1-35	
1.25	reactivated, page 1-6	

655,711 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.312	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.156	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
7,336	Equation 1.14 (at 1000 adsorption hrs/cycle)	Maintenance materials	26,828	
9		Electricity	110	Section 1.8.1.3
66,024	Lbs per replacement times number of replacements	Carbon replacement	56,297	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	32,786	
132,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	84,918	
0				-
366,695	Equation 1.27	Total Annual Cost (without credits)	308,314	
385,259	apply inflation factor	Recovery credits		Recovered solvent not re-sold
443,048	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	308,314	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1. VOC Control Technology Cost Analysis, WW Poly, Solvent Wash Receiver Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	7.4	7.1
2.	Catalytic Oxidation	98.0	98.0	96.0	7.4	7.1
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	7.4	7.1
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	7.4	7.1
5.	Refrigerated Condenser	95.0	98.0	93.1	7.4	6.9
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	7.4	6.9
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	7.4	6.9
					*VOC Baseline =	7.5 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	86,800	8,341	1,178	148,790	21,022
2.	Carbon Adsorption (Fixed Bed)	119,334	15,454	2,252	156,790	22,852
3.	Thermal Oxidation	252,912	24,366	3,443	175,518	24,798
4.	Rotary Concentrator/Oxidizer	349,610	33,682	4,759	186,464	26,345
5.	Refrigerated Condenser	355,406	34,241	4,991	189,142	27,567
6.	Regenerative Thermal Oxidizer	553,054	53,283	7,528	216,318	30,563
7.	Carbon Adsorption (Canister)	995,797	128,960	18,796	388,732	56,657

* PTE based on ACHD's TSD for IP-23.

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

167.0	
77	
200	
0.0739	air
0.50	
Toluene	
4,237	Table 2.16
92.1	based on Toluene
878.4	based on Toluene
3.7	Equation 2.16
50.4	
0.255	air
1,400	
800	Equation 2.18
21,502	methane
0.0408	methane
0.080	Equation 2.21
2.0	
169	
12.0	Table 2.13
0	Equation 2.29
0	Equation 2.30
61,555	Equation 2.31
0	Equation 2.32
	77 200 0.0739 0.50 Toluene 4,237 92.1 878.4 3.7 50.4 0.255 1,400 800 21,502 0.0408 0.0408 0.080 2.0 169 12.0

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

-	
61,555	=EC + Auxiliary costs
135,653	=Base cost x inflation factor
160,071	=1.18A (Table 2.10)
252,912	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	4,112	
Electricity	190	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	12,646	
Capital recovery	24,366	=CRF x TCI
Total Annual Cost	175,518	

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS		167	
Exhaust Gas flowrate (scfm):		167 77	
Reference temperature (oF):			
Waste gas inlet temperature, Tw _i (oF):		200	
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/scf):			Equation 2.16
Waste gas heat content (BTU/lb):		50.4	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.041	methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):	0.017	Equation 2.21
	(scfm):		1
	(mcf/yr):	220.3	
Total Maximum Exhaust Gas Flowrate:	(scfm):	167	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):		260 744	
@ 85% heat recovery:		-	Equation 2.33
@ 95% heat recovery:		0	Equation 2.33
Auxiliary equipment :		0	
Total Equipment Costbase:		268,741	=EC + Auxiliary costs
Total Equipment Costescalated (A):		296,639	=Base cost x inflation factor
Purchased Equipment Cost (B):		350,034	=1.18A (Table 2.10)
Total Capital Investment (TCI):		553,054	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	26,280	-
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	881	
Electricity	299	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	27,653	
Capital recovery	53,283	=CRF x TCI

216,318

Total Annual Cost

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_SolventWashReceiver_CostAnalysis_20200114.xlsx

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFE	RENCE DATE*:	1988	
Current Date:		1/15/2020)
Years since	e Cost Base Date:	32	
Average in	flation rate/year, %:	2.5	
Inflation a	djustment factor:	2.20	1
INPUT PA	ARAMETERS		
Gas flowr	rate (scfm):	167	
	e temperature (oF):	77	
	temperature (oF):	200	
	density (lb/scf):	0.0739	air
	neat recovery (fraction):	0.50	
	s heat content (BTU/scf):		Equation 2.16
-	s heat content (BTU/lb):	50.36	2400.01 2120
0	capacity (BTU/Ib-oF):	0.26	air
	on temperature (oF):	850	
	emperature (oF):		Equation 2.18
	of combustion (BTU/lb):		Methane
	ity (lb/ft3):		Methane
i dei deilo		0.0100	Wiethane
CALCULA	TED PARAMETERS		
Auxiliary	Fuel Needed (lb/min):	0.030	Equation 2.21
	(scfm):	0.7	
Total Gas	Flowrate (scfm):	168	
Catalyst \	/olume (ft3):	0.3	
Pressure	drop (in. w.c.):	14.0	Table 2.13
CALCULA	TED CAPITAL COSTS		
	nt Costs (\$):		
Incinerato	()		
memerati	@ 0 % heat recovery:	Ο	Equation 2.34
	@ 35 % heat recovery:		Equation 2.35
	- ,		
	@ 50 % heat recovery:		Equation 2.36
	@ 70 % heat recovery:	0	Equation 2.37
Other equ	uipment :	-	

Other equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

21,126 =EC + Auxiliary costs 46,556 =Base cost x inflation factor 54,937 =1.18A (Table 2.10) 86,800 =1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	1,563	
Electricity	221	Section 2.5.2.1
Catalyst replacement	123	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	4,340	
Capital recovery	8,341	=CRF x TCI

148,790

Total Annual Cost

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_SolventWashReceiver_CostAnalysis_20200114.xlsx

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

98,506 178,171 inflation adjustment 0 283,331 sty-cost.wk3 349,610 sty-cost.wk3

14 Table 2.13 (catalytic) 0.5 Section 2.5.2.1 25,058 Equation 2.21

167 7.4

8,760 1,400 4.00 0.055

50

878.43 based on Toluene

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	878
Electricity	220
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,481
Capital recovery	33,682 =CRF x TCI

Total Annual Cost

186,464

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

> 167 200

A:

B:

C:

(lb/hr):

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC condensed (Ib-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

Toluene 0.000878 0.90 6.955 Table B below, for Toluene 1344.800 Table B below, for Toluene 219.480 Table B below, for Toluene 14,290.0 Table A below, for Toluene 37.5 Table A below, for Toluene 0.650 Default value 231.0 Table A below, for Toluene 1,065.0 Table A below, for Toluene 92.1 Table A below, for Toluene 92.5 Default value

0.0668	Equation 2.6
-65.3	Equation 2.8
0.0225	Equation 2.9
0.002	Equation 2.10
0.020	inlet - outlet
1.9	lb-moles x molecular weight
17,837	Equation 2.14
562	Equation 2.12
22	Equation 2.16
47,092	Equation 2.17
47,676	sum of enthalpy changes
20.0	Default value
84.8	Equation 2.19
28.1	Equation 2.18
2,934	Equation 2.22
3.97	Equation 2.23
1.3	Table 2.5 (see below)

CAPITAL COSTS:

Equipment Costs (\$):		
Refrigeration unit/single-stage (< 10 tons):	119,406	Equation 2.26
Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
Multistage refrigeration unit:	132,755	Equation 2.28
Total equipment cost (\$)base:	165,944	Equation 2.29
Total equipment cost (\$)escalated:	192,444	inflation adjusted
Purchased Equipment Cost (\$):	207,840	Equation 2.30
Total Capital Investment (\$):	355,406	Table 2.3
ANNUAL COST INPUTS:		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.4
Maintenance labor factor (hr/sh):	0.5	Table 2.4

	49.00	
Operating labor factor (hr/sh):	0.5	Ta
Maintenance labor factor (hr/sh):	0.5	Tal
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	2,928	
Overhead	50,326	
Taxes, insurance, administrative	17,770	
Capital recovery	34,241	_
Total Annual Cost (without credits)	189,142	
Recovery credits	0	
Total Annual Cost (with credits)	189,142	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

167	
200	
1	
Toluene	
1.68	
92	
8.78E-04	
878.4	
0.0129	
0.90	
7.37	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.341	Equation 1.1 and Table 1.2
0.171	50% of equilibrium capacity
1	Regenerated off-site
3	
177	Equation 1.14
59	
84	Vertical vessel, flow under 9000 cfm
1.19	Equation 1.18 or 1.21
6.77	Equation 1.19 or 1.23
27.55	Equation 1.24
1.769	Equation 1.31
6.981	Equation 1.30

 13,946
 Equation 1.25

 222
 Equation 1.16

 0

 41,745
 Equation 1.27

 70,114
 apply inflation factor

 80,631
 Table 1.4 (less sales taxes)

 119,334 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS: Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	,	Section 1.8.1.3
Steam		Equation 1.28
Cooling water		Equation 1.29
Carbon replacement		Equation 1.38
Overhead	50,326	Equation 1.30
Taxes, insurance, administrative	5,967	
Capital recovery	15,454	
	20,101	-
Total Annual Cost (without credits) Recovery credits	156,790	Recovered solvent not re-sold
Total Annual Cost (with credits)	156,790	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

167		(
200		(
1		1
Toluene		(
1.68		1
92		E
8.78E-04		F
878.4		(
0.0129		ļ
0.90		(
7.37		(
1,000	Operating hours between carbon replacement	(
0	Regenerated off-site	(
2	Only one online at a time	T
75.0	default, page 1-35	
1.25	reactivated, page 1-6	

995,797 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.341	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.171	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
9,855	Equation 1.14 (at 1000 adsorption hrs/cycle)	Maintenance materials	26,828	
9		Electricity	151	Section 1.8.1.3
88,693	Lbs per replacement times number of replacements	Carbon replacement	75,628	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	49,790	
189,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	128,960	_
0				
556,882	Equation 1.27	Total Annual Cost (without credits)	388,732	
585,075	apply inflation factor	Recovery credits		Recovered solvent not re-sold
672,836	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	388,732	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1.VOC Control Technology Cost Analysis, WW Poly, Tanks 73/75/76/77Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	5.3	5.1
2.	Catalytic Oxidation	98.0	98.0	96.0	5.3	5.1
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	5.3	5.1
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	5.3	5.1
5.	Refrigerated Condenser	95.0	98.0	93.1	5.3	5.0
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	5.3	5.0
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	5.3	5.0
					*VOC Baseline =	5.5 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	23,430	2,255	440	137,691	26,843
2.	Refrigerated Condenser	84,796	8,169	1,643	146,875	29,538
3.	Thermal Oxidation	140,283	13,515	2,635	154,798	30,178
4.	Carbon Adsorption (Fixed Bed)	118,761	15,380	3,093	156,423	31,458
5.	Rotary Concentrator/Oxidizer	344,861	33,225	6,477	184,776	36,022
6.	Regenerative Thermal Oxidizer	548,686	52,862	10,305	213,658	41,653
7.	Carbon Adsorption (Canister)	950,071	123,039	24,744	348,802	70,147

* PTE based on ACHD's TSD for IP-23.

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

Gas flowrate (scfm):	16.0	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	6644.8	based on Toluene
Waste gas heat content (BTU/scf):	28.2	Equation 2.16
Waste gas heat content (BTU/lb):	380.9	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.001	Equation 2.21
(scfm):	0.0	
Total Gas Flowrate (scfm):	16	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.30
@ 50 % heat recovery:	34,143	Equation 2.31
@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

-34,143 =EC + Auxiliary costs 75,243 =Base cost x inflation factor 88,787 =1.18A (Table 2.10) 140,283 =1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	48	
Electricity	18	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	7,014	
Capital recovery	13,515	=CRF x TCI
Total Annual Cost	154,798	

Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS			
Exhaust Gas flowrate (scfm):		16	
Reference temperature (oF):		77	
Waste gas inlet temperature, Tw _i (oF):		200	
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/scf):		28.15	Equation 2.16
Waste gas heat content (BTU/lb):		380.9	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw_o (oF):		1220	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.041	methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):	-0.017	Equation 2.21
	(scfm):	-0.41	
	(mcf/yr):	(217.2)	
Total Maximum Exhaust Gas Flowrate:	(scfm):	16	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):		266 640	
@ 85% heat recovery:			Equation 2.33
@ 95% heat recovery:		0	Equation 2.33
Auxiliary equipment :		0	
Total Equipment Costbase:			=EC + Auxiliary costs
Total Equipment Costescalated (A):		-	=Base cost x inflation factor
Purchased Equipment Cost (B):			=1.18A (Table 2.10)
Total Capital Investment (TCI):		-	=1.58B (Table 2.10)
		3-10,000	1.000 (10010 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_Tanks73-75-76-77_CostAnalysis_20200114.xlsx

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760		
Operating labor rate (\$/hr):	48.00		
Maintenance labor rate (\$/hr):	49.00		
Operating labor factor (hr/sh):	0.5	Table 2.12	
Maintenance labor factor (hr/sh):	0.5	Table 2.12	
Electricity price (\$/kwh):	0.055		
Natural gas price (\$/mscf):	4.00		
Annual interest rate (fraction):	0.050		
Control system life (years):	15		
Capital recovery factor:	0.0963		
Taxes, insurance, admin. factor:	0.05		

ANNUAL COSTS

Total Annual Cost

Item	Cost (\$/yr)
Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	(869)
Electricity	28 Section 2.5.2.1
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	27,434
Capital recovery	52,862 =CRF x TCI

213,658

Table 3.

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020	
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20	1
INPUT PARAMETERS		
Gas flowrate (scfm):	16	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	28.15	Equation 2.16
Waste gas heat content (BTU/lb):	380.93	
Gas heat capacity (BTU/lb-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):		Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.001	Equation 2.21
(scfm):	0.0	Equation 2.21
Total Gas Flowrate (scfm):	16	
Catalyst Volume (ft3):	0.0	
Pressure drop (in. w.c.):		Table 2.13
	14.0	10516 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:	0	Equation 2.35
@ 50 % heat recovery:	5,703	Equation 2.36
@ 70 % heat recovery:	0	Equation 2.37
Other equipment :	_	
Total Equipment Costbase:	5,703	=EC + Auxiliary costs
	2,705	

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

ANNUAL COST INPUTS

Operating labor	26,280	
Supervisory labor	3,942 Table	2.12
Maintenance labor	26,828	
Maintenance materials	26,828 Table	2.12
Natural gas	28	
Electricity	21 Secti	on 2.5.2.1
Catalyst replacement	12	
Overhead	50,326 Table	2.12
Taxes, insurance, administrative	1,172	
Capital recovery	2,255 =CRF	x TCI

137,691

Total Annual Cost

Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

12,567 =Base cost x inflation factor 14,829 =1.18A (Table 2.10) 23,430 =1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_Tanks73-75-76-77_CostAnalysis_20200114.xlsx

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)	
Pressure drop (inches WC)	
Electrical power (kW)	
Fuel usage (Btu/hr)	

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

16 5.3 6,644.84 based on Toluene 8,760 1,400 4.00 0.055

- 50 14 Table 2.13 (catalytic) 0.0 Section 2.5.2.1 2,401 Equation 2.21
- 97,246 175,892 inflation adjustment 0 279,429 sty-cost.wk3 344,861 sty-cost.wk3

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	84
Electricity	21
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,243
Capital recovery	33,225 =CRF x TCI

Total Annual Cost

184,776

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAPITAL COSTS:

Total Annual Cost (with credits)

		CAPITAL COSTS:
16		Equipment Costs (\$):
200		Refrigeration unit/single
Toluene		Refrigeration unit/single
0.006645		Multistage refrigeration
0.90		Total equipment cost (\$)
		Total equipment cost (\$)
6.955	Table B below, for Toluene	Purchased Equipment Co
1344.800	Table B below, for Toluene	Total Capital Investment (
219.480	Table B below, for Toluene	
14,290.0	Table A below, for Toluene	
37.5	Table A below, for Toluene	ANNUAL COST INPUTS:
0.650	Default value	Operating factor (hr/yr):
231.0	Table A below, for Toluene	Operating labor rate (\$/hi
1,065.0	Table A below, for Toluene	Maintenance labor rate (
92.1	Table A below, for Toluene	Operating labor factor (hr
7.20	Table A below, for Toluene	Maintenance labor factor
6.95	Default value	Electricity price (\$/kWhr):
		Recovered VOC value (\$/I
		Annual interest rate (fract
0.5080	Equation 2.6	Control system life (years

0.0163 Equation 2.9 0.002 Equation 2.10 0.015 inlet - outlet 1.3 lb-moles x molecular weight 17,465 Equation 2.14 382 Equation 2.12 14 Equation 2.16 3,874 Equation 2.17 4,270 sum of enthalpy changes 20.0 Default value 76.1 Equation 2.19 2.8 Equation 2.18 263 Equation 2.22 0.36 Equation 2.23 1.3 Table 2.5 (see below)

-29.1 Equation 2.8

Equipment costs (\$).		
Refrigeration unit/single-stage (< 10 tons):	31,674	Equation 2.26
Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
Multistage refrigeration unit:	21,012	Equation 2.28
Total equipment cost (\$)base:	39,592	Equation 2.29
Total equipment cost (\$)escalated:	45,915	inflation adjusted
Purchased Equipment Cost (\$):	49,588	Equation 2.30
Total Capital Investment (\$):	84,796	Table 2.3
ANNUAL COST INPUTS:		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):		Table 2.4
Maintenance labor factor (hr/sh):		Table 2.4
Electricity price (\$/kWhr):	0.055	10010 2.4
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	262	
Overhead	50,326	
Taxes, insurance, administrative	4,240	
Capital recovery	8,169	-
Total Annual Cost (without credits)	146,875	
Recovery credits	0	

146,875

* Original equipment costs in EPA's OAOPS Control Cost Manual, 7th Edition, Section 3.1. Chapter 2, reflect this date, All calculated values in this table are based on equations from Chapter 2 of this manual.

A:

B:

C:

(lb/hr):

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

16	
200	
1	
Toluene	
1.22	
92	
6.64E-03	
6644.8	
0.0977	
0.90	
5.34	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.427	Equation 1.1 and Table 1.2
0.213	50% of equilibrium capacity
1	Regenerated off-site
3	
103	Equation 1.14
34	
8	Vertical vessel, flow under 9000 cfm
0.37	Equation 1.18 or 1.21
15.72	Equation 1.19 or 1.23
18.41	Equation 1.24
10.708	Equation 1.31
37.215	Equation 1.30

 10,193
 Equation 1.25

 129
 Equation 1.16

 0

 41,544
 Equation 1.27

 69,777
 apply inflation factor

 80,244
 Table 1.4 (less sales taxes)

 118,761 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	184	Section 1.8.1.3
Steam	187	Equation 1.28
Cooling water	455	Equation 1.29
Carbon replacement	75	Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	5,938	
Capital recovery	15,380	_
Total Annual Cost (without credits)	156,423	
Recovery credits	130,423	Recovered solvent not re-sold
Total Annual Cost (with credits)	156,423	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

16	
200	
1	
Toluene	
1.22	
92	
6.64E-03	
6644.8	
0.0977	
0.90	
5.34	
1,500	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

950,071 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.427	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.213	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
8,575	Equation 1.14 (at 1500 adsorption hrs/cycle)	Maintenance materials	26,828	
6	i i i i i i i i i i i i i i i i i i i	Electricity	184	Section 1.8.1.3
51,452	Lbs per replacement times number of replacements	Carbon replacement	43,873	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	47,504	
132,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	123,039	
0				_
531,311	Equation 1.27	Total Annual Cost (without credits)	348,802	
558,209	apply inflation factor	Recovery credits		Recovered solvent not re-sold
641,940	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	348,802	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1. VOC Control Technology Cost Analysis, WW Poly, East Filtrate Receiver Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	5.4	5.2
2.	Catalytic Oxidation	98.0	98.0	96.0	5.4	5.2
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	5.4	5.2
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	5.4	5.2
5.	Refrigerated Condenser	95.0	98.0	93.1	5.4	5.0
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	5.4	5.0
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	5.4	5.0
					*VOC Baseline =	5.5 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	86,855	8,346	1,609	149,202	28,770
2.	Carbon Adsorption (Fixed Bed)	113,537	14,704	2,925	155,442	30,920
3.	Thermal Oxidation	252,984	24,373	4,700	175,934	33,925
4.	Rotary Concentrator/Oxidizer	349,610	33,682	6,495	186,464	35,955
5.	Refrigerated Condenser	380,118	36,621	7,285	192,802	38,352
6.	Regenerative Thermal Oxidizer	553,060	53,283	10,274	216,725	41,791
7.	Carbon Adsorption (Canister)	995,797	128,960	25,652	376,778	74,948

* PTE based on ACHD's TSD for IP-23.

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

Gas flowrate (scfm):	167.0	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	643.6	based on Toluene
Waste gas heat content (BTU/scf):	2.7	Equation 2.16
Waste gas heat content (BTU/lb):	36.9	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.088	Equation 2.21
(scfm):	2.1	
Total Gas Flowrate (scfm):	169	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.30
@ 50 % heat recovery:	61,573	Equation 2.31
@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

-	
61,573	=EC + Auxiliary costs
135,692	=Base cost x inflation factor
160,116	=1.18A (Table 2.10)
252,984	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	4,518	
Electricity	191	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	12,649	
Capital recovery	24,373	=CRF x TCI
		_
Total Annual Cost	175,934	

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS		467	
Exhaust Gas flowrate (scfm):		167	
Reference temperature (oF):		77	
Waste gas inlet temperature, Tw _i (oF):		200	
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/scf):			Equation 2.16
Waste gas heat content (BTU/lb):		36.9	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.041	methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):	0.025	Equation 2.21
Auxiliary ruer nequirement.	(scfm):	0.61	Equation 2.21
	(mcf/yr):	321.6	
Total Maximum Exhaust Gas Flowrate:	(scfm):	168	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):			
@ 85% heat recovery:		268,743	Equation 2.33
@ 95% heat recovery:		0	Equation 2.33
Auxiliary equipment :		0	
Total Equipment Costbase:		-	=EC + Auxiliary costs
Total Equipment Costbase.			=Base cost x inflation factor
Purchased Equipment Cost (B):		,	=Base cost x inflation factor =1.18A (Table 2.10)
Total Capital Investment (TCI):			
Total Capital Investment (TCI).		555,060	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	26,280	-
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	1,286	
Electricity	299	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	27,653	
Capital recovery	53,283	=CRF x TCI
Total Annual Cost	216,725	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_EastFiltrateReceiver_CostAnalysis_20200114.xlsx

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020)
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20	1
INPUT PARAMETERS		
Gas flowrate (scfm):	167	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (Ib/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	2.73	Equation 2.16
Waste gas heat content (BTU/lb):	36.90	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (Ib/min):	0.038	Equation 2.21
(scfm):	0.9	
Total Gas Flowrate (scfm):	168	
Catalyst Volume (ft3):	0.3	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:	0	Equation 2.35
@ 50 % heat recovery:	21,139	Equation 2.36
@ 70 % heat recovery:	0	Equation 2.37
Other equipment :	-	
	21 1 20	

Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

21,139 =EC + Auxiliary costs 46,586 =Base cost x inflation factor 54,972 =1.18A (Table 2.10) 86,855 =1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	1,966	
Electricity	221	Section 2.5.2.1
Catalyst replacement	123	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	4,343	
Capital recovery	8,346	=CRF x TCI

Total Annual Cost

149,202

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\WW_Poly\WWPoly_EastFiltrateReceiver_CostAnalysis_20200114.xlsx

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)	
Pressure drop (inches WC)	
Electrical power (kW)	
Fuel usage (Btu/hr)	

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

98,506 178,171 inflation adjustment 0 283,331 sty-cost.wk3 349,610 sty-cost.wk3

14 Table 2.13 (catalytic) 0.5 Section 2.5.2.1 25,058 Equation 2.21

167 5.4

8,760 1,400 4.00 0.055

50

643.64 based on Toluene

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	878
Electricity	220
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,481
Capital recovery	33,682 =CRF x TCI

Total Annual Cost

186,464

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAF

167		Ec	ļu
200			Re
Toluene			Re
0.000644			M
0.90		Тс	ota
		Тс	ota
6.955	Table B below, for Toluene	Ρι	ıro
1344.800	Table B below, for Toluene	Тс	ota
219.480	Table B below, for Toluene		
14,290.0	Table A below, for Toluene		
37.5	Table A below, for Toluene	Al	٧N
0.650	Default value	0	pe
231.0	Table A below, for Toluene	0	pe
1,065.0	Table A below, for Toluene	Μ	ai
92.1	Table A below, for Toluene	0	pe
7.20	Table A below, for Toluene	Μ	ai
6.95	Default value	El	ec

0.0489	Equation 2.6
-70.2	Equation 2.8
0.0165	Equation 2.9
0.002	Equation 2.10
0.015	inlet - outlet
1.4	lb-moles x molecular weight
17,886	Equation 2.14
415	Equation 2.12
17	Equation 2.16
47,967	Equation 2.17
48,399	sum of enthalpy changes
20.0	Default value
85.9	Equation 2.19
28.2	Equation 2.18
2,978	Equation 2.22
4.03	Equation 2.23
1.3	Table 2.5 (see below)

PITAL COSTS:		
uipment Costs (\$):		
Refrigeration unit/single-stage (< 10 tons):	128,486	Equation 2.26
Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
Multistage refrigeration unit:	141,986	Equation 2.28
tal equipment cost (\$)base:	177,482	Equation 2.29
tal equipment cost (\$)escalated:	205,825	inflation adjusted
rchased Equipment Cost (\$):	222,291	Equation 2.30
tal Capital Investment (\$):	380,118	Table 2.3
INUAL COST INPUTS:		
perating factor (hr/yr):	8760	
perating labor rate (\$/hr):	48.00	

- p		
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.4
Maintenance labor factor (hr/sh):	0.5	Table 2.4
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	2,972	
Overhead	50,326	
Taxes, insurance, administrative	19,006	
Capital recovery	36,621	-
Total Annual Cost (without credits)	192,802	
Recovery credits	0	
Total Annual Cost (with credits)	192,802	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

A:

B:

C:

(lb/hr):

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

200 1 Toluene 1.23 92 6.44E-04 643.6 0.0095 0.900 5.400 2 0perating hours between carbon replacement Regenerated off-site 2 75.0 default, page 1-35 1.25 reactivated, page 1-6 1.30 stainless steel 316, Table 1.3	167	
Toluene 1.23 92 6.44E-04 643.6 0.0095 0.90 5.40 Regenerated off-site 2 75.0 default, page 1-35 1.25 reactivated, page 1-6	200	
1.23 92 6.44E-04 643.6 0.0095 0.90 5.40 Regenerated off-site 2 75.0 default, page 1-35 1.25 reactivated, page 1-6	1	
92 6.44E-04 643.6 0.0095 0.90 5.40 12 Operating hours between carbon replacement Regenerated off-site 2 75.0 default, page 1-35 reactivated, page 1-6	Toluene	
6.44E-04643.60.00950.905.4012Operating hours between carbon replacement8275.0default, page 1-351.25reactivated, page 1-6	1.23	
643.6 0.0095 0.90 5.40 2 Operating hours between carbon replacement Regenerated off-site 2 75.0 default, page 1-35 reactivated, page 1-6	92	
0.0095 0.90 5.40 Coperating hours between carbon replacement Regenerated off-site 2 75.0 default, page 1-35 1.25 reactivated, page 1-6	6.44E-04	
0.90 5.40 12 Operating hours between carbon replacement 5 Regenerated off-site 2 75.0 default, page 1-35 1.25 reactivated, page 1-6	643.6	
5.40 12 Operating hours between carbon replacement 5 Regenerated off-site 2 75.0 default, page 1-35 1.25 reactivated, page 1-6	0.0095	
12 Operating hours between carbon replacement 5 Regenerated off-site 2 75.0 default, page 1-35 1.25 reactivated, page 1-6	0.90	
 Regenerated off-site 2 75.0 default, page 1-35 1.25 reactivated, page 1-6 	5.40	
2 75.0 default, page 1-35 1.25 reactivated, page 1-6	12	Operating hours between carbon replacement
75.0default, page 1-351.25reactivated, page 1-6	5	Regenerated off-site
1.25 reactivated, page 1-6	2	
	75.0	default, page 1-35
1.30 stainless steel 316, Table 1.3	1.25	reactivated, page 1-6
	1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.330	Equation 1.1 and Table 1.2
0.165	50% of equilibrium capacity
1	Regenerated off-site
3	
134	Equation 1.14
45	
84	Vertical vessel, flow under 9000 cfm
1.19	Equation 1.18 or 1.21
6.34	Equation 1.19 or 1.23
25.95	Equation 1.24
1.341	Equation 1.31
5.535	Equation 1.30

ANNUAL COST INPUTS:

Total Annual Cost (without credits) Recovery credits	155,442	Recovered solvent not re-sold
<u> </u>	, -	-
Capital recovery	14,704	
Taxes, insurance, administrative	5,677	
Overhead	50,326	
Carbon replacement	98	·
Cooling water		Equation 1.29
Steam		Equation 1.28
Electricity		Section 1.8.1.3
Maintenance materials	26,828	
Maintenance labor	26,828	
Supervisory labor	3,942	
Operating labor	26,280	
ANNUAL COSTS:		
Taxes, insurance, admin. factor:	0.050	
Capital recovery factor (carbon):	0.5378	
Carbon life (years):	2.0	
Capital recovery factor (system):	0.1295	
Control system life (years):	10.0	
Annual interest rate (fraction):	0.05	
Overhead rate (fraction):	0.6	
Recovered VOC value (\$/lb):	-	
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Electricity price (\$/kWhr):	0.055	
Maintenance labor factor (hr/sh):	0.5	
Operating labor factor (hr/sh):	0.5	
Maintenance labor rate (\$/hr):	49.00	
Operating labor rate (\$/hr):	48.00	
Operating factor (hr/yr):	8760	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

167	
200	
1	
Toluene	
1.23	
92	
6.44E-04	
643.6	
0.0095	
0.90	
5.40	
1,250	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

0.330 Equation 1.1 and Table 1.2

995,797 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.330	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.165	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
9,340	Equation 1.14 (at 1250 adsorption hrs/cycle)	Maintenance materials	26,828	
8	3	Electricity	111	Section 1.8.1.3
74,720	Lbs per replacement times number of replacements	Carbon replacement	63,713	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	49,790	
189,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	128,960	
0				-
556,882	Equation 1.27	Total Annual Cost (without credits)	376,778	
585,075	apply inflation factor	Recovery credits		Recovered solvent not re-sold
672,836	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	376,778	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

C5 Sources

Table 1.VOC Control Technology Cost Analysis, C5 #1 and #2 Pastillation Belts
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	7.3	7.0
2.	Catalytic Oxidation	98.0	98.0	96.0	7.3	7.0
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	7.3	7.0
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	7.3	7.0
5.	Refrigerated Condenser	95.0	98.0	93.1	7.3	6.8
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	7.3	6.4
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	7.3	6.4
					*VOC Baseline =	7.4 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Carbon Adsorption (Fixed Bed)	396,446	51,342	7,984	207,403	32,251
2.	Rotary Concentrator/Oxidizer	631,171	60,808	8,684	285,728	40,804
3.	Carbon Adsorption (Canister)	279,035	36,136	5,619	301,402	46,868
4.	Regenerative Thermal Oxidizer	808,636	77,906	11,125	375,915	53,683
5.	Catalytic Oxidation	802,788	76,155	10,875	412,727	58,940
6.	Thermal Oxidation	686,335	66,123	9,443	526,415	75,176
7.	Refrigerated Condenser	7,549,361	727,323	107,147	2,920,397	430,223

* PTE based on sum of #1 and #2 Pastillating Belts at C5; taken from IP-11d.

** Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

Gas flowrate (scfm):	9,000	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	16.1	based on Toluene
Waste gas heat content (BTU/scf):	1.0	Equation 2.16
Waste gas heat content (BTU/lb):	13.5	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	5.462	Equation 2.21
(scfm):	133.9	
Total Gas Flowrate (scfm):	9,134	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.29 Equation 2.30
w 55 % fieat recovery.	0	Equation 2.30

@ 70 % heat recovery: Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A):

Purchased Equipment Cost (B):

Total Capital Investment (TCI):

@ 50 % heat recovery:

167,045 =EC + Auxiliary costs
368,126 =Base cost x inflation factor
434,389 =1.18A (Table 2.10)
686,335 =1.58B (Table 2.10)

0 Equation 2.32

167,045 Equation 2.31

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	281,475	
Electricity	10,298	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	34,317	
Capital recovery	66,123	=CRF x TCI
		-

526,415

Total Annual Cost

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DA	TE*:		2016	
Current Date:			1/15/2020	
Years since Cost Base	e Date:		4	
Average inflation rat	e/year, %:		2.5	
Inflation adjustment	factor:		1.10	
INPUT PARAMETERS				
Exhaust Gas flowrate			9,000	
Reference temperate	. ,		77	
Waste gas inlet temp	perature, Tw _i (oF):		200	
Inlet gas density (lb/	scf):		0.0739	air
Primary heat recover	ry (fraction):		0.85	
Waste gas heat cont	ent, annual avg. (BTU/scf):		1.00	Equation 2.16
Waste gas heat cont	ent (BTU/lb):		13.5	
Gas heat capacity (B	TU/lb-oF):		0.255	
Combustion tempera	ature (oF):		1,400	
Temperature leaving	; heat exchanger, Tw _o (oF):		1220	Equation 2.18
Fuel heat of combus	tion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):			0.041	methane
Pressure drop (in. w.	c.):		19.0	Table 2.13
CALCULATED UTILI	TY USAGES			
Auxiliary Fuel Requir	ement:	(lb/min):	2.081	Equation 2.21
		(scfm):		
		(mcf/yr):	26,804.3	
Total Maximum Exha	aust Gas Flowrate:	(scfm):	9,051	
CALCULATED CAPITA				
Oxidizer Equipment				
Oxidizer Equipment	@ 85% heat recovery:		392 933	Equation 2.33
	@ 95% heat recovery:			Equation 2.33
	e som neder sooren jr		Ū	240000 2000
Auxiliary equipmer	nt :		0	
Total Equipment Cos	tbase:		392,933	=EC + Auxiliary costs
Total Equipment Co	ostescalated (A):		433,724	=Base cost x inflation factor
Purchased Equipm	ent Cost (B):		511,795	=1.18A (Table 2.10)
Total Capital Invest	ment (TCI):		808,636	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

ltem	Cost (\$/yr)	
Operating labor	26,280	-
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	107,217	
Electricity	16,157	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	40,432	
Capital recovery	77,906	=CRF x TCI

375,915

Total Annual Cost

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

W:\Eastman_Chemical\19.056_RACT2_Analysis\Cost_Analysis_Tables\C5\C5_Pastillators_CostAnalysis_20200114.xlsx

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020	
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20	1
INPUT PARAMETERS		
Gas flowrate (scfm):	9,000	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	an
Waste gas heat content (BTU/scf):	1.00	Equation 2.16
Waste gas heat content (BTU/Ib):	13.53	Equation 2.10
Gas heat capacity (BTU/Ib-oF):	0.26	
Combustion temperature (oF):	850	air
		5
Preheat temperature (oF):		Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	2.788	Equation 2.21
(scfm):	68.3	
Total Gas Flowrate (scfm):	9,068	
Catalyst Volume (ft3):	17.6	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:	0	Equation 2.35
C · · · · · · · · · · · · · · · · · · ·	-	

0	Equation 2.34
0	Equation 2.35
195,388	Equation 2.36
0	Equation 2.37

Other equipment :

Total Equipment Costbase:
Total Equipment Costescalated (A):
Purchased Equipment Cost (B):
Total Capital Investment (TCI):

@ 50 % heat recovery:

@ 70 % heat recovery:

195,388 =EC + Auxiliary costs 430,588 =Base cost x inflation factor 508,094 =1.18A (Table 2.10) **802.788** =1 588 (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	143,672	
Electricity	11,928	Section 2.5.2.1
Catalyst replacement	6,631	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	40,139	
Capital recovery	76,155	=CRF x TCI

412,727

Total Annual Cost

802,788 =1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

W:\Eastman_Chemical\19.056_RACT2_Analysis\Cost_Analysis_Tables\C5\C5_Pastillators_CostAnalysis_20200114.xlsx

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

173,266 313,391 inflation adjustment 0 514,590 sty-cost.wk3 631,171 sty-cost.wk3

14 Table 2.13 (catalytic) 24.6 Section 2.5.2.1 1,350,448 Equation 2.21

9,000 7.3

8,760 1,400 4.00 0.055

50

16.13 based on Toluene

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	47,320
Electricity	11,838
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	31,559
Capital recovery	60,808 =CRF x TCI

Total Annual Cost

285,728

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

37.5 Table A below, for Toluene

231.0 Table A below, for Toluene

92.1 Table A below, for Toluene

7.20 Table A below, for Toluene

1.8 lb-moles x molecular weight

1,065.0 Table A below, for Toluene

0.650 Default value

6.95 Default value

0.0012 Equation 2.6

-117.7 Equation 2.8

0.0222 Equation 2.9

0.002 Equation 2.10

0.020 inlet - outlet

18,355 Equation 2.14

3,041,789 Equation 2.17 3,042,421 sum of enthalpy changes

605 Equation 2.12

26 Equation 2.16

20.0 Default value

96.9 Equation 2.19

1570.0 Equation 2.18

187,226 Equation 2.22

253.54 Equation 2.23

11.7 Table 2.5 (see below)

A:

B:

C:

(lb/hr):

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAPITAL COSTS:

9,000		Equipment Costs (\$):		
200		Refrigeration unit/single-stage (< 10 tons):	0	Equation 2.26
Toluene		Refrigeration unit/single-stage (> 10 tons):	1,241,275	Equation 2.27
0.000016		Multistage refrigeration unit:	2,819,922	Equation 2.28
0.90		Total equipment cost (\$)base:	3,524,903	Equation 2.29
		Total equipment cost (\$)escalated:	4,087,807	inflation adjusted
6.955 Tab	ble B below, for Toluene	Purchased Equipment Cost (\$):	4,414,831	Equation 2.30
1344.800 Tab	ble B below, for Toluene	Total Capital Investment (\$):	7,549,361	Table 2.3
219.480 Tab	ble B below, for Toluene			
14,290.0 Tab	ble A below, for Toluene			

ANNUAL COST INPUTS:

ANNUAL COST INPUTS:	
Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5 Table 2
Maintenance labor factor (hr/sh):	0.5 Table 2
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	0.00
Annual interest rate (fraction):	0.05
Control system life (years):	15
Capital recovery factor:	0.0963
Taxes, insurance, admin. factor:	0.05
ANNUAL COSTS:	
Operating labor	26,280
Supervisory labor	3,942
Maintenance labor	26,828
Maintenance materials	26,828
Electricity	1,681,403
Overhead	50,326
Taxes, insurance, administrative	377,468
Capital recovery	727,323
Total Annual Cost (without credits)	2,920,397
Recovery credits	0
Total Annual Cost (with credits)	2,920,397

* Original equipment costs in EPA's OAOPS Control Cost Manual, 7th Edition, Section 3.1. Chapter 2, reflect this date, All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

9,000	
200	
1	
Toluene	
1.66	
92	
1.61E-05	
16.1	
0.0002	
0.90	
7.29	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.220 Equation 1.1 and Table 1.2 0.110 50% of equilibrium capacity Regenerated off-site 272 Equation 1.14 91 4,500 Vertical vessel, flow under 9000 cfm 8.74 Equation 1.18 or 1.21 5.05 Equation 1.19 or 1.23 258.68 Equation 1.24 0.050 Equation 1.31 1.170 Equation 1.30

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS: Operating labor Supervisory labor Maintenance labor	26,280 3,942 26,828	
Maintenance materials	26,828	
Electricity	962	Section 1.8.1.3
Steam	255	Equation 1.28
Cooling water	621	Equation 1.29
Carbon replacement	198	Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	19,822	
Capital recovery	51,342	
Total Annual Cost (without credits) Recovery credits	207,403	Recovered solvent not re-sold
Total Annual Cost (with credits)	207,403	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):			
Inlet stream temperature (oF):			
Inlet stream pressure (atm):			
VOC to be condensed:			
Inlet VOC flowrate (avg. lb/hr):			
VOC molecular weight (lb/lb-mole):			
VOC inlet volume fraction:			
VOC inlet concentration (ppmv):			
VOC inlet partial pressure (psia):			
Required VOC removal (fraction):			
Annual VOC inlet (tons):			
Total Adsorption time per canister (hr):			
Desorption time (hr):			
Number of canisters:			
Superficial carbon bed velocity (ft/min):			
Carbon price (\$/lb):			

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

9,000	
200	
1	
Toluene	
1.66	
92	
1.61E-05	
16.1	
0.0002	
0.90	
7.29	
500	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

279,035 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.220	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.110	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
7,567	Equation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
18		Electricity	962	Section 1.8.1.3
136,215	Lbs per replacement times number of replacements	Carbon replacement	116,149	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	13,952	
90,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	36,136	
0				-
156,045	Equation 1.27	Total Annual Cost (without credits)	301,402	
163,945	apply inflation factor	Recovery credits		Recovered solvent not re-sold
188,537	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	301,402	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

MP Poly Sources

Table 1. VOC Control Technology Cost Analysis, Various MP Poly Operations Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	10.1	9.7
2.	Catalytic Oxidation	98.0	98.0	96.0	10.1	9.7
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	10.1	9.7
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	10.1	9.7
5.	Refrigerated Condenser	95.0	98.0	93.1	10.1	9.4
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	10.1	8.9
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	10.1	8.9
					*VOC Baseline =	10.3 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	95,946	9,217	948	150,236	15,452
1. 2.	Carbon Adsorption (Fixed Bed)	129,184	16,730	1,874	158,992	17,807
3.	Thermal Oxidation	264,542	25,487	2,621	177,803	18,288
4.	Rotary Concentrator/Oxidizer	350,649	33,782	3,475	186,833	19,216
5.	Refrigerated Condenser	383,110	36,910	3,916	193,751	20,557
6.	Regenerative Thermal Oxidizer	554,002	53,374	5,490	216,423	22,260
7.	Carbon Adsorption (Canister)	438,261	56,757	6,357	315,413	35,325

* PTE based on sum of all emission sources within the MP Poly operations that vent to S034

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

Gas flowrate (sc	fm):	200	
Reference temp	erature (oF):	77	
Inlet gas temper	ature (oF):	200	
Inlet gas density	(lb/scf):	0.0739	air
Primary heat rec	overy (fraction):	0.50	
Predominant VO	C constituent:	Toluene	
Pollutant heat of	f combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecu	ılar weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concer	tration (ppmv):	1007.6	based on Toluene
Waste gas heat o	content (BTU/scf):	4.3	Equation 2.16
Waste gas heat o	content (BTU/lb):	57.8	
Gas heat capacit	y (BTU/lb-oF):	0.255	air
Combustion tem	perature (oF):	1,400	
Preheat tempera	ature (oF):	800	Equation 2.18
Fuel heat of com	bustion (BTU/lb):	21,502	methane
Fuel density (lb/	ft3):	0.0408	methane
CALCULATED PA	RAMETERS		
Auxiliary Fuel Ne	eded (lb/min):	0.090	Equation 2.21
	(scfm):	2.2	
Total Gas Flowra	ite (scfm):	202	
Pressure drop (in	n. w.c.):	12.0	Table 2.13
CALCULATED CA	PITAL COSTS		
Equipment Cost			
Incinerator:	- \/·		
	@ 0 % heat recovery:	0	Equation 2.29
	@ 35 % heat recovery:	0	Equation 2.30
	@ 50 % heat recovery:	64,386	Equation 2.31

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

@ 70 % heat recovery:

-	
64,386	=EC + Auxiliary costs
141,891	=Base cost x inflation factor
167,432	=1.18A (Table 2.10)
264,542	=1.58B (Table 2.10)

0 Equation 2.32

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	4,658	
Electricity	228	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	13,227	
Capital recovery	25,487	=CRF x TCI
Total Annual Cost	177,803	

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS			
Exhaust Gas flowrate (scfm):		200	
Reference temperature (oF):		200	
Waste gas inlet temperature, Tw _i (oF):		200	
o 1 1 1 1 1			
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/scf):			Equation 2.16
Waste gas heat content (BTU/lb):		57.8	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw_o (oF):			Equation 2.18
Fuel heat of combustion (BTU/lb):			methane
Fuel density (lb/ft3):			methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):	0.015	Equation 2.21
	(scfm):	0.38	
	(mcf/yr):	197.1	
Total Maximum Exhaust Gas Flowrate:	(scfm):	200	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):		260 201	Fruction 2.22
@ 85% heat recovery:			Equation 2.33
@ 95% heat recovery:		0	Equation 2.33
Auxiliary equipment :		0	
Total Equipment Costbase:		269,201	=EC + Auxiliary costs
Total Equipment Costescalated (A):		297,148	=Base cost x inflation factor
Purchased Equipment Cost (B):		350,634	=1.18A (Table 2.10)
Total Capital Investment (TCI):		554,002	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr): 8,760	
Operating labor rate (\$/hr): 48.00	
Maintenance labor rate (\$/hr): 49.00	
Operating labor factor (hr/sh): 0.5 Tab	le 2.12
Maintenance labor factor (hr/sh): 0.5 Tab	le 2.12
Electricity price (\$/kwh): 0.055	
Natural gas price (\$/mscf): 4.00	
Annual interest rate (fraction): 0.050	
Control system life (years): 15	
Capital recovery factor: 0.0963	
Taxes, insurance, admin. factor:0.05	

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	26,280	-
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	788	
Electricity	358	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	27,700	
Capital recovery	53,374	=CRF x TCI

216,423

Total Annual Cost

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020)
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20	1
INPUT PARAMETERS		
Gas flowrate (scfm):	200	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (Ib/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	4.27	Equation 2.16
Waste gas heat content (BTU/lb):	57.76	
Gas heat capacity (BTU/lb-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (Ib/min):	0.031	Equation 2.21
(scfm):	0.8	
Total Gas Flowrate (scfm):	201	
Catalyst Volume (ft3):	0.4	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:		Equation 2.35
@ 50 % heat recovery:		Equation 2.36
@ 70 % heat recovery:		Equation 2.37
Other equipment :	-	
Total Equipment Cost-pase:	22 252	-EC + Auxiliany cost

Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

23,352 =EC + Auxiliary costs 51,462 =Base cost x inflation factor 60,725 =1.18A (Table 2.10) 95,946 =1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	1,607	
Electricity	264	Section 2.5.2.1
Catalyst replacement	147	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	4,797	
Capital recovery	9,217	=CRF x TCI

150,236

Total Annual Cost

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)	
Pressure drop (inches WC)	
Electrical power (kW)	
Fuel usage (Btu/hr)	

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

200 10.1 1,007.58 based on Toluene 8,760 1,400 4.00 0.055

50

14 Table 2.13 (catalytic) 0.5 Section 2.5.2.1 30,010 Equation 2.21

98,782 178,669 inflation adjustment 0 284,184 sty-cost.wk3 350,649 sty-cost.wk3

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	1,052
Electricity	263
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,532
Capital recovery	33,782 =CRF x TCI

Total Annual Cost

186,833

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

4.73 Equation 2.23

1.3 Table 2.5 (see below)

A:

B:

C:

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

		CAPITAL COSTS:	
200		Equipment Costs (\$):	
200		Refrigeration unit/single-stage (< 10 tons):	
Toluene		Refrigeration unit/single-stage (> 10 tons):	
0.001008		Multistage refrigeration unit:	
0.90		Total equipment cost (\$)base:	
		Total equipment cost (\$)escalated:	
6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	
1344.800	Table B below, for Toluene	Total Capital Investment (\$):	
219.480	Table B below, for Toluene		
14,290.0	Table A below, for Toluene		
37.5	Table A below, for Toluene	ANNUAL COST INPUTS:	
0.650	Default value	Operating factor (hr/yr):	
231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	
1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	
92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	
7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	
6.95	Default value	Electricity price (\$/kWhr):	
		Recovered VOC value (\$/lb):	
		Annual interest rate (fraction):	
0.0766	Equation 2.6	Control system life (years):	
-63.1	Equation 2.8	Capital recovery factor:	
0.0308	Equation 2.9	Taxes, insurance, admin. factor:	
0.003	Equation 2.10		
0.028	inlet - outlet	ANNUAL COSTS:	
2.6	lb-moles x molecular weight	Operating labor	
17,815	Equation 2.14	Supervisory labor	
769	Equation 2.12	Maintenance labor	
30	Equation 2.16	Maintenance materials	
55,923	Equation 2.17	Electricity	
56,722	sum of enthalpy changes	Overhead	
20.0	Default value	Taxes, insurance, administrative	
84.3	Equation 2.19	Capital recovery	
33.7	Equation 2.18		
3,491	Equation 2.22	Total Annual Cost (without credits)	

Recovery credits

Total Annual Cost (with credits)

122,830 Equation 2.26

143,104 Equation 2.28

178,880 Equation 2.29

224,041 Equation 2.30

0.5 Table 2.4

0.5 Table 2.4 0.055

383,110 Table 2.3

8760

48.00

49.00

0.00

0.05

0.0963

26,280

3,942

26,828

26,828

3,483

50,326

19,156

36,910

193,751

193,751

0

0.05

15

207,445 inflation adjusted

0 Equation 2.27

* Original equipment costs in EPA's OAOPS Control Cost Manual, 7th Edition, Section 3.1. Chapter 2, reflect this date, All calculated values in this table are based on equations from Chapter 2 of this manual.

(lb/hr):

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

200	
200	
1	
Toluene	
2.31	
92	
1.01E-03	
1007.6	
0.0148	
0.90	
10.12	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.347	Equation 1.1 and Table 1.2
0.173	50% of equilibrium capacity
1	Regenerated off-site
3	
240	Equation 1.14
80	
100	Vertical vessel, flow under 9000 cfm
1.30	Equation 1.18 or 1.21
7.00	Equation 1.19 or 1.23
31.32	Equation 1.24
1.998	Equation 1.31
7.758	Equation 1.30

 15,410
 Equation 1.25

 300
 Equation 1.16

 0

 45,191
 Equation 1.27

 75,902
 apply inflation factor

 87,287
 Table 1.4 (less sales taxes)

 129,184
 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS: Operating labor Supervisory labor Maintenance labor	26,280 3,942 26,828	
Maintenance materials	26,828	
Electricity	208	Section 1.8.1.3
Steam	354	Equation 1.28
Cooling water	863	Equation 1.29
Carbon replacement	174	Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	6,459	
Capital recovery	16,730	_
Total Annual Cost (without credits) Recovery credits	158,992	Recovered solvent not re-sold
Total Annual Cost (with credits)	158,992	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2018 1/15/2020 2 2.5 1.05

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

200		O
200		O
1		Μ
Toluene		O
2.31		Μ
92		El
1.01E-03		Re
1007.6		O
0.0148		Ar
0.90		Co
10.12		Ca
500	Operating hours between carbon replacement	Ca
0	Regenerated off-site	Ca
2	Only one online at a time	Та
75.0	default, page 1-35	
1.25	reactivated, page 1-6	

0.347 Equation 1.1 and Table 1.2

438,261 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.347	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.173	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
6,667	Equation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
18		Electricity	208	Section 1.8.1.3
120,011	Lbs per replacement times number of replacements	Carbon replacement	102,332	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	21,913	
85,200	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	56,757	_
0				
245,090	Equation 1.27	Total Annual Cost (without credits)	315,413	
257,498	apply inflation factor	Recovery credits		Recovered solvent not re-sold
296,122	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	315,413	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Hydrogenation Sources

Table 1.VOC Control Technology Cost Analysis, Hydrogenation Operations, Combination of Stacks S004 and S001
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	13.9	13.4
2.	Catalytic Oxidation	98.0	98.0	96.0	13.9	13.4
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	13.9	13.4
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	13.9	13.4
5.	Refrigerated Condenser	95.0	98.0	93.1	13.9	13.0
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	13.9	12.3
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	13.9	12.3
					*VOC Baseline =	14.2 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	57,070	5,488	411	142,844	10,688
2.	Thermal Oxidation	209,180	20,153	1,508	165,140	12,356
3.	Refrigerated Condenser	174,084	16,772	1,295	160,986	12,426
4.	Carbon Adsorption (Fixed Bed)	140,301	18,170	1,480	161,638	13,169
5.	Rotary Concentrator/Oxidizer	346,842	33,416	2,500	185,480	13,878
6.	Regenerative Thermal Oxidizer	550,487	53,035	3,968	213,174	15,950
7.	Carbon Adsorption (Canister)	768,280	99,496	8,106	395,118	32,192

* PTE based on sum of following emission sources within the Hydro operations:

Metering Tank/Tanks 103&104/Catalyst Catch Tank/Mott Filter/Heel Tank (S004)

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

1988
1/15/2020
32
2.5
2.20

INPUT PARAMETERS

Gas fl	owrate (scfm):	79	
Refer	ence temperature (oF):	77	
Inlet g	gas temperature (oF):	200	
Inlet g	gas density (lb/scf):	0.0739	air
Prima	ry heat recovery (fraction):	0.50	
Predo	ominant VOC constituent:	Toluene	
Pollut	ant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollut	ant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollut	ant concentration (ppmv):	3506.5	based on Toluene
Waste	e gas heat content (BTU/scf):	14.9	Equation 2.16
Waste	e gas heat content (BTU/lb):	201.0	
Gas h	eat capacity (BTU/lb-oF):	0.255	air
Comb	oustion temperature (oF):	1,400	
Prehe	at temperature (oF):	800	Equation 2.18
Fuelł	neat of combustion (BTU/lb):	21,502	methane
Fuel c	lensity (lb/ft3):	0.0408	methane
CALC	ULATED PARAMETERS		
Auxili	ary Fuel Needed (lb/min):	0.005	Equation 2.21
	(scfm):	0.1	
Total	Gas Flowrate (scfm):	79	
Press	ure drop (in. w.c.):	12.0	Table 2.13
CALC	ULATED CAPITAL COSTS		
Equip	ment Costs (EC):		
Incine	erator:		
	@ 0 % heat recovery:	0	Equation 2.29
	@ 35 % heat recovery:	0	Equation 2.30
	@ 50 % heat recovery:	50,912	Equation 2.31
	@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment :
Total Equipment Costbase:
Total Equipment Costescalated (A):
Purchased Equipment Cost (B):
Total Capital Investment (TCI):

-	
50,912	=EC + Auxiliary costs
112,197	=Base cost x inflation factor
132,393	=1.18A (Table 2.10)
209,180	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	236	
Electricity	89	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	10,459	
Capital recovery	20,153	=CRF x TCI
Total Annual Cost	165,140	

C:\Users\mschooley1\Desktop\Eastman_RACT\Hydro\Hydro_S004_S001_CostAnalysis_20200115.xlsx

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS			
Exhaust Gas flowrate (scfm):		79	
Reference temperature (oF):		77	
Waste gas inlet temperature, Tw _i (oF):		200	
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/scf):		14.86	Equation 2.16
Waste gas heat content (BTU/lb):		201.0	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.041	methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):	-0.034	Equation 2.21
,	(scfm):	-0.82	1
	(mcf/yr):	(432.0)	
Total Maximum Exhaust Gas Flowrate:	(scfm):	78	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):			
@ 85% heat recovery:		267.493	Equation 2.33
@ 95% heat recovery:			Equation 2.33
Auxiliary equipment :		0	
Total Equipment Costbase:		-	=EC + Auxiliary costs
Total Equipment Costescalated (A):			=Base cost x inflation factor
Purchased Equipment Cost (B):		,	=1.18A (Table 2.10)
Total Capital Investment (TCI):			=1.58B (Table 2.10)
		333,407	1.000 (10010 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Item	Cost (\$/yr)
Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	(1,728)
Electricity	140 Section 2.5.2.1
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	27,524
Capital recovery	53,035 =CRF x TCI
Total Annual Cost	213.174
	L ,_,_,_

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020	
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20	1
INPUT PARAMETERS		
Gas flowrate (scfm):	79	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (Ib/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	14.86	Equation 2.16
Waste gas heat content (BTU/lb):	201.02	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (Ib/min):		Equation 2.21
(scfm):	0.1	
Total Gas Flowrate (scfm):	79	
Catalyst Volume (ft3):	0.2	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$): Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:		Equation 2.35
@ 50 % heat recovery:		Equation 2.36
@ 70 % heat recovery:		Equation 2.37
@ 70 % near recovery:	0	Equation 2.37
Other equipment :	-	
Total Equipment Costbase:	13,890	=EC + Auxiliary costs

ANNUAL COST INPUTS		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	138	
Electricity	104	Section 2.5.2.1
Catalyst replacement	58	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	2,853	
Capital recovery	5,488	=CRF x TCI

Total Annual Cost

142,844

Purchased Equipment Cost (B): Total Capital Investment (TCI):

Total Equipment Cost--escalated (A):

30,610 =Base cost x inflation factor 36,120 =1.18A (Table 2.10) 57,070 =1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

79 13.9 3,506.46 based on Toluene 8,760 1,400 4.00 0.055

50 14 Table 2.13 (catalytic) 0.2 Section 2.5.2.1

11,854 Equation 2.21

176,843 inflation adjustment

97,772

0 281,056 sty-cost.wk3 346,842 sty-cost.wk3

ANNUAL COST INPUTS Operating factor (hr/yr):

Operating labor rate (\$/hr):

Maintenance labor rate (\$/hr):

Operating labor factor (hr/sh):

Maintenance labor factor (hr/sh):

Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	415
Electricity	104
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,342
Capital recovery	33,416 =CRF x TCI

Total Annual Cost

185,480

8,760

48.00

49.00

0.50 Table 2.12

0.50 Table 2.12

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

92.1 Table A below, for Toluene

7.20 Table A below, for Toluene

3.5 lb-moles x molecular weight

6.95 Default value

0.2673 Equation 2.6

0.0424 Equation 2.9

-41.5 Equation 2.8

0.004 Equation 2.10

0.038 inlet - outlet

17,594 Equation 2.14

1,017 Equation 2.12

20,224 Equation 2.17 21,279 sum of enthalpy changes

20.0 Default value

79.1 Equation 2.19

13.4 Equation 2.18

1,309 Equation 2.22

1.77 Equation 2.23

1.3 Table 2.5 (see below)

38 Equation 2.16

A:

B:

C:

(lb/hr):

COST REFERENCE D	ATE*:
Current Date:	
Years since Cost Ba	se Date:
Average inflation ra	te/year, %:
Inflation adjustmen	t factor:

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAPITAL COSTS.

		CAPITAL COSTS.
79		Equipment Costs (\$):
200		Refrigeration unit/single-stage (< 10 tons):
Toluene		Refrigeration unit/single-stage (> 10 tons):
0.003506		Multistage refrigeration unit:
0.90		Total equipment cost (\$)base:
		Total equipment cost (\$)escalated:
6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):
1344.800	Table B below, for Toluene	Total Capital Investment (\$):
219.480	Table B below, for Toluene	
14,290.0	Table A below, for Toluene	
37.5	Table A below, for Toluene	ANNUAL COST INPUTS:
0.650	Default value	Operating factor (hr/yr):
231.0	Table A below, for Toluene	Operating labor rate (\$/hr):
1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):

Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5 Table 2	.4
Maintenance labor factor (hr/sh):	0.5 Table 2	.4
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	1,307	
Overhead	50,326	
Taxes, insurance, administrative	8,704	
Capital recovery	16,772	
Total Annual Cost (without credits)	160,986	
Recovery credits	0	
Total Annual Cost (with credits)	160,986	

65,026 Equation 2.26

62,275 Equation 2.28

81,282 Equation 2.29

101,804 Equation 2.30

174,084 Table 2.3

8760

94,263 inflation adjusted

0 Equation 2.27

* Original equipment costs in EPA's OAOPS Control Cost Manual, 7th Edition, Section 3.1. Chapter 2, reflect this date, All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

79	
200	
1	
Toluene	
3.18	
92	
3.51E-03	
3506.5	
0.0515	
0.90	
13.92	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.398	Equation 1.1 and Table 1.2
0.199	50% of equilibrium capacity
1	Regenerated off-site
3	
288	Equation 1.14
96	
40	Vertical vessel, flow under 9000 cfm
0.82	Equation 1.18 or 1.21
11.07	Equation 1.19 or 1.23
29.53	Equation 1.24
6.062	Equation 1.31
21.503	Equation 1.30

 14,719
 Equation 1.25

 360
 Equation 1.16

 0

 49,079
 Equation 1.27

 82,433
 apply inflation factor

 94,798
 Table 1.4 (less sales taxes)

 140,301
 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	368	Section 1.8.1.3
Steam	487	Equation 1.28
Cooling water	1,186	Equation 1.29
Carbon replacement	209	Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	7,015	
Capital recovery	18,170	-
Total Annual Cost (without credits) Recovery credits	161,638	Recovered solvent not re-sold
Total Annual Cost (with credits)	161,638	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):	
Inlet stream temperature (oF):	
Inlet stream pressure (atm):	
VOC to be condensed:	
Inlet VOC flowrate (avg. lb/hr):	
VOC molecular weight (lb/lb-mole):	
VOC inlet volume fraction:	
VOC inlet concentration (ppmv):	
VOC inlet partial pressure (psia):	
Required VOC removal (fraction):	
Annual VOC inlet (tons):	
Total Adsorption time per canister (hr):	
Desorption time (hr):	
Number of canisters:	
Superficial carbon bed velocity (ft/min):	
Carbon price (\$/lb):	

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

79	
200	
1	
Toluene	
3.18	
92	
3.51E-03	
3506.5	
0.0515	
0.90	
13.92	
500	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

768,280 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.398	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.199	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
7,990	Equation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
18	3	Electricity	368	Section 1.8.1.3
143,825	Lbs per replacement times number of replacements	Carbon replacement	122,637	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	38,414	
132,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	99,496	
0				-
429,648	Equation 1.27	Total Annual Cost (without credits)	395,118	
451,399	apply inflation factor	Recovery credits		Recovered solvent not re-sold
519,108	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	395,118	
=				

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1.VOC Control Technology Cost Analysis, Hydrogenation Autoclaves and Vent Tank
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	14.7	14.1
2.	Catalytic Oxidation	98.0	98.0	96.0	14.7	14.1
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	14.7	14.1
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	14.7	14.1
5.	Refrigerated Condenser	95.0	98.0	93.1	14.7	13.7
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	14.7	13.0
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	14.7	13.0
					*VOC Baseline =	15.0 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	87,202	8,379	594	147,584	10,454
2.	Thermal Oxidation	253,402	24,413	1,729	174,148	12,335
3.	Carbon Adsorption (Fixed Bed)	139,217	18,029	1,391	161,521	12,458
4.	Rotary Concentrator/Oxidizer	349,673	33,688	2,386	186,486	13,209
5.	Refrigerated Condenser	307,104	29,587	2,162	182,016	13,300
6.	Regenerative Thermal Oxidizer	553,092	53,286	3,774	214,847	15,218
7.	Carbon Adsorption (Canister)	994,221	128,756	9,931	452,995	34,939

* PTE based on sum of following emission sources within the Hydro operations:

Vent Tank/Autoclave #1/Autoclave #2

** Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

Gas flowrate (scfm):	169	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	1731.5	based on Toluene
Waste gas heat content (BTU/scf):	7.3	Equation 2.16
Waste gas heat content (BTU/lb):	99.3	
Gas heat capacity (BTU/lb-oF):	0.255	air (hydrogen?)
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.052	Equation 2.21
(scfm):	1.3	
Total Gas Flowrate (scfm):	170	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.30
@ 50 % heat recovery:	61,675	Equation 2.31
@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

-	
61,675	=EC + Auxiliary costs
135,916	=Base cost x inflation factor
160,381	=1.18A (Table 2.10)
253,402	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	
0.255		

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	2,669	
Electricity	192	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	12,670	
Capital recovery	24,413	=CRF x TCI
Total Annual Cost	174,148	

Total Annual Cost

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS			
Exhaust Gas flowrate (scfm):		169	
Reference temperature (oF):		77	
Waste gas inlet temperature, Tw _i (oF):		200	
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/scf):		7.34	Equation 2.16
Waste gas heat content (BTU/lb):		99.3	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw_o (oF):		1220	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.041	methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):	-0.012	Equation 2.21
	(scfm):	-0.28	
	(mcf/yr):	(149.4)	
Total Maximum Exhaust Gas Flowrate:	(scfm):	169	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):			
@ 85% heat recovery:		268 759	Equation 2.33
@ 95% heat recovery:		-	Equation 2.33
te 35% heat recovery.		0	Equation 2.55
Auxiliary equipment :		0	
Total Equipment Costbase:		268,759	=EC + Auxiliary costs
Total Equipment Costescalated (A):		296,659	=Base cost x inflation factor
Purchased Equipment Cost (B):		350,058	=1.18A (Table 2.10)
Total Capital Investment (TCI):		553,092	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	26,280	
Supervisory labor	3,942 Table 2.12	
Maintenance labor	26,828	
Maintenance materials	26,828 Table 2.12	
Natural gas	(598)	
Electricity	301 Section 2.5.2.1	
Overhead	50,326 Table 2.12	
Taxes, insurance, administrative	27,655	
Capital recovery	53,286 =CRF x TCI	
Total Annual Cost	214,847	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\Hydro\Hydro_Autoclaves_Restricted_CostAnalysis_20200114.xlsx

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020	
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20)
INPUT PARAMETERS		
Gas flowrate (scfm):	169	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	7.34	Equation 2.16
Waste gas heat content (BTU/lb):	99.26	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):		Methane
Fuel density (lb/ft3):	0.0408	Methane
CALCULATED PARAMETERS		
	0.006	Founties 2.21
Auxiliary Fuel Needed (lb/min): (scfm):	0.006	Equation 2.21
	•	
Total Gas Flowrate (scfm):	169	
Catalyst Volume (ft3):	0.3	T 0 40
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:	0	Equation 2.35
@ 50 % heat recovery:	21,224	Equation 2.36
@ 70 % heat recovery:	0	Equation 2.37
Other equipment :	_	
Total Equipment Costbase:	21,224	=EC + Auxiliary costs

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Total Annual Cost

ANNUAL COST INPUTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	295	
Electricity	222	Section 2.5.2.1
Catalyst replacement	124	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	4,360	
Capital recovery	8,379	=CRF x TCI

147,584

Other eq

Total Equipment Costbase:
Total Equipment Costescalated (A):
Purchased Equipment Cost (B):
Total Capital Investment (TCI):

21,224 =EC + Auxiliary costs 46,772 =Base cost x inflation factor 55,191 =1.18A (Table 2.10) 87,202 =1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

C:\Users\mschooley1\Desktop\Eastman_RACT\Hydro\Hydro_Autoclaves_Restricted_CostAnalysis_20200114.xlsx

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

50 14 Table 2.13 (catalytic) 0.5 Section 2.5.2.1 25,358 Equation 2.21

1,731.46 based on Toluene

169 14.7

8,760 1,400 4.00 0.055

98,523
178,201 inflation adjustment
0
283,382 sty-cost.wk3
349,673 sty-cost.wk3

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	889
Electricity	222
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,484
Capital recovery	33,688 =CRF x TCI

Total Annual Cost

186,486

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC condensed (Ib-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAPITAL COSTS:

		CALINAL
169		Equipme
200		Refrige
Toluene		Refrige
0.001731		Multist
0.90		Total equ
		Total equ
6.955	Table B below, for Toluene	Purchase
1344.800	Table B below, for Toluene	Total Cap
219.480	Table B below, for Toluene	
14,290.0	Table A below, for Toluene	
37.5	Table A below, for Toluene	ANNUAL
0.650	Default value	Operatin
231.0	Table A below, for Toluene	Operatin
1,065.0	Table A below, for Toluene	Maintena
92.1	Table A below, for Toluene	Operatin
7.20	Table A below, for Toluene	Maintena
6.95	Default value	Electricity

0.1318	Equation 2.6
-54.1	Equation 2.8
0.0448	Equation 2.9
0.004	Equation 2.10
0.040	inlet - outlet
3.7	lb-moles x molecular weight
17,723	Equation 2.14
1,099	Equation 2.12
43	Equation 2.16
45,603	Equation 2.17
46,744	sum of enthalpy changes
20.0	Default value
82.1	Equation 2.19
28.5	Equation 2.18
2,877	Equation 2.22
3.90	Equation 2.23
1.3	Table 2.5 (see below)

TIAL COSTS.		
ipment Costs (\$):		
efrigeration unit/single-stage (< 10 tons):	101,377	Equation 2.26
efrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
Iultistage refrigeration unit:	114,713	Equation 2.28
al equipment cost (\$)base:	143,391	Equation 2.29
al equipment cost (\$)escalated:	166,290	inflation adjusted
chased Equipment Cost (\$):	179,593	Equation 2.30
al Capital Investment (\$):	307,104	Table 2.3

ANNUAL COST INPUTS:

ANNUAL COST INFOTS.		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.4
Maintenance labor factor (hr/sh):	0.5	Table 2.4
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	2,870	
Overhead	50,326	
Taxes, insurance, administrative	15,355	
Capital recovery	29,587	_
Total Annual Cost (without credits)	182,016	
Recovery credits	0	
Total Annual Cost (with credits)	182,016	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

(lb/hr):

A:

B: C:

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneration
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

169	
200	
1	
Toluene	
3.36	
92	
1.73E-03	
1731.5	
0.0254	
0.90	
14.70	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.368	Equation 1.1 and Table 1.2
0.184	50% of equilibrium capacity
1	Regenerated off-site
3	
328	Equation 1.14
109	
85	Vertical vessel, flow under 9000 cfm
1.20	Equation 1.18 or 1.21
8.24	Equation 1.19 or 1.23
33.25	Equation 1.24
3.235	Equation 1.31
11.941	Equation 1.30

 16,144
 Equation 1.25

 410
 Equation 1.16

 0

 48,700
 Equation 1.27

 81,796
 apply inflation factor

 94,065
 Table 1.4 (less sales taxes)

 139,217
 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity		Section 1.8.1.3
Steam		Equation 1.28
Cooling water	-	Equation 1.29
Carbon replacement		Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	6,961	
Capital recovery	18,029	-
Total Annual Cost (without credits) Recovery credits	161,521	Recovered solvent not re-sold
Total Annual Cost (with credits)	161,521	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):	
Inlet stream temperature (oF):	
Inlet stream pressure (atm):	
VOC to be condensed:	
Inlet VOC flowrate (avg. lb/hr):	
VOC molecular weight (lb/lb-mole):	
VOC inlet volume fraction:	
VOC inlet concentration (ppmv):	
VOC inlet partial pressure (psia):	
Required VOC removal (fraction):	
Annual VOC inlet (tons):	
Total Adsorption time per canister (hr):	
Desorption time (hr):	
Number of canisters:	
Superficial carbon bed velocity (ft/min):	
Carbon price (\$/lb):	

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

169	
200	
1	
Toluene	
3.36	
92	
1.73E-03	
1731.5	
0.0254	
0.90	
14.70	
500	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

994,221 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.368	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.184	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
9,122	Equation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
18	3	Electricity	321	Section 1.8.1.3
164,190	Lbs per replacement times number of replacements	Carbon replacement	140,003	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	49,711	
189,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	128,756	
0				_
556,001	Equation 1.27	Total Annual Cost (without credits)	452,995	
584,149	apply inflation factor	Recovery credits		Recovered solvent not re-sold
671,771	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	452,995	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1.VOC Control Technology Cost Analysis, Hydrogenation Operations, Product Tanks 102, 105 & 106Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Control Capture Reduction Inlet VOC VOC Control Efficiency Efficiency Efficiency Emissions Reduction (%) (%) (%) Ranking Technology (tons/year) (tons/year) Thermal Oxidation 98.0 98.0 96.0 6.2 5.9 1. 2. 6.2 5.9 Catalytic Oxidation 98.0 98.0 96.0 3. 6.2 Rotary Concentrator/Oxidizer 98.0 98.0 96.0 5.9 4. Regenerative Thermal Oxidizer 98.0 98.0 96.0 6.2 5.9 5. 6.2 5.7 **Refrigerated Condenser** 95.0 98.0 93.1 6. Carbon Adsorption (Fixed Bed) 90.0 98.0 88.2 6.2 5.4 7. Carbon Adsorption (Canister) 6.2 5.4 90.0 98.0 88.2 *VOC Baseline = 6.3 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Stack: S012

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	7,350	708	119	135,286	22,816
2.	Refrigerated Condenser	22,574	2,175	378	137,554	23,931
3.	Thermal Oxidation	83,378	8,033	1,355	146,413	24,692
4.	Rotary Concentrator/Oxidizer	344,420	33,182	5,596	184,620	31,136
5.	Carbon Adsorption (Fixed Bed)	250,081	32,387	5,947	180,771	33,197
6.	Regenerative Thermal Oxidizer	548,278	52,822	8,908	213,201	35,956
7.	Carbon Adsorption (Canister)	1,252,758	162,238	29,793	406,272	74,607

* PTE based on sum of following emission sources within the Hydro operations:

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

	INT OT TANAMETERS		
	Gas flowrate (scfm):	2	
	Reference temperature (oF):	77	
	Inlet gas temperature (oF):	200	
	Inlet gas density (lb/scf):	0.0739	air
	Primary heat recovery (fraction):	0.50	
	Predominant VOC constituent:	Toluene	
	Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
	Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
	Pollutant concentration (ppmv):	61449.5	based on Toluene
	Waste gas heat content (BTU/scf):	260.3	Equation 2.16
	Waste gas heat content (BTU/lb):	3522.8	
	Gas heat capacity (BTU/lb-oF):	0.255	air
	Combustion temperature (oF):	1,400	
	Preheat temperature (oF):	800	Equation 2.18
	Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):		0.0408	methane
	CALCULATED PARAMETERS		
	Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21
	(scfm):	0.0	
	Total Gas Flowrate (scfm):	2	
	Pressure drop (in. w.c.):	12.0	Table 2.13
	CALCULATED CAPITAL COSTS		
	Equipment Costs (EC):		
	Incinerator:		
	@ 0 % heat recovery:	0	Equation 2.29
	@ 35 % heat recovery:	0	Equation 2.30
	@ 50 % heat recovery:	20,293	Equation 2.31
	@ 70 % heat recovery:	0	Equation 2.32

Auxiliary equipment : Total Equipment Cost--base: 20,293 Total Equipment Cost--escalated (A): 44,721 Purchased Equipment Cost (B): 52,771

Total Capital Investment (TCI):

-	
20,293	=EC + Auxiliary costs
44,721	=Base cost x inflation factor
52,771	=1.18A (Table 2.10)
83,378	=1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	6	
Electricity	2	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	4,169	
Capital recovery	8,033	=CRF x TCI
		_

146,413

Total Annual Cost

Table 3. **Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS			
Exhaust Gas flowrate (scfm):		2	
Reference temperature (oF):		77	
Waste gas inlet temperature, Tw _i (oF):		200	
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/scf):		260.34	Equation 2.16
Waste gas heat content (BTU/lb):		3522.8	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.041	methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):		Equation 2.21
	(scfm):	-0.59	
	(mcf/yr):	(310.3)	
Total Maximum Exhaust Gas Flowrate:	(scfm):	1	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):			
@ 85% heat recovery:		266,420	Equation 2.33
@ 95% heat recovery:			Equation 2.33
Auxiliary equipment :		0	
Total Equipment Costbase:		266,420	=EC + Auxiliary costs
Total Equipment Costescalated (A):		294,078	=Base cost x inflation factor
Purchased Equipment Cost (B):		347,011	=1.18A (Table 2.10)
Total Capital Investment (TCI):		548,278	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL COSTS

Cost (\$/yr)
26,280
3,942 Table 2.12
26,828
26,828 Table 2.12
(1,241)
3 Section 2.5.2.1
50,326 Table 2.12
27,414
52,822 =CRF x TCI
213.201

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020)
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20)
INPUT PARAMETERS		
Gas flowrate (scfm):	2	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):		Equation 2.16
Waste gas heat content (BTU/lb):	3522.77	
Gas heat capacity (BTU/Ib-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):		Equation 2.18
Fuel heat of combustion (BTU/lb):		Methane
Fuel density (lb/ft3):		Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21
(scfm):	0.0	
Total Gas Flowrate (scfm):	2	
Catalyst Volume (ft3):	0.0	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:		Equation 2.35
@ 50 % heat recovery:		Equation 2.36
@ 70 % heat recovery:		Equation 2.37
	-	
Other equipment :	-	
Total Equipment Costbase:	1,789	=EC + Auxiliary costs
Tatal Faultaneant Cast assoluted (A).	2 0 4 2	Berry and the first of the

ANNUAL	COST	INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	3	
Electricity	3	Section 2.5.2.1
Catalyst replacement	1	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	368	
Capital recovery	708	=CRF x TCI

135,286

Total Annual Cost

 1,789
 =EC + Auxiliary costs

 3,942
 =Base cost x inflation factor

 4,652
 =1.18A (Table 2.10)

7,350 =1.58B (Table 2.10)

DST

Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)	
Control device input mass (tons/year)	
Concentration (avg. ppmv)	
Facility operating schedule (hours/year)	
Thermal oxidizer temperature (F)	
Fuel cost, (\$/million BTU)	
Electricity cost, (\$/kwhr)	

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

2 6.2 61,449.51 based on Toluene 8,760 1,400 4.00 0.055

50 14 Table 2.13 (catalytic) 0.0 Section 2.5.2.1 300 Equation 2.21

175,681 inflation adjustment

ANNUAL OPERATING COSTS

ANNUAL COST INPUTS

Operating factor (hr/yr):

Electricity price (\$/kwh):

Natural gas price (\$/mscf):

Control system life (years):

Capital recovery factor:

Operating labor rate (\$/hr):

Maintenance labor rate (\$/hr):

Operating labor factor (hr/sh):

Annual interest rate (fraction):

Taxes, insurance, admin. factor:

Maintenance labor factor (hr/sh):

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	11
Electricity	3
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	17,221
Capital recovery	33,182 =CRF x TCI

Total Annual Cost

184,620

8,760

48.00

49.00

0.055

4.00

0.05

0.0963 0.05

15

0.50 Table 2.12

0.50 Table 2.12

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

97,130

0 279,067 sty-cost.wk3 344,420 sty-cost.wk3

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

A:

B:

C:

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAPITAL COSTS:

		CAPITAL COSTS.
2		Equipment Costs (\$):
200		Refrigeration unit/single-stage (< 10 tons):
Toluene		Refrigeration unit/single-stage (> 10 tons):
0.061450		Multistage refrigeration unit:
0.90		Total equipment cost (\$)base:
		Total equipment cost (\$)escalated:
6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):
1344.800	Table B below, for Toluene	Total Capital Investment (\$):
219.480	Table B below, for Toluene	
14,290.0	Table A below, for Toluene	
37.5	Table A below, for Toluene	ANNUAL COST INPUTS:
0.650	Default value	Operating factor (hr/yr):
231.0	Table A below, for Toluene	Operating labor rate (\$/hr):
1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):
92.1	Table A below, for Toluene	Operating labor factor (hr/sh):
7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):
6.95	Default value	Electricity price (\$/kWhr):
		Recovered VOC value (\$/lb):

Recovery credits

Total Annual Cost (without credits)

4.9436 Equation 2.6 23.6 Equation 2.8 0.0188 Equation 2.9 0.002 Equation 2.10 0.017 inlet - outlet 1.6 lb-moles x molecular weight 16,898 Equation 2.14 398 Equation 2.12 12 Equation 2.16 352 Equation 2.17 763 sum of enthalpy changes 20.0 Default value 62.9 Equation 2.19 0.6 Equation 2.18 47 Equation 2.22 0.06 Equation 2.23 1.3 Table 2.5 (see below)

Purchased Equipment Cost (\$):	13,201	Equation 2.30
Total Capital Investment (\$):	22,574	Table 2.3
ANNUAL COST INPUTS:		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.4
Maintenance labor factor (hr/sh):	0.5	Table 2.4
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	47	
Overhead	50,326	
Taxes, insurance, administrative	1,129	
Capital recovery	2,175	
		-

8,432 Equation 2.26

10,540 Equation 2.29

137,554

137,554

0

12,224 inflation adjusted

0 Equation 2.27

0 Equation 2.28

Total Annual Cost (with credits)

* Original equipment costs in EPA's OAOPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date, All calculated values in this table are based on equations from Chapter 2 of this manual.

(lb/hr):

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneration
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

2	
200	
1	
Toluene	
1.41	
92	
6.14E-02	
61449.5	
0.9031	
0.90	
6.17	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.545	Equation 1.1 and Table 1.2
0.272	50% of equilibrium capacity
1	Regenerated off-site
3	
93	Equation 1.14
31	
1	Vertical vessel, flow under 9000 cfm
0.13	Equation 1.18 or 1.21
82.61	Equation 1.19 or 1.23
33.84	Equation 1.24
77.535	Equation 1.31
263.219	Equation 1.30

 16,367
 Equation 1.25

 116
 Equation 1.16

 0

 87,482
 Equation 1.27

 146,934
 apply inflation factor

 168,974
 Table 1.4 (less sales taxes)

 250,081 Table 1.4

ANNUAL COST INPUTS:

Carbon replacement Overhead Taxes, insurance, administrative Capital recovery	50,326 12,504 32,387	
Overhead	,	
	50 326	
Carbon ronlacomont	60	Equation 1.38
		Equation 1.38
Cooling water		Equation 1.28 Equation 1.29
Steam		Equation 1.28
Electricity		Section 1.8.1.3
Maintenance labor Maintenance materials	26,828	
Supervisory labor Maintenance labor	3,942 26,828	
Operating labor	26,280	
ANNUAL COSTS:	26,200	
Taxes, insurance, admin. factor:	0.050	
Capital recovery factor (carbon):	0.5378	
Carbon life (years):	2.0	
Capital recovery factor (system):	0.1295	
Control system life (years):	10.0	
Annual interest rate (fraction):	0.05	
Overhead rate (fraction):	0.6	
Recovered VOC value (\$/lb):	-	
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Electricity price (\$/kWhr):	0.055	
Maintenance labor factor (hr/sh):	0.5	
Operating labor factor (hr/sh):	0.5	
Maintenance labor rate (\$/hr):	49.00	
	48.00	
Operating labor rate (\$/hr):		

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

lulat atua ana flavourata (a afua).
Inlet stream flowrate (acfm):
Inlet stream temperature (oF):
Inlet stream pressure (atm):
VOC to be condensed:
Inlet VOC flowrate (avg. lb/hr):
VOC molecular weight (lb/lb-mole):
VOC inlet volume fraction:
VOC inlet concentration (ppmv):
VOC inlet partial pressure (psia):
Required VOC removal (fraction):
Annual VOC inlet (tons):
Total Adsorption time per canister (hr):
Desorption time (hr):
Number of canisters:
Superficial carbon bed velocity (ft/min):
Carbon price (\$/lb):

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

2	
200	
1	
Toluene	
1.41	
92	
6.14E-02	
61449.5	
0.9031	
0.90	
6.17	
1,750	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

1,252,758 Table 1.4

2018 1/15/2020 2 2.5 1.05

2

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.545	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.272	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
9,055	Equation 1.14 (at 1750 adsorption hrs/cycle)	Maintenance materials	26,828	
6		Electricity	867	Section 1.8.1.3
54,329	Lbs per replacement times number of replacements	Carbon replacement	46,326	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	62,638	
132,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	162,238	
0				-
700,584	Equation 1.27	Total Annual Cost (without credits)	406,272	
736,051	apply inflation factor	Recovery credits		Recovered solvent not re-sold
846,458	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	406,272	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Dresinate Sources

Table 1. VOC Control Technology Cost Analysis, Dresinate Operations Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
	The sector i lation	22.2	22.2	06.0		5.2
1.	Thermal Oxidation	98.0	98.0	96.0	5.4	5.2
2.	Catalytic Oxidation	98.0	98.0	96.0	5.4	5.2
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	5.4	5.2
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	5.4	5.2
5.	Refrigerated Condenser	95.0	98.0	93.1	5.4	5.0
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	5.4	4.8
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	5.4	4.8
					*VOC Baseline =	5.5 tpy

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Carbon Adsorption (Fixed Bed)	283,567	36,723	7,725	186,358	39,200
2.	Rotary Concentrator/Oxidizer	470,908	45,368	8,764	229,409	44,317
3.	Catalytic Oxidation	510,810	48,685	9,405	280,531	54,193
4.	Regenerative Thermal Oxidizer	663,970	63,968	12,357	286,203	55,288
5.	Thermal Oxidation	560,299	53,980	10,428	345,875	66,816
6.	Carbon Adsorption (Canister)	652,707	84,529	17,781	336,181	70,716
7.	Refrigerated Condenser	4,349,585	419,049	83,508	1,504,896	299,894

* PTE based on sum of Double Drum Dryer, Tank R-1-A, and Tank 782, from IP-12a.

** Note that these costs <u>do not</u> include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988
Current Date:	1/15/2020
Years since Cost Base Date:	32
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	2.20

INPUT PARAMETERS

INPUT PARAIVIETERS		
Gas flowrate (scfm):	4,000	drum dryer scrubber
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Predominant VOC constituent:	Toluene	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene
Pollutant concentration (ppmv):	26.8	based on Toluene
Waste gas heat content (BTU/scf):	1.0	Equation 2.16
Waste gas heat content (BTU/lb):	13.5	
Gas heat capacity (BTU/lb-oF):	0.255	air
Combustion temperature (oF):	1,400	
Preheat temperature (oF):	800	Equation 2.18
Fuel heat of combustion (BTU/lb):	21,502	methane
Fuel density (lb/ft3):	0.0408	methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	2.428	Equation 2.21
(scfm):	59.5	
Total Gas Flowrate (scfm):	4,060	
Pressure drop (in. w.c.):	12.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (EC):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.29
@ 35 % heat recovery:	0	Equation 2.30
@ 50 % heat recovery:	136,369	Equation 2.31
@ 70 % heat recovery:	0	Equation 2.32
Auxiliary equipment :	-	

ANNUAL COST INPUTS ating factor (br/

ANNUAL COST INPUTS		
Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	includes benefits
Maintenance labor rate (\$/hr):	49.00	includes benefits
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.050	
Control system life (years):	15	
Capital recovery factor (CRF):	0.0963	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS		
Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	125,100	
Electricity	4,577	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	28,015	
Capital recovery	53,980	=CRF x TCI
		-

345,875

Total Annual Cost

Total Equipment Cost--base: Total Equipment Cost--escalated (A): Purchased Equipment Cost (B): Total Capital Investment (TCI):

136,369 =EC + Auxiliary costs 300,525 =Base cost x inflation factor 354,620 =1.18A (Table 2.10) 560,299 =1.58B (Table 2.10)

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	
Current Date:		1/15/2020	
Years since Cost Base Date:		4	
Average inflation rate/year, %:		2.5	
Inflation adjustment factor:		1.10	
INPUT PARAMETERS		4 000	
Exhaust Gas flowrate (scfm):		4,000	
Reference temperature (oF):		77	
Waste gas inlet temperature, Tw _i (oF):		200	
Inlet gas density (lb/scf):		0.0739	air
Primary heat recovery (fraction):		0.85	
Waste gas heat content, annual avg. (BTU/s	scf):		Equation 2.16
Waste gas heat content (BTU/lb):		13.5	
Gas heat capacity (BTU/lb-oF):		0.255	
Combustion temperature (oF):		1,400	
Temperature leaving heat exchanger, Tw_{o} (oF):	1220	Equation 2.18
Fuel heat of combustion (BTU/lb):		21,502	methane
Fuel density (lb/ft3):		0.041	methane
Pressure drop (in. w.c.):		19.0	Table 2.13
CALCULATED UTILITY USAGES			
Auxiliary Fuel Requirement:	(lb/min):	0.925	Equation 2.21
	(scfm):	22.67	-4
	(mcf/yr):	11,913.0	
Total Maximum Exhaust Gas Flowrate:	(scfm):	4,023	
CALCULATED CAPITAL COSTS			
Oxidizer Equipment Cost (EC):		222 627	E
@ 85% heat reco	-	-	Equation 2.33
@ 95% heat reco	very:	0	Equation 2.33
Auxiliary equipment :		0	
Total Equipment Costbase:		322,637	=EC + Auxiliary costs
Total Equipment Costescalated (A):		356,131	=Base cost x inflation factor
Purchased Equipment Cost (B):		420,234	=1.18A (Table 2.10)
Total Capital Investment (TCI):		663,970	=1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr): 8,760	
Operating labor rate (\$/hr): 48.00	
Maintenance labor rate (\$/hr): 49.00	
Operating labor factor (hr/sh): 0.5 Table	e 2.12
Maintenance labor factor (hr/sh): 0.5 Table	e 2.12
Electricity price (\$/kwh): 0.055	
Natural gas price (\$/mscf): 4.00	
Annual interest rate (fraction): 0.050	
Control system life (years): 15	
Capital recovery factor: 0.0963	
Taxes, insurance, admin. factor:0.05	

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	26,280	-
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	47,652	
Electricity	7,181	Section 2.5.2.1
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	33,199	
Capital recovery	63,968	=CRF x TCI

286,203

Total Annual Cost

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

W:\Eastman_Chemical\19.056_RACT2_Analysis\Cost_Analysis_Tables\Dresinate\Dresinate_VOC_CostAnalysis_20200114.xlsx

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	
Current Date:	1/15/2020	
Years since Cost Base Date:	32	
Average inflation rate/year, %:	2.5	
Inflation adjustment factor:	2.20)
INPUT PARAMETERS		
Gas flowrate (scfm):	4,000	
Reference temperature (oF):	77	
Inlet gas temperature (oF):	200	
Inlet gas density (lb/scf):	0.0739	air
Primary heat recovery (fraction):	0.50	
Waste gas heat content (BTU/scf):	1.00	Equation 2.16
Waste gas heat content (BTU/lb):	13.53	
Gas heat capacity (BTU/lb-oF):	0.26	air
Combustion temperature (oF):	850	
Preheat temperature (oF):	525	Equation 2.18
Fuel heat of combustion (BTU/lb):		Methane
Fuel density (lb/ft3):		Methane
CALCULATED PARAMETERS		
Auxiliary Fuel Needed (lb/min):	1.239	Equation 2.21
(scfm):	30.4	
Total Gas Flowrate (scfm):	4,030	
Catalyst Volume (ft3):	7.8	
Pressure drop (in. w.c.):	14.0	Table 2.13
CALCULATED CAPITAL COSTS		
Equipment Costs (\$):		
Incinerator:		
@ 0 % heat recovery:	0	Equation 2.34
@ 35 % heat recovery:	0	Equation 2.35
@ 50 % heat recovery:	124,324	Equation 2.36
C	,	

Other equipment :

Total Equipment Costbase:
Total Equipment Costescalated (A):
Purchased Equipment Cost (B):
Total Capital Investment (TCI):

@ 70 % heat recovery:

0 Equation 2.37

124,324 =EC + Auxiliary costs 273,981 =Base cost x inflation factor 323,297 =1.18A (Table 2.10) **510,810** =1.58B (Table 2.10)

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.12
Maintenance labor factor (hr/sh):	0.5	Table 2.12
Electricity price (\$/kwh):	0.055	
Catalyst price (\$/ft3):	650	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Catalyst life (years):	2	
Capital recovery factor (system):	0.0963	
Capital recovery factor (catalyst):	0.5378	
Taxes, insurance, admin. factor:	0.05	

CALCULATED ANNUAL COSTS

Operating labor	26,280	
Supervisory labor	3,942	Table 2.12
Maintenance labor	26,828	
Maintenance materials	26,828	Table 2.12
Natural gas	63,854	
Electricity	5,301	Section 2.5.2.1
Catalyst replacement	2,947	
Overhead	50,326	Table 2.12
Taxes, insurance, administrative	25,540	
Capital recovery	48,685	=CRF x TCI

Total Annual Cost

280,531

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

W:\Eastman_Chemical\19.056_RACT2_Analysis\Cost_Analysis_Tables\Dresinate\Dresinate_VOC_CostAnalysis_20200114.xlsx

Table 5.

Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996
Current Date:	1/15/2020
Years since Cost Base Date:	24
Average inflation rate/year, %:	2.5
Inflation adjustment factor:	1.81

PARAMETERS

Flowrate (cfm)
Control device input mass (tons/year)
Concentration (avg. ppmv)
Facility operating schedule (hours/year)
Thermal oxidizer temperature (F)
Fuel cost, (\$/million BTU)
Electricity cost, (\$/kwhr)

ENERGY CALCULATIONS

Heat recovery (%)
Pressure drop (inches WC)
Electrical power (kW)
Fuel usage (Btu/hr)

CAPITAL COSTS

Equipment cost (EC), (Durr budgetary costs, 3/15/96)
Escalated Equipment Cost (A)
Other equipment:
Total Direct Cost (TDC), (\$)
Total Capital Investment (TCI), (\$)

130,695 236,391 inflation adjustment 0 382,971 sty-cost.wk3 470,908 sty-cost.wk3

14 Table 2.13 (catalytic) 10.9 Section 2.5.2.1 600,199 Equation 2.21

4,000 5.4

8,760 1,400 4.00 0.055

50

26.82 based on Toluene

ANNUAL COST INPUTS

Operating factor (hr/yr):	8,760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.50	Table 2.12
Maintenance labor factor (hr/sh):	0.50	Table 2.12
Electricity price (\$/kwh):	0.055	
Natural gas price (\$/mscf):	4.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	

ANNUAL OPERATING COSTS

Operating labor	26,280
Supervisory labor	3,942 Table 2.12
Maintenance labor	26,828
Maintenance materials	26,828 Table 2.12
Natural gas	21,031
Electricity	5,261
Overhead	50,326 Table 2.12
Taxes, insurance, administrative	23,545
Capital recovery	45,368 =CRF x TCI

Total Annual Cost

229,409

* Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Total Annual Cost Spreadsheet - Packaged Condenser Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

2014 1/15/2020 6 2.5 1.16

> 4,000 200

0.90

6.955 Table B below, for Toluene

1344.800 Table B below, for Toluene

219.480 Table B below, for Toluene

14,290.0 Table A below, for Toluene

1,065.0 Table A below, for Toluene

92.1 Table A below, for Toluene

7.20 Table A below, for Toluene

1.4 lb-moles x molecular weight

0.650 Default value 231.0 Table A below, for Toluene

6.95 Default value

0.0020 Equation 2.6

-112.1 Equation 2.8

0.0164 Equation 2.9

0.002 Equation 2.10

0.015 inlet - outlet

18,300 Equation 2.14

1,327,975 Equation 2.17 1,328,438 sum of enthalpy changes

444 Equation 2.12

19 Equation 2.16

20.0 Default value

95.6 Equation 2.19

694.7 Equation 2.18

81,750 Equation 2.22

110.70 Equation 2.23

11.7 Table 2.5 (see below)

37.5 Table A below, for Toluene

Toluene

0.000027

A:

B:

C:

(lb/hr):

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (scfm):
Inlet stream temperature (oF):
VOC to be condensed:
VOC inlet volume fraction:
Required VOC removal (fraction):
Antoine equation constants for VOC:

VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): Coolant specific heat (BTU/lb-oF): VOC boiling point (oF): VOC critical temperature (oR): VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF):

DESIGN PARAMETERS:

Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC condensed (Ib-moles/hr):

VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): Electricity requirement (kW/ton of refrigeration)

CAPITAL COSTS:

Equipment Costs (\$):		
Refrigeration unit/single-stage (< 10 tons):	0	Equation 2.26
Refrigeration unit/single-stage (> 10 tons):	709,801	Equation 2.27
Multistage refrigeration unit:	1,624,706	Equation 2.28
Total equipment cost (\$)base:	2,030,882	Equation 2.29
Total equipment cost (\$)escalated:	2,355,201	inflation adjusted
Purchased Equipment Cost (\$):	2,543,617	Equation 2.30
Total Capital Investment (\$):	4,349,585	Table 2.3

ANNUAL COST INPUTS:

ANNUAL COST INFOTS.		
Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	Table 2.4
Maintenance labor factor (hr/sh):	0.5	Table 2.4
Electricity price (\$/kWhr):	0.055	
Recovered VOC value (\$/lb):	0.00	
Annual interest rate (fraction):	0.05	
Control system life (years):	15	
Capital recovery factor:	0.0963	
Taxes, insurance, admin. factor:	0.05	
ANNUAL COSTS:		
Operating labor	26,280	
Supervisory labor	3,942	
Maintenance labor	26,828	
Maintenance materials	26,828	
Electricity	734,165	
Overhead	50,326	
Taxes, insurance, administrative	217,479	
Capital recovery	419,049	-
Total Annual Cost (without credits)	1,504,896	
Recovery credits	0	
Total Annual Cost (with credits)	1,504,896	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneratio	n
Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA	

COST REFERENCE DATE*:
Current Date:
Years since Cost Base Date:
Average inflation rate/year, %:
Inflation adjustment factor:

INPUT PARAMETERS:

Inlet stream flowrate (acfm): Inlet stream temperature (oF): Inlet stream pressure (atm): VOC to be condensed: Inlet VOC flowrate (avg. lb/hr): VOC molecular weight (lb/lb-mole): VOC inlet volume fraction: VOC inlet concentration (ppmv): VOC inlet partial pressure (psia): Required VOC removal (fraction): Annual VOC inlet (tons): Adsorption time (hr): Desorption time (hr): Number of adsorbing vessels: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): Material of construction factor:

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (Ib VOC/Ib carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (Ib): Carbon requirement per vessel (Ib): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):

CAPITAL COSTS:

Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

4,000	
200	
1	
Toluene	
1.23	
92	
2.68E-05	
26.8	
0.0004	
0.90	
5.39	
12	Operating hours between carbon replacement
5	Regenerated off-site
2	
75.0	default, page 1-35
1.25	reactivated, page 1-6
1.30	stainless steel 316, Table 1.3

1999 1/15/2020 21 2.5 1.68

0.233	Equation 1.1 and Table 1.2
0.116	50% of equilibrium capacity
1	Regenerated off-site
3	
190	Equation 1.14
63	
2,000	Vertical vessel, flow under 9000 cfm
5.83	Equation 1.18 or 1.21
5.08	Equation 1.19 or 1.23
146.31	Equation 1.24
0.079	Equation 1.31
1.268	Equation 1.30

 51,124
 Equation 1.25

 238
 Equation 1.16

 0
 99,196

 Equation 1.27
 166,608

 apply inflation factor

 191,599
 Table 1.4 (less sales taxes)

 283,567
 Table 1.4

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760	
Operating labor rate (\$/hr):	48.00	
Maintenance labor rate (\$/hr):	49.00	
Operating labor factor (hr/sh):	0.5	
Maintenance labor factor (hr/sh):	0.5	
Electricity price (\$/kWhr):	0.055	
Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
Recovered VOC value (\$/lb):	-	
Overhead rate (fraction):	0.6	
Annual interest rate (fraction):	0.05	
Control system life (years):	10.0	
Capital recovery factor (system):	0.1295	
Carbon life (years):	2.0	
Capital recovery factor (carbon):	0.5378	
Taxes, insurance, admin. factor:	0.050	
ANNUAL COSTS: Operating labor Supervisory labor Maintenance labor Maintenance materials	26,280 3,942 26,828 26,828	
Electricity	467	Section 1.8.1.3
Steam	189	Equation 1.28
Cooling water	459	Equation 1.29
Carbon replacement	138	Equation 1.38
Overhead	50,326	
Taxes, insurance, administrative	14,178	
Capital recovery	36,723	_
Total Annual Cost (without credits) Recovery credits	186,358	Recovered solvent not re-sold
Total Annual Cost (with credits)	186,358	

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	
Current Date:	
Years since Cost Base Date:	
Average inflation rate/year, %:	
Inflation adjustment factor:	

INPUT PARAMETERS:

Inlet stream flowrate (acfm):		
Inlet stream temperature (oF):		
Inlet stream pressure (atm):		
VOC to be condensed:		
Inlet VOC flowrate (avg. lb/hr):		
VOC molecular weight (lb/lb-mole):		
VOC inlet volume fraction:		
VOC inlet concentration (ppmv):		
VOC inlet partial pressure (psia):		
Required VOC removal (fraction):		
Annual VOC inlet (tons):		
Total Adsorption time per canister (hr):		
Desorption time (hr):		
Number of canisters:		
Superficial carbon bed velocity (ft/min):		
Carbon price (\$/lb):		

DESIGN PARAMETERS:

Carbon adsorptivity (Ib Toluene/Ib carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr)

CAPITAL COSTS:

Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)--base: Total equipment cost (\$)--escalated: Purchased Equipment Cost (\$): Total Capital Investment (\$):

4,000 200	
1	
Toluene	
1.23	
92	
2.68E-05	
26.8	
0.0004	
0.90	
5.39	
850	Operating hours between carbon replacement
0	Regenerated off-site
2	Only one online at a time
75.0	default, page 1-35
1.25	reactivated, page 1-6

652,707 Table 1.4

2018 1/15/2020 2 2.5 1.05

ANNUAL COST INPUTS:

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	48.00
Maintenance labor rate (\$/hr):	49.00
Operating labor factor (hr/sh):	0.5
Maintenance labor factor (hr/sh):	0.5
Electricity price (\$/kWhr):	0.055
Recovered VOC value (\$/lb):	-
Overhead rate (fraction):	0.6
Annual interest rate (fraction):	0.05
Control system life (years):	10.0
Capital recovery factor (system):	0.1295
Carbon life (years):	2.0
Capital recovery factor (carbon):	0.5378
Taxes, insurance, admin. factor:	0.050

0.233	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
0.116	50% of equilibrium capacity	Operating labor	26,280	
0	Regenerated off-site	Supervisory labor	3,942	
2		Maintenance labor	26,828	
8,993	Equation 1.14 (at 850 adsorption hrs/cycle)	Maintenance materials	26,828	
11		Electricity	467	Section 1.8.1.3
98,918	Lbs per replacement times number of replacements	Carbon replacement	84,346	Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326	
		Taxes, insurance, administrative	32,635	
189,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	84,529	
0				-
365,015	Equation 1.27	Total Annual Cost (without credits)	336,181	
383,494	apply inflation factor	Recovery credits		Recovered solvent not re-sold
441,018	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	336,181	

* Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

ALLEGHENY COUNTY HEALTH DEPARTMENT

)

)

)

)

IN RE:

Hercules Incorporated State Highway 837 Allegheny County West Elizabeth, PA 15088 PLAN APPROVAL ORDER AND AGREEMENT NO. 257 <u>UPON CONSENT</u>

this 14th day of January, 1998,97 AND NOW,

WHEREAS, the Allegheny County Health Department, (hereafter referred to as "Department"), has determined that the Hercules Incorporated (hereafter referred to as "HERCULES"), State Highway 837, Allegheny County, West Elizabeth, PA 15088, is the owner and operator of synthetic hydrocarbon resin production facilities at State Highway 837, Allegheny County, West Elizabeth, PA 15088 (hereafter referred to as "the facility"), is a major stationary source of volatile organic compounds (hereafter referred to as "VOCs") emissions as defined in Section 2101.20 of Article XXI, Rules and Regulations of the Allegheny County Health Department, Air Pollution Control (hereafter referred to as "Article XXI"); and

WHEREAS, the Department has determined that Section 2105.06.a. of Article XXI, entitled "Major Sources of NO, & VOCs" is applicable to HERCULES's operations at this facility; and

WHEREAS, HERCULES promptly submitted to the Department all documents required by Section 2105.06.b of Article XXI (hereafter referred to as "the proposal"); and

WHEREAS, the Department, after a review of the submitted proposal, has determined the proposal to be complete; and

WHEREAS, the Department has further determined, after review of the submitted proposal, that it constitutes Reasonably Available Control Technology (hereafter referred to as "RACT") for control of VOC emissions from HERCULES; and

WHEREAS, the Department and HERCULES desire to memorialize the details of the submitted proposal by entry of a Plan Approval Order and Agreement Upon Consent; and

WHEREAS, pursuant to Section 2109.03 of Article XXI, the Director of the Allegheny County Health Department or his designated representative may issue such orders as are necessary to aid in the enforcement of the provisions of Article XXI;

NOW, THEREFORE, this day first written above, the Department, pursuant to Section 2109.03 of Article XXI, and upon agreement of the parties as hereinafter set forth, hereby issues this Plan Approval Order and Agreement upon Consent:

I. ORDER

1.1. HERCULES shall at no time operate the following process equipment while generating VOC emissions unless all non-fugitive emissions are processed through cooling tower water-cooled condensers. Such condensers shall be properly maintained and operated at all times while treating VOC emissions from the subject equipment, with the exception of activities to mitigate emergency conditions, with a coolant inlet temperature no greater than ten degrees fahrenheit above ambient air temperature, except that at no time will coolant temperature be required to be less than 50°F.

Subject Process Equipment Per Process Unit:

- A. V-8 Polymerization Unit Process Equipment:
 - 1. First and second flashers and OVDHS accumulators
 - 2. Mixpot
 - 3. No. twenty-five (25) agitator
- B. Water-White Polymerizatyion Unit Process Equipment:

- 1. Reclaimer
- C. MP Polymerization Unit
 - 1. Reactor
- D. Suspension Polymerization Unit Process Equipment:
 - 1. North, South and West reactors
- E. Pilot Plant Process Equipment:
 - 1. Reactor
 - 2. Neutralizer
 - 3. Funda Filter
- F. No. three (3) LTC Finishing Unit Process Equipment:
 - First and second stage reactor vacuum jets
- G. C-5 Polymerization Unit Process Equipment:
 - Resin kettles no. eight (8), when containing volatile organic compounds.
 - Solvent flush, irganox, reclaim and precoat tanks
- H. No.s one (1) and two (2) LTC Finishing Unit Process Equipment:
 - 1. No.s one (1) and two (2) flasher feed

2. No.s one (1) and two (2) flasher jets

C-Polymerization Unit Process Equipment:
 Reactors no. 1-1, 1-2, 2-1 and 2-2

1.2. HERCULES shall at no time operate the following process equipment while generating VOC emissions unless all such non-fugitive emissions are processed through refrigerated condensers. Such condensers shall be properly maintained and operated at all times while treating VOC emissions, with the exception of activities to mitigate emergency conditions, with coolant inlet temperatures no greater than those listed below.

Subject Process Equipment Per Process Unit:

- A. MP Polymerization Unit Process Equipment:
 - 1. Preblend, receiver, solvent filtrate and filtrate receiver tanks

with inlet coolant temperatures no greater

than ten (10) degrees centigrade.

- B. C-5 Polymerization Unit Process Equipment:
 - 1. Neutralizers and Filtrate Receiver
 - 2. Reactor
 - 3. Toluene column

with inlet coolant temperatures no greater than zero (0) degrees Fahrenheit.

1.3. By no later than May 1, 1997, HERCULES shall complete installation of refrigerated condenser systems, for the purpose of reducing VOC emissions, from the subject process equipment listed below.

Subject Process Equipment Per Process Unit:

- A. Hydrogenation Unit Process Equipment:
 - 1. Storage tanks no.s T-101, T-102, T-105 and T-106
 - 2. Autoclave vent tank
 - Product tank, T-501 & Solvent tank, T-502
 - 2. Metering tank
 - 3. Pall and Sweetland filter blowing
 - 4. Autoclaves no.s one (1) and two (2)

- B. Water-White Polymerization Unit Process Equipment:
 - 1. Feed dryers
 - 2. Reactors
 - 3. Neutralizer
 - 4. Filtrate receiver
- 1.4. By no later than August 1, 1997, HERCULES shall commence operation of the refrigerated condenser Systems, for the purpose of reducing VOC emissions,from the subject equipment listed in paragraph 1.3 above. Such condensers shall be properly maintained and operated at all times while treating VOC emissions, with the exception of activities to mitigate emergency conditions, with coolant inlet temperatures no greater than ten (10) degrees centigrade.
- 1.5. HERCULES shall at all times maintain all appropriate records to demonstrate compliance with the requirements of both Section 2105.06 Article XXI and this Order. Data and information required to determine compliance shall be recorded and maintained by HERCULES and shall include, but not be limited, the following.

- A. Production records and condenser coolant temperatures
- 1.6. HERCULES shall retain all records required by both Section 2105.06 of Article XXI and this Order for the facility for at least two (2) years and shall make the same available to the Department upon request.
- 1.7. HERCULES shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices.

II. AGREEMENT

The foregoing Order shall be enforced in accordance with and is subject to the following agreement of the parties, to wit:

2.1. The contents of this Order shall be submitted to The U.S. Environmental Protection Agency as a revision to the Commonwealth of Pennsylvania's State Implementation Plan (hereafter referred to

as "SIP").

- 2.2. This Order establishes the extent of HERCULES' obligation with respect to the control of VOCs from this facility. Compliance with the requirements stated in the Order portion of this Order and Agreement shall be deemed compliance with all VOC control requirements for equipment described in HERCULES' RACT Plan. Failure of HERCULES to comply with this Enforcement Order and Agreement by Consent shall subject HERCULES to only the remedies provided for violations of Article XXI.
- 2.3. If any event occurs which is beyond the control of HERCULES and which causes or may cause delays in the achievement of the deadlines contained in paragraphs 1.3 and 1.4 of this Order.
 - a. HERCULES shall notify the Department in writing within ten (10) days of the delay or anticipated delay, describing in detail the nature of the delay, the anticipated length of the delay, the precise cause or causes of the delay, the measures taken and to be taken by HERCULES to prevent or minimize the delay,

and the timetable by which those measures will be implemented. HERCULES shall adopt all reasonable measures to avoid or minimize any such delay. Failure by HERCULES to comply with the notice requirement of this subparagraph, (2.3.a.) specifically may in sole discretion of the Department render the remaining provisions of this paragraph (2.3.b. - 2.3.c.) void and of no effect as to the particular incident involved.

- b. If the Department agrees that the delay or anticipated delay in complying with this Order has been or will be caused by circumstances beyond the control of HERCULES, the time for performance hereunder may be extended for a period no longer than the delay resulting from such circumstances.
- c. The burden of proving that any delay is caused by circumstances beyond the control of HERCULES shall rest with HERCULES. Increased costs or expenses associated with the implementation of actions called for by this Order shall not, in any event, be a basis for changes in this Order or extensions of time

under this paragraph. Delay in achievement of one interim step shall not necessarily justify or excuse delay in achievement of subsequent steps.

- 2.4. HERCULES hereby consents to the foregoing Order and hereby knowingly waives all rights to appeal said Order, and the undersigned represents that he is authorized to consent to the Order and to enter into this Agreement on behalf of HERCULES.
- 2.5. The County shall, upon request by HERCULES, accept and evaluate requests for amendments to Allegheny County's portion of the SIP and if appropriate, submit the amendments to the U.S. EPA for incorporation into the SIP. HERCULES hereby reserves its appeal rights to Article XXI, Rules and Regulations of the ACHD, Hearings and Appeals, for any subject amendments made or failure to make such amendments.

IN WITNESS WHEREOF, and intending to be legally bound, the parties hereby consent to all of the terms and conditions of the foregoing Order and Agreement as of the date of the above written.

HERCULES INC. fourt / Sugla By: _ (signature)

Print or type Name: Joseph P. Ziegler

Title: Plant Manager

Date: 1/3/97

ALLEGHENY COUNTY HEALTH DEPARTMENT Bruch. Diem 1/14/97 Bv:

Bruce W. Dixon, M.D., Director Allegheny County Health Department

and By: Thom f. fugned

Thomas J. Puzniak, Engineering Manager Air Quality Program

ALLEGHENY COUNTY HEALTH DEPARTMENT

July 22, 1996

SUBJECT: Review of VOC RACT Submittal Hercules, Incorporated State Highway 837 West Elizabeth, PA Allegheny County

Order and Agreement No. 257

George A Manown, Assistant yau Manager, Air Our die

THROUGH: (

FROM:

T. J. Novack, P.E. Air Quality Engineer

SOURCE DESCRIPTION:

The Hercules, Inc., West Elizabeth facility produces synthetic hydrocarbon resins and is a major source of VOCs and NO_x . NO_x RACT was addressed in a separate submittal. The facility produces a variety of resins from resin oils, monomers, solvents and catalysts and is comprised of the following processes.

- 1. Water white polymerization unit WW Poly
- 2. C polymerization unit C Poly
- 3. MP polymerization unit MP Poly
- 4. C-5 unit
- 5. LTC 1&2 unit
- 6. LTC 3 unit
- 7. V-8 unit
- 8. HSI unit
- 9. Hydrogenation unit Hydro
- 10. Wastewater treatment plant WWTP
- 11. Boilerhouse
- 12. Pilot Plant

The main polymerization units are the C poly, MP poly, WW poly, HSI & C-5. The LTCs and V-8 units are finishing processes that treat resin produced by the main polymerization units. The Hydro unit hydrogenizes resins produced in the main polymerization units prior to the finishing processes.

PROCESS COMPONENTS, VOC MAXIMUM POTENTIAL TO EMIT AND EXISTING CONTROL EFFICIENCY:

All VOC emitting process components, along with existing VOC controls, existing VOC control efficiency, uncontrolled maximum potential VOC emissions per component and per process and existing controlled maximum potential VOC emissions per component and per process are presented in appendix A, " Process Data."

VOLATILE ORGANIC STORAGE TANKS:

All existing volatile organic storage tanks at the facility not regulated by Section 2105.12 of Article XXI, "Volatile Organic Compound Storage Tanks", along with the maximum potential VOC emissions per tank are presented in appendix B, "Tank Data."

REGULATORY ANALYSIS:

This facility is a major source NO_x and VOC emissions, therefore, this facility is subject to the requirements of the Reasonably Available Control Technology regulation of section 2105.06 of Article XXI, Allegheny County Health Department, Rules and Regulations, Air Pollution Control.

VOC RACT ANALYSIS:

The VOC RACT analysis was conducted with guidance from EPA-453/R-93-017, "Control of Volatile Organic Compound Emissions from Batch Processes", Draft, November 1993 and EPA's OAQPS Cost Manual. References 1 and 2 respectively.

Processes:

have either water-cooled processes condensers or All refrigerated condensers for VOC control with the exception of the WWTP. Based on the above references 1 and 2, the most inexpensive additional control options were 1) to add water cooled condensers to process units which are presently uncontrolled 2) to upgrade existing cooling tower water condenser systems with refrigerated units, 3) installation of separate thermal oxidation units as secondary treatment on the various plant processes and 4) to install a thermal oxidation unit that would process the existing controlled emissions from the facility. Since all other options are less cost effective than those stated, they were not considered in this RACT analysis.

1. Installation of water cooled condensers on process units that are presently uncontrolled is economically infeasible. See appendix for the cost analysis.

2. Installation of refrigerated condenser systems as secondary VOC controls following existing water cooled condensers were considered the most inexpensive technically feasible options for the following

processes:

- V-8 Polymerization Unit
 Hydrogenation Unit
- 3. Water-white Polymerization Unit
- 4. HSI Polymerization Unit
- 5. No. 3 LTC Finishing Unit
- 6. No.s 1 & 2 LTC Finishing Unit
- 7. C-Poly Polymerization Unit
- 8. Pilot Plant

This option was found to be cost prohibitive for all the above processes except the Hydrogenation Unit and the Water-white polymerization unit. The economic analysis for the no. 3 LTC unit demonstrates that this option is also cost prohibitive for the pilot plant. See appendix C for the cost analyses.

2. Installation of separate thermal oxidizers as secondary VOC control systems following the existing refrigerated condenser systems were considered the most inexpensive technically feasible control options for the following processes:

- 1. C-5 Polymerization Unit
- 2. MP Polymerization Unit

This option was found to be cost prohibitive for the C-5 polymerization unit which also demonstrates that it is cost prohibitive for the MP polymerization unit.

3. Installation of a thermal oxidation system to treat all processes in the facility was found to be cost prohibitive. In addition, a thermal oxidation unit would pose special problems in construction and operation which include the following:

- 1. A minimum of at least one mile of main conduit is required to join all the processes at the facility.
- 2. A main CONRAIL railroad line would have to be crossed with main line conduit.
- 3. The processes are not continuous VOC emission units which would require extensive instrumentation on the various processes to vent the emissions when they occur without disrupting the processes themselves.
- 4. The thermal oxidation system would have to be placed at the plant boundary as far away from all storage tanks and processes as possible due to the flammable nature of the components stored and used at the facility. This would require that the system be placed along the Ohio river where flooding would have to be taken into consideration.

See appendix C for the cost analysis.

Waste water treatment plant:

The installation of covers and a refrigerated condenser system was considered the most inexpensive control system for this unit. This system is technically feasible but cost prohibitive. See appendiX C for the cost analysis.

Boiler house:

With a VOC potential to emit of less than 5 TPY operation and maintenance costs alone would make any controls cost prohibitive. See appendix C for the cost analysis.

Storage Tanks:

There are 171 volatile organic storage tanks located at the facility. 37 of these tanks are subject to Section 2105.12 of Article XXI, "Volatile Organic Compound Storage Tanks", and therefor have VOC RACT in place. 134 tanks are not subject to the referenced regulation and are subject to VOC RACT analysis.

The facility is approximately 2,200 feet by 1,200 feet with the storage tanks placed throughout the plant. The storage tanks are grouped in areas in the facility with the largest VOC potential to emit from a group being approximately 62 TPY from 15 tanks.

VOC emission controls were analyzed for 1) the individual storage tank with the largest VOC potential to emit and 2) a group of tanks with a single control system.

1. Tank no. 151 has the largest potential to emit of 49.5 TPY The possible control options consist of thermal oxidation and refrigerated condenser systems. The analysis of thermal oxidation as a secondary control system for the C-5 polymerization process with a VOC potential to emit of 62 TPY, demonstrates that thermal oxidation for this tank is cost prohibitive. The emissions from the C-5 unit are greater than this tank and cost prohibitive making it cost prohibitive for this tank also.

Based on the analysis of a refrigerated condenser system for the no. 1 & 2 LTC finishing unit with a VOC potential to emit of 54.8 TPY, a condenser system on a single tank would be cost prohibitive.

2. Thermal oxidation or refrigerated condenser systems for a group of tanks with a VOC potential to emit of 62 TPY would be cost prohibitive for the same reasons given in paragraph 1. above. In addition all groups of tanks at the facility individually contain different volatile organics, i.e. styrene, toluene and resin oil, This means that any group of tanks would require numerous individual condensation units or separation units to recover the mixed condensate from a single condensation unit.

CONCLUSIONS AND RECOMMENDATIONS:

Installation of refrigerated condenser systems for the hydrogenation and water-white polymerization units are cost effective and will be considered VOC RACT for these units. The installation of these systems will reduce potential VOC emissions by approximately 300 TPY and raise the overall plant process VOC control efficiency to 89.4%, See appendix D for this summary.

All VOC controls beyond existing controls for all other process units and storage tanks not regulated by Section 2105.12 of Article XXI are cost prohibitive. VOC RACT will be the continued proper operation and maintenance of all VOC emission units, storage tanks and VOC controls, i.e. existing water cooled and refrigerated condensers.

The facility will be subject to following VOC RACT conditions:

1. HERCULES shall at no time operate the following process equipment while generating VOC emissions unless all non-fugitive emissions are processed through cooling tower water-cooled condensers. Such condensers shall be properly maintained and operated at all times while treating VOC emissions from the subject equipment, with the exception of activities to mitigate emergency conditions, with a coolant inlet temperature no greater than ten degrees fahrenheit above ambient air temperature, except that at no time will coolant temperature be required to be less than 50°F,

Subject Process Equipment Per Process Unit:

- V-8 Polymerization Unit Process Equipment:
 1. First and second flashers and OVDHS accumulators
 - 2. Mixpot
 - 3. No. twenty-five (25) agitator
- B. Water-White Polymerization Unit Process Equipment:1. Reclaimer
- C. MP Polymerization Unit
 - 1. Reactor
- D. Suspension Polymerization Unit Process Equipment:
 - 1. North, South and West reactors
- E. Pilot Plant Process Equipment:
 - 1. Reactor
 - 2. Neutralizer
 - 3. Funda Filter
- F. No. three (3) LTC Finishing Unit Process Equipment:
 - 1. First and second stage reactor vacuum jets
- G. C-5 Polymerization Unit Process Equipment:
 - 1. Resin kettles no. eight (8), when

containing volatile organic compounds.

- 2. Solvent flush, irganox, reclaim and precoat tanks
- H. No.s one (1) and two (2) LTC Finishing Unit Process Equipment:
 - 1. No.s one (1) and two (2) flasher feed
 - 2. No.s one (1) and two (2) flasher jets
- I. C-Polymerization Unit Process Equipment: 1. Reactors no.s 1-1, 1-2, 2-1 and

2-2

2.

J. Solution Polymerization Unit Process Equipment: 1. Reactor

HERCULES shall at no time operate the following process equipment while generating VOC emissions unless all such non-fugitive emissions are processed through refrigerated condensers. Such condensers shall be properly maintained and operated at all times while treating VOC emissions, with the exception of activities to mitigate emergency conditions, with coolant inlet temperatures no greater than those listed below.

Subject Process Equipment Per Process Unit:

- A. MP Polymerization Unit Process Equipment:
 - 1. Preblend, receiver, solvent filtrate and filtrate receiver tanks
 - with inlet coolant temperatures no greater than ten
 - (10) degrees centigrade.
 - B. C-5 Polymerization Unit Process Equipment:
 - 1. Neutralizers and Filtrate Receiver
 - 2. Reactor
 - 3. Toluene column

with inlet coolant temperatures no greater than zero (0) degrees Fahrenheit.

3. By no later than May 1, 1997, HERCULES shall complete installation of refrigerated condenser systems, for the purpose of reducing VOC emissions, from the subject process equipment listed below.

Subject Process Equipment Per Process Unit:

- A. Hydrogenation Unit Process Equipment:
 - 1. Storage tanks no.s T-101, T-102, T-105 and T-106
 - 2. Autoclave vent tank
 - 3. Product tank, T-501 & Solvent tank, T-502
 - 2. Metering tank
 - 3. Pall and Sweetland filter blowing

- 4. Autoclaves no.s one (1) and two (2)
- в. Water-White Finishing Unit Process Equipment:
 - Feed dryers 1.
 - 2. Reactors
 - 3. Neutralizer
 - Filtrate receiver 4.
- By no later than August 1, 1997, HERCULES shall commence operation of the refrigerated condenser Systems, for the purpose of reducing VOC emissions, from the subject equipment listed in paragraph 1.3 Such condensers shall be properly maintained above. and operated at all times while treating VOC emissions, with the exception of activities to mitigate emergency conditions, with coolant inlet temperatures no greater than ten (10) degrees centigrade.
- 5. HERCULES shall at all times maintain all appropriate records to demonstrate compliance with the requirements of both Section 2105.06 Article XXI and Data and information required to Order no. 257. determine compliance shall be recorded and maintained by HERCULES and shall include, but not be limited, the following.
 - Α. Production records and condenser coolant temperatures
- 6. HERCULES shall retain all records required by both Section 2105.06 of Article XXI and Order no. 257 for the facility for at least two (2) years and shall make the same available to the Department upon request.
- 7. HERCULES shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices.

4.

APPENDIX A

PROCESS DATA

i)

ł

VOC POTENTIAL TO EMIT AND EXIS	STING CONTROL EFFICIENCY	<u> </u>			
PROCESS - V-8 UNIT EMISSION UNIT	EXISTING CONTROL DEVICE	NO CONTROLS PTE TPY	CONTROLLED PTE TPY	VOC PTE REDUCTION TPY	% VOC CONTRO
1 1st STAGE FLASHER/ACCUMULATOR	CONDENSER @ AMBIENT	28.30	7.37	20.93	73.9
2 2nd STAGE FLASHER/ACCUMULATOR	CONDENSER @ AMBIENT	68.33	7.37	60.96	89.2
3 RESIN KETTLE RK2	UNCONTROLLED	0.09	0.09	0.0	0.0
4 RESIN KETTLE RK3	UNCONTROLLED	0.09	0.09	0.0	0.0
5 RESIN KETTLE RK4	UNCONTROLLED	0.09	0.09	0.0	0.0
6 # 4 FLAKER 7 SANDVIK FLAKER	UNCONTROLLED	4.76	<u>4.76</u> 4.76	0.0 0.0	0.0
8 CB FURNACE	UNCONTROLLED	0.07	0.07	0.0	0.0
9 H-8 FURNACE	UNCONTROLLED	0.05	0.05	0.0	0.0
10 DRUMMING AREA	UNCONTROLLED	0.01	0.01	0.0	0.0
11 RAIL CAR LOADING	UNCONTROLLED	0.06	0.06	0.0	0.0
12 MIXPOT	CONDENSER @ AMBIENT	2.87	0.66	2.2	77.0
13 25 AGITATOR	CONDENSER @ AMBIENT	2.87	0.66	2.2	77.0
	PROCESS TOTAL =	112.35	26.04	86.3	76.8
PROCESS - HYDROGENATION		12.02	12.02	0.001	
1 TANKS T-100 & T- 101 2 TANK T-106	UNCONTROLLED UNCONTROLLED	12.93 0.80	12.93 0.80	0.00	0.0
3 METERING TNK	CONDENSER @ AMBIENT	48.86	6.24	42.62	87.2
4 FILTER BLOW #1	CONDENSER @ AMBIENT	67.66	7.59	60.07	88.7
5 FILTER BLOW # 2	CONDENSER @ AMBIENT	157.29	17.65	139.64	88.7
6 AUTOCLAVES 1 & 2 AND TNK - 303	CONDENSER @ AMBIENT	508.54	262.87	245.67	48.3
7 OB TANK	UNCONTROLLED	1.20	1.20	0.00	0.0
8 TNK T- 501	CONDENSER @ AMBIENT	110.43	6.81	103.62	93.8
9 AUTOCLAVE BLOWOUT	CONDENSER @ AMBIENT	324.05	26.44	297.61	91.8
10 TNKS T-102 & T-105	CONDENSER @ AMBIENT	70.16	6.96	63.20	90.0
11 SWEETLAND BLOWOUT		4.04	4.00	-4.00	E
12 CATALYST TANK 13 PRECOAT TANK	UNCRONTROLLED	1.04	1.04	0.00	
IS FRECOAT TANK	UNCRONTROLLED	0.03	0.03	0.00	
	UNCRONTROLLED PROCESS TOTAL =	0.03	0.03 354.56	0.00 948.4	0.0
PROCESS - WATER WHITE POLY	PROCESS TOTAL =	1302.99	354.56	948.4	0.0 72.7
PROCESS - WATER WHITE POLY	PROCESS TOTAL =	1302.99	354.56	948.4 390.3	0.0 72.7 96.6
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT	1302.99 403.97 225.42	354.56 13.69 46.97	948.4 390.3 178.5	0.0 72.7 96.0 79.1
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT	1302.99 403.97 225.42 14.26	354.56 13.69 46.97 14.26	948.4 390.3 178.5 0.0	0.0 72.7 96.0 79.1 0.0
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED	1302.99 403.97 225.42 14.26 0.71	354.56 13.69 46.97 14.26 0.71	948.4 390.3 178.5 0.0 0.0	0.0 72.1 96.6 79.1 0.0
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT	1302.99 403.97 225.42 14.26 0.71 2.61	354.56 13.69 46.97 14.26 0.71 1.37	948.4 390.3 178.5 0.0 0.0 1.2	0.0 72.1 96.6 79.1 0.0 0.0 47.5
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED	1302.99 403.97 225.42 14.26 0.71 2.61 2.49	354.56 13.69 46.97 14.26 0.71	948.4 390.3 178.5 0.0 0.0 1.2 0.0	0.0 72.7 96.6 79.1 0.0 0.0 47.5 0.0
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK 7 NEUTRALIZER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT	1302.99 403.97 225.42 14.26 0.71 2.61	354.56 13.69 46.97 14.26 0.71 1.37 2.49	948.4 390.3 178.5 0.0 0.0 1.2	0.0 72.7 96.6 79.1 0.0 0.0 47.5 0.0 59.2
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT	1302.99 403.97 225.42 14.26 0.71 2.61 2.49 19.26 1.31 5.25	354.56 13.69 46.97 14.26 0.71 1.37 2.49 7.84 1.31 0.71	948.4 390.3 178.5 0.0 0.0 1.2 0.0 11.4	0.0 72.7 96.6 79.1 0.0 47.5 0.0 59.2 0.0
1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK 7 NEUTRALIZER 8 NEUTRALIZER 9 FUNDA FILTER 10 FILTRATE RECIEVER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ 20 F	1302.99 403.97 225.42 14.26 0.71 2.61 2.49 19.26 1.31 5.25 27.67	354.56 13.69 46.97 14.26 0.71 1.37 2.49 7.84 1.31 0.71 3.65	948.4 390.3 178.5 0.0 0.0 1.2 0.0 11.4 0.0 4.5 24.0	0.0 72.7 96.6 79.1 0.0 47.5 0.0 59.2 0.0 86.4 86.8
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK 7 NEUTRALIZER 8 NEUTRALIZER EXHAUST 9 FUNDA FILTER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT	1302.99 403.97 225.42 14.26 0.71 2.61 2.49 19.26 1.31 5.25	354.56 13.69 46.97 14.26 0.71 1.37 2.49 7.84 1.31 0.71	948.4 390.3 178.5 0.0 0.0 1.2 0.0 11.4 0.0 4.5	0.0 72.7 96.6 79.1 0.0 0.0 47.5 0.0 59.2 0.0 86.4 86.8
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK 7 NEUTRALIZER 8 NEUTRALIZER EXHAUST 9 FUNDA FILTER 10 FILTRATE RECIEVER 11 AUX RECIEVER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ 20 F	1302.99 403.97 225.42 14.26 0.71 2.61 2.49 19.26 1.31 5.25 27.67 3.86	354.56 13.69 46.97 14.26 0.71 1.37 2.49 7.84 1.31 0.71 3.65	948.4 390.3 178.5 0.0 0.0 1.2 0.0 11.4 0.0 4.5 24.0	96.6 72.7 96.6 79.1 0.0 0.0 47.5 0.0 59.2 0.0 86.4 86.8 0.0
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK 7 NEUTRALIZER 8 NEUTRALIZER EXHAUST 9 FUNDA FILTER 10 FILTRATE RECIEVER 11 AUX RECIEVER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ 20 F UNCONTROLLED PROCESS TOTAL =	1302.99 403.97 225.42 14.26 0.71 2.61 2.49 19.26 1.31 5.25 27.67 3.86	354.56 13.69 46.97 14.26 0.71 1.37 2.49 7.84 1.31 0.71 3.65 3.86 96.86	948.4 390.3 178.5 0.0 0.0 11.2 0.0 11.4 0.0 4.5 24.0 0.0 610.0	0.0 0.0 0.0 72.7 96.6 79.1 0.0 0.0 47.5 0.0 59.2 0.0 0.0 86.4 86.8 0.0 86.3
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK 7 NEUTRALIZER 8 NEUTRALIZER EXHAUST 9 FUNDA FILTER 10 FILTRATE RECIEVER 11 AUX RECIEVER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ 20 F UNCONTROLLED PROCESS TOTAL =	1302.99 403.97 225.42 14.26 0.71 2.61 2.49 19.26 1.31 5.25 27.67 3.86 706.81	354.56 13.69 46.97 14.26 0.71 1.37 2.49 7.84 1.31 0.71 3.65 3.86 96.86	948.4 390.3 178.5 0.0 0.0 1.2 0.0 11.4 0.0 4.5 24.0 0.0 610.0 610.0	0.0 72.7 96.6 79.1 0.0 47.5 0.0 59.2 0.0 86.4 86.8 0.0 86.3 86.3
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK 7 NEUTRALIZER 8 NEUTRALIZER EXHAUST 9 FUNDA FILTER 10 FILTRATE RECIEVER 11 AUX RECIEVER PROCESS - MP POLY 1 REACTOR 2 NEUTRALIZER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ 20 F UNCONTROLLED PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ 10 C	1302.99 403.97 225.42 14.26 0.71 2.61 2.49 19.26 1.31 5.25 27.67 3.86 706.81	354.56 13.69 46.97 14.26 0.71 1.37 2.49 7.84 1.31 0.71 3.65 3.86 96.86 96.86	948.4 390.3 178.5 0.0 0.0 1.2 0.0 11.4 0.0 4.5 24.0 0.0 610.0 610.0	0.0 72.7 96.6 79.1 0.0 47.5 0.0 86.4 86.2 86.3 86.3 86.3 86.3
PROCESS - WATER WHITE POLY 1 FEED DRYERS 2 NORTH & SOUTH REACTORS 3 NORTH & WEST BLEND TNKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK 7 NEUTRALIZER 8 NEUTRALIZER EXHAUST 9 FUNDA FILTER 10 FILTRATE RECIEVER 11 AUX RECIEVER	PROCESS TOTAL = CONDENSER @ 10 C CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ 20 F UNCONTROLLED PROCESS TOTAL =	1302.99 403.97 225.42 14.26 0.71 2.61 2.49 19.26 1.31 5.25 27.67 3.86 706.81	354.56 13.69 46.97 14.26 0.71 1.37 2.49 7.84 1.31 0.71 3.65 3.86 96.86	948.4 390.3 178.5 0.0 0.0 1.2 0.0 11.4 0.0 4.5 24.0 0.0 610.0 610.0	0.0 72.7 96.6 79.1 0.0 47.5 0.0 86.4 86.5 86.5 86.3 86.3

ROCESS - SOLUTION POLY EMISSION UNIT	EXISTING CONTROL DEVICE	UNCONTROLLED PTE TPY	CONTROLLED PTE TPY	EXISTING REDUCTION TPY	PERCENT VOC CONTROL
1 PREBLEND TNK	UNCONTROLLED	0.54	0.54	0.0	0.00
2 CATALYST MIX TNK	UNCONTROLLED	0.10	0.10	0.0	0.00
3 REACTOR CHARGE	UNCONTROLLED	0.20	0.20	0.0	0.00
4 REACTOR STRIP #1 AT 1 ATM	CONDENSER @ AMBIENT	2.42	0.53	1.9	78.10
5 REACTOR STRIP #1 AT VACUUM	CONDENSER @ AMBIENT	21.32	2.98	18.3	86.02
S REACTOR STRIP #2 AT VACUUM	CONDENSER @ AMBIENT	2.17	0.30	1.9	86.18
7 POLY SOLUTION TNK	UNCONTROLLED	0.15	0.15	0.0	0.00
B AUX RECEIVERS	UNCONTROLLED	0.03	0.03	0.0	0.00
9 DOUBLE BELT FLAKER	ENCLOSED FLAKER	0.49	0.49	0.0	0.0
ROCESS - SUSPENSION POLY	PROCESS TOTAL =	27.41	5.31	22.1	80.6
RUCESS - SUSPENSION POLT					
1 N&S MONOMER MIX TNK	UNCONTROLLED	0.38	0.38	0.0	0.0
2 W MONOMER MIX TNK	UNCONTROLLED	0.31	0.31	0.0	0.0
3 NORTH REACTOR	CONDENSER @ AMBIENT	6.15	0.59	5.6	90.4
4 SOUTH REACTOR	CONDENSER @ AMBIENT	10.54	1.02	9.5	90.3
WEST REACTOR	CONDENSER @ AMBIENT	6.15	0.59	5.6	90.4
	PROCESS TOTAL =	23.53	2.89	20.6	87.7
ROCESS - BOILER HOUSE					
#5 BOILER	UNCONTROLLED	1.24	1.24	0.0	0.0
2 #1-2 BOILERS	UNCONTROLLED	1.45	1.45	0.0	0.0
#3-4 BOILERS	UNCONTROLLED	1.95	1.95	0.0	0.0
ROCESS - WWTP	PROCESS TOTAL =	4.64	4.64	0.0	0.0
1 701 TNKS	UNCONTROLLED	16.7535	16.7535	0.0	0.0
701 TNKS RSW SUMP	UNCONTROLLED UNCONTROLLED	16.7535 8.3765	16.7535 8.3765	0.0	0.0
2 RSW SUMP	UNCONTROLLED	16.7535	16.7535	0.0	0.0
2 RSW SUMP 3 DAF	UNCONTROLLED UNCONTROLLED	16.7535 8.3765	16.7535 8.3765	0.0	0.0 0.0 0.0
I 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION	UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599	16.7535 8.3765 7.599	0.0 0.0 0.0	0.0 0.0 0.0 0.0
2 701 TNKS 2 RSW SUMP 3 DAF 1 BIO AERATION 5 ACID & FINAL SUMPS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049	16.7535 8.3765 7.599 0.143 1.049	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165	16.7535 8.3765 7.599 0.143 1.049 0.0165	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049	16.7535 8.3765 7.599 0.143 1.049	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 5 BIO CLARIFIER 7 PRIMARY CLARIFIER	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 5 BIO CLARIFIER 7 PRIMARY CLARIFIER 3 702 TNKS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 5 BIO CLARIFIER 7 PRIMARY CLARIFIER 3 702 TNKS 8 OCESS - PILOT PLANT	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION SACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS SOCESS - PILOT PLANT BLDG EXHAUST	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED PROCESS TOTAL =	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS BLDG EXHAUST #1 VACUUM JET	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED PROCESS TOTAL =	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS BLDG EXHAUST #1 VACUUM JET #2 VACUUM JET	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED PROCESS TOTAL = UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS COCESS - PILOT PLANT BLDG EXHAUST #1 VACUUM JET #2 VACUUM JET FEED TNKS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 3.24 0.43	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS BLDG EXHAUST #1 VACUUM JET #2 VACUUM JET #2 VACUUM JET FEED TNKS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 6.87	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 3.24 0.43 2.57	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS BLDG EXHAUST #1 VACUUM JET #2 VACUUM JET FEED TNKS REACTOR VENTING	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 44.27 2.91 3.24 3.24 0.43 6.87 5.62	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS BLDG EXHAUST #1 VACUUM JET #2 VACUUM JET FEED TNKS REACTOR VENTING NEUTRALIZER VENTING	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 44.27 2.91 3.24 3.24 3.24 0.43 2.57 0.76 7.37	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS BLDG EXHAUST #1 VACUUM JET #2 VACUUM JET FEED TNKS REACTOR VENTING INEUTRALIZER VENTING STRIPPING VENTING FUNDA	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 6.87 5.62 22.25 0.55	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS BLDG EXHAUST #1 VACUUM JET #2 VACUUM JET FEED TNKS REACTOR VENTING NEUTRALIZER VENTING STRIPPING VENTING FUNDA THERMAL POLY	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 5 BIO CLARIFIER 7 PRIMARY CLARIFIER 3 702 TNKS ROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 5 NEUTRALIZER VENTING 7 STRIPPING VENTING 3 FUNDA THERMAL POLY	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 6.87 5.62 22.25 0.55	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
701 TNKS RSW SUMP DAF BIO AERATION ACID & FINAL SUMPS BIO CLARIFIER PRIMARY CLARIFIER 702 TNKS BLDG EXHAUST #1 VACUUM JET #1 VACUUM JET #2 VACUUM JET FEED TNKS REACTOR VENTING NEUTRALIZER VENTING STRIPPING VENTING FUNDA THERMAL POLY SMALL AUTOCLAVES	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.055 0.055	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 5 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS ROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 5 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY 0 SMALL AUTOCLAVES	UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17 47.34	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07 0.05 2.17 22.81	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 5 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS ROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 5 NEUTRALIZER VENTING 7 STRIPPING VENTING 3 FUNDA 3 THERMAL POLY 5 SMALL AUTOCLAVES ROCESS - #3 LTC [VA-POWER FURNACE	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17 47.34	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07 0.05 2.17 22.81	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 3.24 3.24 3.24 3.24 3.24 3.24 0.43 6.87 5.62 0.55 0.05 2.17 47.34	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07 0.05 2.17 22.81	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 5 BIO CLARIFIER 7 PRIMARY CLARIFIER 3 702 TNKS ROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 5 REACTOR VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY 1 SMALL AUTOCLAVES	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17 47.34	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07 0.05 2.17 22.81	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROCESS - WWTP 1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS ROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY 0 SMALL AUTOCLAVES ROCESS - #3 LTC 1 VA-POWER FURNACE 2 1ST STAGE VAC JETS 3 2ND STAGE VAC JETS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17 47.34 0.14 64.96 56.96	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07 0.05 2.17 22.81	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11

ļ

.

PR	CCESS - C5 POLY EMISSION UNIT	EXISTING CONTROL DEVICE	UNCONTROLLED PTE TPY	CONTROLLED PTE TPY	EXISTING REDUCTION TPY	PERCENT VOC CONTROL
1	HOT OIL HEATER	UNCONTROLLED	0.16	0.16	0.0	0.00%
_	SOLV FLUSH TNK	CONDENSER @ AMBIENT	45.59	0.94	44.7	97.94%
	REACTOR, SOAKER, NEUTRALIZERS		0.00	0.00	0.0	
	AND FILTRATE RECEIVER	CONDENSER @ -23 C	298.09	26.20	271.9	91.219
-	PRECOAT TNK	CONDENSER @ AMBIENT	4.99	0.21	4.8	<u>95.79%</u>
	TOLUENE COLUMN	CONDENSER @ -23 C	0.12	0.003	0.1	97.50%
<u> </u>	IRNX SOLN TNK & RECLAIM TNK	CONDENSER @ AMBIENT	29.70	0.84	28.9	97.179
	RSN KETTLE #8	CONDENSER @ AMBIENT	10.81	0.08	10.7	99.26%
	RSN KETTLE #9	UNCONTROLLED	0.09	0.09	0.0	0.00%
	RSN KETTLE #10	UNCONTROLLED	16.40	16.40	0.0	0.00%
11	FUME SCRUBBER	UNCONTROLLED	49.63	49.63	0.0	0.00%
PR	OCESS - LTC #1 & #2	PROCESS TOTAL =	455.6	94.6	361.0	79.29
	OCESS - LTC #1 & #2 #1 LTC CB FURNACE	UNCONTROLLED	0.08	0.08	0.0	0.00%
1	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE	UNCONTROLLED UNCONTROLLED	0.08	0.08	0.0	0.00%
1 2 3	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT	0.08 0.11 224.56	0.08 0.11 19.25	0.0 0.0 205.3	0.009 0.009 91.439
1 2 3 4	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT	0.08 0.11 224.56 7.73	0.08 0.11 19.25 4.07	0.0 0.0 205.3 3.7	0.009 0.009 91.439 47.359
1 2 3 4 5	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT	0.08 0.11 224.56 7.73 7.73	0.08 0.11 19.25 4.07 4.07	0.0 0.0 205.3 3.7 3.7	0.009 0.009 91.439 47.359 47.359
1 2 3 4 5 6	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT	0.08 0.11 224.56 7.73 7.73 5.36	0.08 0.11 19.25 4.07 4.07 2.82	0.0 0.0 205.3 3.7 3.7 2.5	0.009 0.009 91.439 47.359 47.359 47.399
1 2 3 4 5 6 7	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED	0.08 0.11 224.56 7.73 7.73 5.36 0.77	0.08 0.11 19.25 4.07 4.07 2.82 0.77	0.0 0.0 205.3 3.7 3.7 2.5 0.0	0.009 0.009 91.439 47.359 47.359 47.399 0.009
1 2 3 4 5 6 7 8	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77	0.08 0.11 19.25 4.07 4.07 2.82 0.77 0.77	0.0 0.0 205.3 3.7 3.7 2.5 0.0 0.0	0.009 0.009 91.439 47.359 47.399 47.399 0.009 0.009
1 2 3 4 5 6 7 8 9	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7 #2 FLASHER FEED	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56	0.08 0.11 19.25 4.07 2.82 0.77 0.77 19.25	0.0 0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3	0.009 0.009 91.439 47.359 47.359 47.399 0.009 0.009 91.439
1 2 3 4 5 6 7 8 9	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7 #2 FLASHER FEED DRUMMING STATION	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56 0.01	0.08 0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01	0.0 0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3 0.0	0.009 0.009 91.439 47.359 47.359 47.359 0.009 0.009 91.439 0.009
1 2 3 4 5 6 7 8 9	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7 #2 FLASHER FEED	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56	0.08 0.11 19.25 4.07 2.82 0.77 0.77 19.25	0.0 0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3	0.009 0.009 91.439 47.359 47.359 47.359 0.009 0.009 91.439 0.009
1 2 3 4 5 6 7 8 9	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7 #2 FLASHER FEED DRUMMING STATION	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56 0.01	0.08 0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01	0.0 0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3 0.0	
1 2 3 4 5 6 7 8 9 10 11	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7 #2 FLASHER FEED DRUMMING STATION	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77 0.77 224.56 0.01 4.76	0.08 0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01 3.57	0.0 0.0 205.3 3.7 2.5 0.0 0.0 205.3 0.0 1.2	0.009 0.009 91.439 47.359 47.359 47.399 0.009 91.439 0.009 91.439 0.009 25.009
1 2 3 4 5 6 7 8 9 10 11	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7 #2 FLASHER FEED DRUMMING STATION FUME SCRUBBER	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77 0.77 224.56 0.01 4.76	0.08 0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01 3.57 54.77	0.0 0.0 205.3 3.7 2.5 0.0 0.0 205.3 0.0 1.2 421.7	0.009 0.009 91.439 47.359 47.359 47.399 0.009 91.439 0.009 25.009 88.509
1 2 3 4 5 6 7 8 9 10 11	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7 #2 FLASHER FEED DRUMMING STATION FUME SCRUBBER	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT PROCESS TOTAL =	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56 0.01 4.76 476.44	0.08 0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01 3.57 54.77	0.0 0.0 205.3 3.7 2.5 0.0 0.0 205.3 0.0 205.3 0.0 1.2 421.7	0.009 0.009 91.439 47.359 47.359 47.399 0.009 91.439 0.009 91.439 0.009 25.009
1 2 3 4 5 6 7 8 9 10 11 7 8 9 10 11	#1 LTC CB FURNACE #2 LTC VAPWR FURNACE #1 FLASHER FEED #1 LTC FLASHER/ACCUMULATOR #2 LTC FLASHER/ACCUMULATOR RK-5 RK-6 RK-7 #2 FLASHER FEED DRUMMING STATION FUME SCRUBBER OCESS - C POLY #1 REACTOR	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT PROCESS TOTAL =	0.08 0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56 0.01 4.76 476.44	0.08 0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01 3.57 54.77	0.0 0.0 205.3 3.7 2.5 0.0 0.0 205.3 0.0 1.2 421.7	0.009 0.009 91.439 47.359 47.359 47.399 0.009 91.439 0.009 91.439 0.009 88.509 88.509

1

 $|0\rangle \rightarrow$

1

<u>م</u> , *۲*

APPENDIX B

٠

TANK DATA

 $|1\rangle \rightarrow$

VOC POTENTIAL TO EMIT FOR ALL VOLATILE ORGANIC STORAGE TANKS NOT REGULATED BY ARTICLE XXI, SECTION 2105.02, " VOLATILE ORGANIC COMPOUND STORAGE TANKS."

	TANK	EXISTING	CAPACITY	PTE
	DESIG.	VOC CONTROLS	GAL	TPY
1	2		169194	7.57
2	4		88122	11.12
3	5		88122	5.51
4	7		110152	5.59
5	8		169194	8.45
6	9	ан алануулуу алан алан алан алан алан ал	110152	13.00
7	10		110152	13.23
8	11		169194	4.38
9	12		110152	4.15
10	13		110152	6.80
11	14	· · · · · · · · · · · · · · · · · · ·	110152	9.89
12	15		110152	9.89
13	16		110152	10.28
14	17		110152	5.59
15	18		110152	4.17
16	19		169194	6.52
17	20		169194	6.14
18	21		24936	5.71
19	22		15862	4.44
20	23		15862	4.42
21	24		15862	5.73
22	25		15862	6.59
23	30	· · · · · · · · · · · · · · · · · · ·	22669	4.30
24	31		22669	3.34
25	34		169194	20.09
26	35		169194	20.09
27	40		24880	13.87
28	41		24880	13.87
29	50		268037	23.84
30	51		268037	23.84
31	52	ener	268037	23.84
32	53		528730	28.26
33	57		1909	0.43
34	58		1909	0.43
35	59		1909	0.28
36	60		24880	7.07
37	61		24880	7.07
38	62		3196	0.55

51			
39	63	11885	1.10
40	65	 8565	3.30
41	66	 75197	8.92
42	67	75197	7.52
43	68	75197	14.13
44	69	75197	14.13
45	71	75197	16.65
46	72	75197	11.41
47	73	75197	7.52
48	74	75197	6.47
49	75	75197	7.52
50	76	75197	7.52
51	77	75197	6.47
52	78	169194	17.97
53	80	11982	0.01
54	81	24880	0.01
55	82	24880	< 0.01
56	83	25379	4.77
57	100	 7896	1.88
58	101	7896	2.78
59	103	 1500	0.53
60	106	12032	1.47
61	120	 19413	0.01
62	121	 19413	0.01
63	122	 19413	0.01
64	123	19413	0.01
65	125	 12795	4.16
66	126	12690	3.76
67	150	1503943	48.88
68	151	 1503943	49.47
69	160	 158619	5.69
70	161	 158619	2.40
71	162	 158619	5.96
72	206	 25379	5.00
73	207	 25379	5.00
74	208	 25379	4.34
75	212	 6016	2.58
76	250	 30455	1.15
77	251	 30455	1.34
78	252	 30455	1.15
79	253	 20726	5.43
80	254	 15274	1.36
81	255	 14981	0.01
82	256	9987	0.01
83	257	 15274	1.36
84	258	10152	0.98
85	259	 11280	4.78
86	260	 20079	0.60
87	262	20079	6.30
88	263	20726	5.33
89	301	 75197	5.96
90	302	 75197	5.96
91	303	 75197	5.96
92	360	 15274	1.23
93	361	 20079	1.23
94	362	 15274	4.12
95	368	 2632	0.91
96	369	25379	0.91
97	500	 100000	0.10
8	501	62420	7.27

Ň				
1. IV.				
	99	502	62420	7.27
1 A A	100	503	54330	1.69
1	101	504	61000	2.40
	102	505	9400	1.59
	103	506	9400	1.59
	104	1000	16919	2.53
	105	1001	16919	2.51
	106	1002	16919	2.51
	107	1003	11750	2.77
	108	1004	16919	1.86
	109	1005	16919	1.88
	110	1201	4018	1.48
	111	1202	4018	1.48
	112	2-3-B	12043	2.74
	113	3-3	9517	3.28
	114	3-2-B	24880	3.62
	115	4-3-A	24880	0.12
	116	4-3-B	24880	< 0.01
	117	6-3	11885	3.19
	118	8-1-C	3008	2.79
	119	8-1-D	3008	2.79
	120	8-1-E	3008	2.79
	121	FO-2	88122	4.23
	122	FO-3	88122	4.23
	123	PD-1-1-A	14981	3.41
	124	PD-1-1-B	14981	0.51
	125	PD-2-1-A	14981	3.91
	126	PD-2-1-B	14981	3.91
	127	PD9-3	6054	3.69
	128	R-100-A	67361	3.83
	129	R-100-B	67361	3.83
	130	R-100-C	67361	3.83
	131	R-100-D	67361	3.83
	132	R-100-E	67361	3.83
	133	R-1-A	67361	4.72
	134	R-1-B	67361	4.38

TOTAL TOV-	700 47
101AL IPY =	/98.1/

APPENDIX C

ECONOMIC ANALYSIS

1

COST ANALYSIS FOR VOC CONTROLS FOR THE BOILER HOUSE: AND WATER COOLED CONDENSERS FOR UNCONTROLLED PROCESS UNITS:

Assumptions:

Capital investment = \$0.0
 Utility costs = \$0.0
 Process costs = \$0.0
 Labor & maint. costs = \$24/Hr.
 Operating hours = 8,760/Yr.

Using cost factors from U.S. EPA's OAQPS cost manual, the following is a cost analysis based on labor and maintenance costs only:

Direct annual costs

Operating labor	\$13,140
Supervisor	\$1,971
Maintenance labor	\$14,454
Material	\$14,454

Consumables replacement\$0.0Utilities\$0.0Waste disposal\$0.0

Indirect annual costs

Overhead	\$26,411
Administration	\$0.0
Property taxes/insurance	\$0.0
Capital recovery	\$0.0

Total annual costs = \$70,430

VOC emissions reduction @ 100% control = 5 TPY Cost effectiveness = \$14,086/ton VOC removed

The potential uncomtrolled VOC emissions from the processes with the exception of the waste water treatment plant rang from 0.25 TPY to 12.5 TPY. At these levels no controls are econamically feasible.

0 3

VOC emissions reduction @ 100% control = 12.5 Cost effectiveness = &5,630/ton VOC removed

<u>V-8 UNIT</u>

REFRIGERATED CONDENSERS

PURCHASED EQUI EC	PMENT COST CONDENSERS (11) AND AUXILLAR REFRIGERATION UNIT	YEQUIPMENT	\$203,500 \$65,000
1.08 EC	PURCHASED EQUIPME	NT COST TOTAL ,PEC	\$219,801
х.			
(3 FOR SMALLER P	AL INVESTMENT IS 3 - 4 TIMES THE EQU ROJECTS WITHOUT MUCH INSTRUMEN	NTATION)	
TOTAL CAPITAL IN			\$879,202
ANNUAL COSTS			
Annual costs consist	t of direct and indirect annual costs minus r	ecovery credits.	
DIRECT ANNUAL C	OSTS, DC		
	OPERATING LABOR 0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232
	MAINTANENCE 0.5 hr/shift 100% maint labor	\$16.50	\$9,034 \$ 9,034
	UTILITIES Electricity	\$0.07 kW/hr	\$10,424
TOTAL DIRECT AN	NUAL COSTS, DC		\$37,9 36
INDIRECT ANNUAL	COSTS, IC		
	OVERHEAD (60% total labor & maint		\$16,507
0.01 TCI	materials cost) PROPERTY TAX		\$8,792
0.01 TCI	INSURANCE		\$8,792
0.1315 TCI	ADMINISTRATIVE & CAPITAL REC	OVERY TAX	\$115,615
THIS U	NIT WILL BE SHUT DOWN AFTER THIS	YEAR.	
TOTAL INDIRECT	ANNUAL COSTS, IC		\$149,706
RECOVERY CRED	ITS		
	RECOVERED VOC (quantity recover	ed X op hrs)	\$0
TOTAL ANNUAL C	OST (DC + IC - RC)		**** *****
		H == \$ # = 2 # # # # # # # # # # # # # # # # #	2222 8 882255522
<u>SUMMARY</u>	WLVD VP UNCON @6C CON		
MAX POT	23.7 112.3 17.7	١	
FOR A REDUCTION OF 61 TPY MAX			TIAL
	F REDUCTION - MAX POTENTIAL	\$ 31,275	·도쿄운영 문제왕의민영영위

0

HYDRO UNIT

REFRIGERATED CONDENSERS

REFRIGEN			
PURCHASED EQUI	\$148,000 \$65,000		
1.08 EC	PURCHASED EQUI	PMENT COST TOTAL ,PEC	\$159,861
(3 FOR SMALLER PI	L INVESTMENT IS 3 - 4 TIMES THE ROJECTS WITHOUT MUCH INSTRU	JMENTATION)	
TOTAL CAPITAL IN			\$639,442
ANNUAL COSTS			
Annual costs consist	of direct and indirect annual costs mi	nus recovery credits.	
DIRECT ANNUAL C	OSTS, DC		
	OPERATING LABOR 0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232
	MAINTANENCE 0.5 hr/shift 1,00% maint labor	\$16.50	\$9,034 \$9,034
	UTILITIES ELECTRICITY	\$0.07 kW/hr	\$10,424
TOTAL DIRECT AN	\$37,936		
INDIRECT ANNUAL	COSTS, IC		
	OVERHEAD (60% total labor & r	naint	\$16,507
0.01 TCI	materials cost) PROPERTY TAX		\$6,394
0.01 TCI	INSURANCE		\$6,394
1.1 TCI	CRF = ADMINISTRATIVE & CA	PITAL RECOVERY TAX	\$703,386
	CRF = (i (1 + i)^n) / ((1 + i)^n -	1) i = 10% n = 1 YR	
TOTAL INDIRECT	NNUAL COSTS, IC		\$732,682
RECOVERY CRED	ITS		
	RECOVERED VOC (quantity re	covered X op hrs)	\$ 0
			\$770,619
SUMMARY	CURRENT UNCON CCC	ON_	
MAX PTE	355 1,303 10	8	

FOR A REDUCTION OF	247 TPY MAX POTENTIAL
FENERALE REPORTED TENERALE CORRECT REVIEW	
COST PER TON OF REDUCTION - MAX POTENTIAL	\$ 3,120

RACT COST ANALYSIS

WW POLY

• .

REFRIGERA	TED CONDENSERS	-	
PURCHASED EQUI	PMENT COST CONDENSERS (4) AND AUXILLAR REFRIGERATION UNIT IS TO BE S	EQUIPMENT HARED WITH WW TANKS	\$74,000
1.08 EC	PURCHASED EQUIPME	PURCHASED EQUIPMENT COST TOTAL, PEC	
3 FOR SMALLER P	L INVESTMENT IS 3 - 4 TIMES THE EQ ROJECTS WITHOUT MUCH INSTRUME	INTATION)	ar szenruzz
TOTAL CAPITAL IN			\$319,762
ANNUAL COSTS			
Annual costs consist	of direct and indirect annual costs minus	recovery credits.	
DIRECT ANNUAL C	OSTS, DC		
	OPERATING LABOR 0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232
	MAINTANENCE 0.5 hr/shift 100% maint labor	\$16.50	\$9,034 \$9,034
	UTILITIES ELECTRICITY	\$0.07 kW/hr	\$10,424
TOTAL DIRECT AN	NUAL COSTS, DC		\$37,936
INDIRECT ANNUAL	, COSTS, IC		
	OVERHEAD (60% total labor & main	t	\$16,507
0.01 TCI	materials cost) PROPERTY TAX		\$3,198
0.01 TCI	INSURANCE		\$3,198
0.1315 TCI	ADMINISTRATIVE & CAPITAL REC	COVERY TAX	\$42,049
TOTAL INDIRECT	ANNUAL COSTS, IC		\$64,951
RECOVERY CRED	ITS		
	RECOVERED VOC (quantity recov	ered X op hrs)	\$0
TOTAL ANNUAL C	OST (DC + IC - RC)		\$102,88
		1 <u>99752272</u> 3 <u>2277</u> 22225 <u>2277</u>	
SUMMARY	WHVD VP UNCON @6C CON	L	
MAX POT	94 · • • 706 • 8 60	 Ann 	
FOR A REDUCTIO	NOF	34 TPY MAX POTENT	TIAL.
COST PER TON C	FREDUCTION - MAX POTENTIAL	\$ 3,030	2222 222 2323
		# ######## ###########################	

a, * 1

HSI - SUSPENSION & SOLUTION POLY

REFRIGERATED CONDENSERS

. . .

PURCHASED EQUIPM EC				YEQUIPMENT	\$203,500 \$65,000
1.08 EC		PURCHAS	ED EQUIPMEI	NT COST TOTAL ,PEC	\$219,801
THE TOTAL CAPITAL (3 FOR SMALLER PRO	DJECTS WITH	HOUT MUC	H INSTRUME	NTATION)	
TOTAL CAPITAL INVE	STMENT (TO	; 1)			\$879,202
ANNUAL COSTS				***************************************	
Annual costs consist of	f direct and in	direct annu		recovery credits.	
DIRECT ANNUAL COS	STS, DC				
	OPERATIN 0.5 hr/shlft 0.15operato			\$15.00	\$8,213 \$1,232
	MAINTANEI 0.5 hr/shift 100% maint			\$16.50	\$9,034 \$9,034
	UTILITIES ELECTRICI	TΥ		\$0.07 kW/hr	\$10,424
TOTAL DIRECT ANNU	JAL COSTS, [00			\$37,936
INDIRECT ANNUAL C	OSTS, IC				
) (60% total materials c	l labor & maint		\$16,507
0.01 TCI	PROPERTY		050		\$8,792
0.01 TCI	INSURANC	E			\$8,792
0.1315 TCI	ADMINISTR	ATIVE & C	APITAL RECO	VERY TAX	\$115,615
THIS UNIT	WILL BE SH	UT DOWN	AFTER THIS	ÆAR.	
TOTAL INDIRECT ANI	NUAL COSTS	5, IC			\$149,706
RECOVERY CREDITS					
			antity recovered	• •	\$0
TOTAL ANNUAL COS	T (DC + 1C ·	· RC)			\$187,643
SUSPENSION & SOL				22222222222222222222222222222222222222	
SUSPENSION SUMM	ACTUAL	UNCON	@6C CON		
MAX POT	2.9	23.5	i 0.6		
USING XYLENE AS SO	OLVENT:				
SOLUTION SUMM	ACTUAL	UNCON			
MAX POT	5.3	27.4	1.8		
FOR A REDUCTION C				5.8 TPY MAX POTENTIA	
COST PER TON OF R	EDUCTION -	MAX POTI	ENTIAL		\$32,352
USING TOLUENE AS					
SOLUTION SUMM	ACTUAL	<u>UNCON</u>	@6C COND		
MAX POT	9.0	45.6	2.3		
FOR A REDUCTION C	-			9.0 TPY MAX POTENTIA	L ==========
COST PER TON OF R	EDUCTION -	MAX POTI	ENTIAL		\$20,849

RECEIVED

JAN 09 1996

ALLES: ALTH DEPE bit concerns constitution Engineering Section

i1

, LITC3 UNIT

REFRIGERATED CONDENSERS

	***************					************
PURCHASED EQUIPM EC			D AUXILLARY F	EQUIPME	NT	\$92,500 \$65,000
1.08 EC		PURCHAS	ed Equipme	NT COST 1	TOTAL ,PEC	\$99,921
THE TOTAL CAPITAL (3 FOR SMALLER PRO	JECTS WITH	OUT MUCH	I INSTRUME	NTATION)	COSTS	
TOTAL CAPITAL INVE	STMENT (TCI)				\$399,682
ANNUAL COSTS						
Annual costs consist of	direct and ind				edits.	******
DIRECT ANNUAL COS	STS, DC					
	OPERATINO 0.5 hr/shift 0.15operator			\$15.00		\$8,213 \$1,232
	MAINTANEN 0.5 hr/shift 100% maint			\$16.50		\$9,034 \$9,034
	UTILITIES ELECTRICIT	ſY		\$0.07	kW/hr	\$10,424
TOTAL DIRECT ANNU	AL COSTS, D	с				\$37,936
INDIRECT ANNUAL CO	OSTS, IC					•
		60% total materials co	labor & maint			\$16,507
0.01 TCł	PROPERTY		55()			\$3,997
0.01 TCI	INSURANCE	Ξ				\$3,997
0.1315 TCI	ADMINISTR	ATIVE & C/	APITAL RECO	VERY TAX	ζ.	\$52,558
THIS UNIT	WILL BE SHU	JT DOWN	AFTER THIS '	YEAR.		
TOTAL INDIRECT ANN	IUAL COSTS,	IC				\$77,059
RECOVERY CREDITS						
			antity recover		•	\$0
TOTAL ANNUAL COST	(DC + IC -	RC)			********	\$114,995
LTC 3 UNIT EMISSIO						
SUMMARY	WLVD VP	UNCON	@6C CON			
MAX POT	24.6	122.1	3.1			
FOR A REDUCTION O					TPY MAX POTENTIAL	
COST PER TON OF R	EDUCTION - N		NTIAL			\$5,358

,

1

<u>il</u> . . .

ECONOMIC ANALYSIS FOR THE INSTALLATION OF A REFRIGERATED CONDENSER SYSTEM ON THE PILOT PLANT:

See the economic analysis for the #3 LTC Finishing Unit. This unit would require the same controls but has a lower VOC potential to emit than the LTC Unit making this option cost prohibitive.

LTC 1 & 2

REFRIGERATED CONDENSERS

PURCHASED EQU EC	RCHASED EQUIPMENT COST CONDENSERS (6) AND AUXILLARY EQUIPMENT REFRIGERATION UNIT			
1.08 EC	PURCHASED EC	UIPMENT COST TOTAL ,PEC	\$119,901	
(3 FOR SMALLER F	AL INVESTMENT IS 3 - 4 TIMES 1 PROJECTS WITHOUT MUCH INS			
TOTAL CAPITAL IN	IVESTMENT (TCI)		\$479,602	
ANNUAL COSTS				
Annual costs consis	st of direct and indirect annual cost	s minus recovery credits.	ILBANAN SAATSAL-Ja-4	
DIRECT ANNUAL C	COSTS, DC			
	OPERATING LABOR 0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232	
	MAINTANENCE 0.5 hr/shift 100% maint labor	\$16.50	\$9,034 \$9,034	
	UTILITIES ELECTRICITY	\$0.07 kW/hr	\$10,424	
TOTAL DIRECT AN	INUAL COSTS, DC		\$37,936	
INDIRECT ANNUAL	L COSTS, IC			
	OVERHEAD (60% total labor	& maint	\$16,507	
0.01 TCI	materials cost) PROPERTY TAX		\$4,796	
0.01 TCI	INSURANCE		\$4,796	
0.1315 TCI	ADMINISTRATIVE & CAPITA	L RECOVERY TAX	\$63,068	
TOTAL INDIRECT	ANNUAL COSTS, IC		\$89,167	
RECOVERY CRED	ITS		ž	
	RECOVERED VOC (quantity	recovered X op hrs)	\$0	
TOTAL ANNUAL CO	OST (DC + IC - RC)		\$127,103	
LTC 1 & 2 UNIT E	MISSIONS SUMMARY 1994 AND) MAX		
SUMMARY	WHVD VP UNCON @6C	CON		
MAX POT	54.8 476.5	25.4		
FOR A REDUCTION	N OF		ГІАL ==== ==============	
COST PER TON OF	F REDUCTION - MAX POTENTIAL		\$4.330	

COST PER TON OF REDUCTION - MAX POTENTIAL \$4,330

 $|0\rangle \rightarrow$

1

C-POLY UNIT

PURCHASED EQUI EC	PMENT COST CONDENSERS (3) AND AUX REFRIGERATION UNIT	ILLARY EQUIPMENT	\$55,500 \$65,000			
1.08 EC	PURCHASED EC	PURCHASED EQUIPMENT COST TOTAL ,PEC				
(3 FOR SMALLER P	AL INVESTMENT IS 3 - 4 TIMES 1 ROJECTS WITHOUT MUCH INST					
TOTAL CAPITAL IN			\$520,560			
ANNUAL COSTS						
Annual costs consist	t of direct and indirect annual costs	minus recovery credits.				
DIRECT ANNUAL C	OSTS, DC					
	OPERATING LABOR 0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232			
	MAINTANENCE 0.5 hr/shift 100% maint labor	\$16.50	\$9,034 \$9,034			
	UTILITIES ELECTRICITY	\$0.07 kW/hr	\$10,424			
TOTAL DIRECT AN	NUAL COSTS, DC		\$37,936			
INDIRECT ANNUAL	COSTS, IC					
	OVERHEAD (60% total labor	& maint	\$16,507			
0.01 TCI	materials cost) PROPERTY TAX		\$5,206			
0.01 TCI	INSURANCE		\$5,206			
0.131474 TCI	CRF = ADMINISTRATIVE & C	APITAL RECOVERY TAX	\$68,440			
	CRF = (i (1 + i)^n) / ((1 + i)^	n - 1) i = 10% n = 15 YRS				
TOTAL INDIRECT A	NNUAL COSTS, IC		\$95,358			
RECOVERY CREDI	TS					
	RECOVERED VOC (quantity)	recovered X op hrs)	\$0			
TOTAL ANNUAL CO	DST (DC + IC - RC)		\$133,295			
	IS SUMMARY 1994 AND MAX					
SUMMARY	WLVD VP UNCON @6C	CON_				
ACTUAL	1.4 3.9	0.2				
MAX POT	32.8 98.2	8.0				
FOR A REDUCTION		1.2 TPY 24.8 TPY MAX POTENTI				
COST PER TON OF			\$111,079			
COST PER TON OF	REDUCTION - MAX POTENTIAL		\$5,375			
	****	ebec kerkerin karakara baskar				

0.0

.<u>C-5 UNIT</u>

•••

THERMAL OXIDIZER

DIRECT COS	DOLLARS	
PURCHASE	D EQUIPMENT COSTS	
EC	EQUIPMENT COSTS - THERMAL OXIDIZER (3) AUXILLARY - DUCTWORK	\$145,000 \$100,000
A	SUM	\$245,000
0.03A 0.05A	SALES TAX FREIGHT	\$7,350 \$12,250
в	PURCHASED EQUIPMENT COSTS TOTAL	\$264,600

THE TOTAL CAPITAL INVESTMENT IS 3 - 4 TIMES THE EQUIPMENT COSTS (3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION)

TOTAL CAPITAL INVESTMENT (TCI) \$1,058,400

ANNUAL COSTS

0.15operator SUPERVISOR \$1,232 MAINTANENCE LABOR \$16,50 0.5 hr/shift LABOR \$16,50 100% maint labor MATERIAL \$9,034 UTILITIES NATURAL GAS \$6,00 LECTRICITY \$6,00 MMbtu/hr TOTAL DIRECT COSTS \$357,096 INDIRECT ANNUAL COSTS IC \$16,507 60% op,super,maint OVERHEAD \$16,507 labor & maint matts \$2% TCI ADMINISTRATIVE CHARGES \$21,168 1% TCI PROPERTY TAXES \$10,584	DIRECT ANNUAL	COSTS DC	RATE/HR	
0.15operatorSUPERVISOR\$1,232MAINTANENCE 0.5 hr/shift 100% maint laborLABOR MATERIAL\$16,50\$9,034UTILITIESNATURAL GAS ELECTRICITY\$6.00 MMbtu/hr \$0.07 KW/hr\$319,160 \$10,424TOTAL DIRECT COSTS\$357,096INDIRECT ANNUAL COSTS IC\$007 KW/hr\$357,09660% op.super.maint OVERHEAD\$16,507labor & maint matts\$16,5072% TCIADMINISTRATIVE CHARGES\$21,1681% TCIINSURANCE\$10,5840.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL INDIRECT COSTS\$558,247C-5 UNIT EMISSIONS= 62,1 TPY.100% offthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62,1 TPYFOR A REDUCTION OF56,1 TPYCOST PER TON OF REDUCTION $35,10,485$	OPERATING LABO	R		
MAINTANENCE 0.5 thr/shift 100% maint laborLABOR MATERIAL\$16.50\$9,034UTILITIESNATURAL GAS ELECTRICITY\$6.00 MMblu/hr \$0.07 kW/hr\$319,160 \$10,424TOTAL DIRECT COSTSNDIRECT ANNUAL COSTS IC60% op.super.maint OVERHEAD\$16,507labor & maint matts\$10,5042% TCIADMINISTRATIVE CHARGES\$10,5041% TCIPROPERTY TAXES\$10,5041% TCIINSURANCE\$10,5041% TCIINSURANCE\$10,5040.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL INDIRECT COSTS\$568,247TOTAL ANNUAL COSTS\$568,247TOTHERMAL OXIDIZER<	0.5 hr/shift		\$15.00	
0.5 hr/shift LABOR $$16.50$ $$9,034$ 100% maint labor MATERIAL $$16.50$ $$9,034$ UTILITIES NATURAL GAS ELECTRICITY $$0.07$ kW/hr $$319,160$ ELECTRICITY $$0.07$ kW/hr $$10,424$ TOTAL DIRECT COSTS $$357,096$ INDIRECT ANNUAL COSTS IC 60% op,super,maint OVERHEAD $$16,507$ labor & maint mails 2% TCI ADMINISTRATIVE CHARGES $$21,168$ 1% TCI INSURANCE $$10,584$ 0.1628 TCI CAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST) $$172,308$ TOTAL INDIRECT COSTS $$231,151$ TOTAL INDIRECT COSTS $$231,151$ TOTAL ANNUAL COSTS $$588,247$ C-5 UNIT EMISSIONS $= 62.1$ TPY 100% of the VOC point sources goes to the Thermal oxidizer TO THERMAL OXIDIZER $= 62.1$ TPY FOR A REDUCTION, THE EMISSIONS WOULD BE $= 0.466$ TPY FOR A REDUCTION OF 56.1 TPY COST PER TON OF REDUCTION $$25,10,485$	0.15operator	SUPERVISOR		\$1,232
100% maint laborMATERIAL\$0,034UTILITIESNATURAL GAS ELECTRICITY\$6.00 MMbbu/hr\$319,160 \$10,424TOTAL DIRECT COSTS\$319,160 \$10,424TOTAL DIRECT COSTS\$357,096INDIRECT ANNUAL COSTS IC60% op,super,maint OVERHEAD\$16,507 labor & maint matis2% TCIADMINISTRATIVE CHARGES\$21,168 \$10,5841% TCIINSURANCE\$10,564 \$10,5641% TCIINSURANCE\$10,564 \$10,5640.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308 \$1231,151TOTAL INDIRECT COSTS\$231,151TOTAL INDIRECT COSTS\$588,247Cost UNIT EMISSIONS= 62,1 TPY100% offthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62,1 TPYA 99% DESTRUCTION, THE EMISSIONS WOULD BE = 0 $_{\pm}66$ TPYFOR A REDUCTION OF 56,1 TPYCOST PER TON OF REDUCTION				
UTILITIESNATURAL GAS ELECTRICITY\$6.00 MMbtu/hr \$0.07 kW/hr\$319,160 \$10,424TOTAL DIRECT COSTS\$357,096INDIRECT ANNUAL COSTS IC\$16,50760% op,super,maint OVERHEAD\$16,507labor & maint matis\$16,5072% TCIADMINISTRATIVE CHARGES\$21,1681% TCIPROPERTY TAXES\$10,5841% TCIINSURANCE\$10,5840.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62,1 TPY.100% offthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62,1 TPY.100% offthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62,1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0 $_{\pm}66$ TPYFOR A REDUCTION OF56,1 TPYCOST PER TON OF REDUCTION\$\$\$ 10,485			\$16.50	
NATURAL GAS ELECTRICITY\$6.00 MMbtu/hr \$0.07 kW/hr\$319,160 \$10,424TOTAL DIRECT COSTS\$357,096INDIRECT ANNUAL COSTS IC60% op,super,maint OVERHEAD labor & maint mails\$16,5072% TCI 2% TCIADMINISTRATIVE CHARGES \$24,168\$21,1681% TCI 0.628 TCIPROPERTY TAXES INSURANCE CAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C.5 UNIT EMISSIONS= 62,1 TPY100% off the VOC point sources goes to the Thermal oxidizer\$588,247TO THERMAL OXIDIZER = 62,1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE 56,1 TPYFOR A REDUCTION OF \$6,1 TPYCOST PER TON OF REDUCTION	100% maint labor	MATERIAL		\$9,034
ELECTRICITY\$0.07 kW/hr\$10,424TOTAL DIRECT COSTS\$357,096INDIRECT ANNUAL COSTS IC60% op,super,maint OVERHEAD\$16,507Iso of a maint matts2% TCIADMINISTRATIVE CHARGES\$21,1681% TCIPROPERTY TAXES\$10,5841% TCIINSURANCE\$10,5840.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62.1 TPY100% offthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62.1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0.466 TPYFOR A REDUCTION OF56.1 TPYCOST PER TON OF REDUCTION\$45.10.485	UTILITIES			
TOTAL DIRECT COSTS\$357,096INDIRECT ANNUAL COSTS IC60% op.super.maint OVERHEAD\$16,507labor & maint matts\$16,507labor & maint matts\$16,5072% TCIADMINISTRATIVE CHARGES\$21,1681% TCIPROPERTY TAXES\$10,5841% TCIINSURANCE\$10,5840.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62,1 TPY.100% offthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62,1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0 466 TPYFOR A REDUCTION OF56,1 TPYCOST PER TON OF REDUCTION $:$$10,485$				
INDIRECT ANNUAL COSTS IC60% op.super.maint OVERHEAD\$16,507labor & maint mails\$16,5072% TCIADMINISTRATIVE CHARGES\$21,1681% TCIPROPERTY TAXES\$10,5841% TCIINSURANCE\$10,5840.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62.1 TPY.100% offthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62.1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0.466 TPYFOR A REDUCTION OF56.1 TPYCOST PER TON OF REDUCTION:\$\$ 10,485		ELECTRICITY	\$0.07 KW/hr	\$10,424
60% op, super, maint OVERHEAD\$16,507labor & maint matis2% TCIADMINISTRATIVE CHARGES\$21,1681% TCIPROPERTY TAXES\$10,5841% TCIINSURANCE\$10,5840.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247Cost per two of the VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER $= 62, 1$ TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE $= 0 \pm 66$ TPYFOR A REDUCTION OF 56, 1 TPYCOST PER TON OF REDUCTION $: $$10, 485$		TOTAL DIRECT C	OSTS	\$357,096
labor & maint matts2% TCIADMINISTRATIVE CHARGES\$21,1681% TCIPROPERTY TAXES\$10,5841% TCIINSURANCE\$10,5840.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62,1 TPY100% offthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62,1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0 $_{\pm}66$ TPYFOR A REDUCTION OF56,1 TPYCOST PER TON OF REDUCTION\$\$\$ 10,485	INDIRECT ANNUA	L COSTS IC		
2% TCIADMINISTRATIVE CHARGES\$21,1681% TCIPROPERTY TAXES\$10,5841% TCIINSURANCE\$10,5840.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$588,247COST PER TON OF REDUCTIONCOST PER TON OF REDUCTION\$\$ 10,485				\$16,507
1% TCI 1% TCI 1% TCI 1% TCI 1% TCI 1% TCI 1% TCI 1.1628 TCIPROPERTY TAXES INSURANCE CAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST) \$10,584 \$172,308 \$231,151TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62.1 TPY100% off the VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER FOR A REDUCTION OF= 62.1 TPYCOST PER TON OF REDUCTION 56.1 TPYCOST PER TON OF REDUCTION $58.10,485$				\$21,168
0.1628 TCICAPITAL RECOVERY (10 YEAR LIFE & 10% INTEREST)\$172,308TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62.1 TPY 100% ofthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62.1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0.466 TPYFOR A REDUCTION OF 56.1 TPYCOST PER TON OF REDUCTION*\$\$ 10,485	1% TCI			
TOTAL INDIRECT COSTS\$231,151TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62.1 TPY 100% ofthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62.1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0.166 TPYFOR A REDUCTION OF 56.1 TPYCOST PER TON OF REDUCTION $:$$10,485$	1% TCI			
TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62.1 TPY 100% ofthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62.1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0.66 TPYFOR A REDUCTION OF 56.1 TPYCOST PER TON OF REDUCTION $:$$$ 10,485$	0.1628 TCI	CAPITAL RECOVERY (10 YEA	AR LIFE & 10% INTEREST)	\$172,308
TOTAL ANNUAL COSTS\$588,247C-5 UNIT EMISSIONS= 62.1 TPY 100% ofthe VOC point sources goes to the Thermal oxidizerTO THERMAL OXIDIZER= 62.1 TPYAT 99% DESTRUCTION, THE EMISSIONS WOULD BE= 0.466 TPYFOR A REDUCTION OF 56.1 TPYCOST PER TON OF REDUCTION:\$\$ 10,485		TOTAL INDIRECT COSTS		\$231,151
C-5 UNIT EMISSIONS = 62.1 TPY 100% of the VOC point sources goes to the Thermal oxidizer TO THERMAL OXIDIZER = 62.1 TPY AT 99% DESTRUCTION, THE EMISSIONS WOULD BE = 0.166 TPY FOR A REDUCTION OF 56.1 TPY COST PER TON OF REDUCTION :\$\$ 10,485				
100% of the VOC point sources goes to the Thermal oxidizer TO THERMAL OXIDIZER = 62.1 TPY AT 99% DESTRUCTION, THE EMISSIONS WOULD BE = 0 $\pm 6\%$ TPY FOR A REDUCTION OF 56.1 TPY COST PER TON OF REDUCTION :\$\$ 10,485	****************	: 200722222 2222222222222222222222222222	una approved totologe textitues	
TO THERMAL OXIDIZER = 62.1 TPY AT 99% DESTRUCTION, THE EMISSIONS WOULD BE = 0.166 TPY FOR A REDUCTION OF 56.1 TPY COST PER TON OF REDUCTION $($10,485)$	C-5 UNIT EMISSIO	NS = 62.1 TPY	10 J	
TO THERMAL OXIDIZER = 62.1 TPY AT 99% DESTRUCTION, THE EMISSIONS WOULD BE = 0.166 TPY FOR A REDUCTION OF 56.1 TPY COST PER TON OF REDUCTION $($10,485)$		÷.	ж	
AT 99% DESTRUCTION, THE EMISSIONS WOULD BE = $0 \pm 6\ell$ TPY FOR A REDUCTION OF 56.1 TPY COST PER TON OF REDUCTION $\xi \pm 10,485$.100% of the	VOC point sources goes to the	Thermal oxidizer	
FOR A REDUCTION OF 56.1 TPY COST PER TON OF REDUCTION	TO THERMAL OXI	DIZER = 62.1 TPY		
FOR A REDUCTION OF 56.1 TPY COST PER TON OF REDUCTION	AT 99% DESTRUC	TION, THE EMISSIONS WOUL	$DBE = 0 \pm 66 TPY$	
COST PER TON OF REDUCTION				
V 10,40J	*======================================			========
			st 10.4 ،4	85

11

<u>wwtp</u>

• :

,

.

COVER THE 2 SUMPS AND THE DAF TANK AND CALCULATE THE EMISSIONS AS A FIXED ROOF TANK USING AP-42 FORTH EDITION 10/92

		FTER 6C		
	CURRENT C	OND		
701 A & B	5655	2405		
RAW SUMP ACID & FINAL SUMP	3246 3248	1365 26		
DAF TANK	15198	247		
	286	286 5		
PRIMARY CLARIFIER SECONDARY CLARIFIER	5 33	33		
702 A & B & C	20654	20654		
TOTAL TPY	48325 24.2	25021 12.5		
REDUCTION		11.7 TPY		
PURCHASED EQUIPMENT COS	T 3 TANK ROO	re		#e0.000
EC	REFRIGERAT			\$60,000 \$65,000
1.08 EC			QUIPMENT COST TOTAL ,PEC	\$135,000
TOTAL CAPITAL INVESTMENT (I BORREUR ORAN	arean accumente reconnec ouzou:	\$540,000
ANNUAL COSTS				
Annual costs consist of direct and	indirect annual cos	ts minus recov	ery credits.	
DIRECT ANNUAL COSTS, DC				
DIRECT ANNOAL COSTS, DO				
	OPERATING 0.5 hr/shift	LABOR		
	0.5 m/smit 0.15operator		\$15.00	
		CE	\$15.00	
	0.15operator MAINTANEN(0.5 hr/shift		\$15.00 \$16.50	\$1,232 \$9,034
	0.15operator MAINTANEN			\$1,232
	0.15operator MAINTANEN(0.5 hr/shift	ibor		\$8,213 \$1,232 \$9,034 \$9,034 \$10,424
TOTAL DIRECT ANNUAL COSTS	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY	ibor	\$16.50	\$1,232 \$9,034 \$9,034 \$10,424
	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY	ibor	\$16.50	\$1,232 \$9,034 \$9,034 \$10,424
	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY , DC	libor (60% total labor	\$16.50 \$0.07 kW/hr	\$1,232 \$9,034 \$9,034 \$10,424 \$37,936
	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY , DC	abor (60% total labor aterials cost)	\$16.50 \$0.07 kW/hr	\$1,232 \$9,034 \$9,034 \$10,424 \$37,936 \$16,507
INDIRECT ANNUAL COSTS, IC	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY , DC OVERHEAD (m	abor (60% total labor aterials cost)	\$16.50 \$0.07 kW/hr	\$1,232 \$9,034 \$9,034
NDIRECT ANNUAL COSTS, IC 0.01 TCI	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY , DC OVERHEAD (M PROPERTY T INSURANCE	abor 60% total labor aterials cost) 7AX	\$16.50 \$0.07 kW/hr	\$1,232 \$9,034 \$9,034 \$10,424 \$37,936 \$16,507 \$5,400 \$5,400
NDIRECT ANNUAL COSTS, IC 0.01 TCI 0.01 TCI 0.1315 TCI	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY , DC OVERHEAD (M PROPERTY T INSURANCE ADMINISTRA	abor 60% total labor aterials cost) 7AX	\$16.50 \$0.07 kW/hr & maint	\$1,232 \$9,034 \$10,424 \$37,936 \$16,507 \$5,400
INDIRECT ANNUAL COSTS, IC 0.01 TCI 0.01 TCI 0.1315 TCI TOTAL INDIRECT ANNUAL COS ⁻	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY , DC OVERHEAD (M PROPERTY T INSURANCE ADMINISTRA	abor 60% total labor aterials cost) 7AX	\$16.50 \$0.07 kW/hr & maint	\$1,232 \$9,034 \$9,034 \$10,424 \$37,936 \$16,507 \$5,400 \$5,400 \$71,010
NDIRECT ANNUAL COSTS, IC 0.01 TCI 0.01 TCI 0.1315 TCI TOTAL INDIRECT ANNUAL COST RECOVERY CREDITS	0.15operator MAINTANEN(0.5 hr/shift 100% maint la UTILITIES ELECTRICITY , DC OVERHEAD (M PROPERTY T INSURANCE ADMINISTRA TS, IC RECOVERED	abor 60% total labor aterials cost) 7AX TIVE & CAPITA	\$16.50 \$0.07 kW/hr & maint AL RECOVERY TAX recovered X op hrs)	\$1,232 \$9,034 \$9,034 \$10,424 \$37,936 \$16,507 \$5,400 \$7,400 \$7,1010 \$98,317 \$0
INDIRECT ANNUAL COSTS, IC 0.01 TCI 0.01 TCI 0.1315 TCI TOTAL INDIRECT ANNUAL COST RECOVERY CREDITS	0.15operator MAINTANENG 0.5 hr/shift 100% maint la UTILITIES ELECTRICITM , DC OVERHEAD (M PROPERTY T INSURANCE ADMINISTRA TS, IC RECOVERED	abor 60% total labor aterials cost) FAX TIVE & CAPITA	\$16.50 \$0.07 kW/hr & maint AL RECOVERY TAX recovered X op hrs)	\$1,232 \$9,034 \$10,424 \$37,936 \$16,507 \$5,400 \$71,010 \$98,317 \$0
0.01 TCI 0.1315 TCI TOTAL INDIRECT ANNUAL COST RECOVERY CREDITS TOTAL ANNUAL COST (DC + IC	0.15operator MAINTANENG 0.5 hr/shift 100% maint la UTILITIES ELECTRICITY , DC OVERHEAD (m PROPERTY T INSURANCE ADMINISTRA TS, IC RECOVERED	abor 60% total labor aterials cost) TIVE & CAPITA	\$16.50 \$0.07 kW/hr & maint AL RECOVERY TAX recovered X op hrs)	\$1,23 \$9,03 \$9,03 \$10,42 \$37,93 \$16,50 \$5,40 \$5,40 \$71,01 \$98,31 \$ \$136,25

dr.

WHOLE FACILITY - THERMAL INCINERATOR

(Total flowrate > 50,000 scfm)

COST BASE DATE: April 1988 [1]

VAPCCI (Third Quarter 1995): [2]

107

INPUT PARAMETERS

Total gas flowrate (scfm):	100000
Flowrate per unit (scfm):	50000
Flowrate/unit, 2nd iter. (scfm):	50000
Number of units:	2
Reference temperature (oF):	77
Inlet gas temperature (oF):	77
Inlet gas density (lb/scf):	0.0739
Primary heat recovery (fraction):	0.35
Waste gas heat content (BTU/scf):	4
Waste gas heat content (BTU/lb):	56.56
Gas heat capacity (BTU/lb-oF):	0.255
Combustion temperature (oF):	1600
Preheat temperature (oF):	610
Fuel heat of combustion (BTU/lb):	21502
Fuel density (lb/ft3):	0.0408

DESIGN PARAMETERS

Auxiliary Fuel Regrmnt (lb/min):		82.466
	(scfm):	2021.2
Total Gas Flowrate (scfm):		102021

CAPITAL COSTS

Equipment Costs (\$):

-- Incinerator:

@ 0 % heat recovery:	0
@ 35 % heat recovery:	442,470
@ 50 % heat recovery:	0
@ 70 % heat recovery:	0
Other (auxiliary equipment, etc.):	1000000
Total Equipment Costbase:	1,442,470
' 'escalated:	1,923,306
Purchased Equipment Cost (\$):	2,269,501
Total Capital Investment (\$):	3,653,897

	ANNUAL COST INPUTS
Operating factor (hr/yr): Operating labor rate (\$/hr): Maintenance labor rate (\$/hr): Operating labor factor (hr/sh): Maintenance labor factor (hr/sh) Electricity price (\$/kwh): Natural gas price (\$/mscf): Annual interest rate (fraction): Control system life (years): Capital recovery factor: Taxes, insurance, admin. factor: Pressure drop (in. w.c.):	0 3 0 10 0.1424

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	7,096	
Supervisory labor	1,064	
Maintenance labor	7,805	
Maintenance materials	7,805	
Natural gas	3,505,762	
Electricity	82,261	
Overhead	14,262	
Taxes, insurance, administrative	146,156	
Capital recovery	520,233	
Total Annual Cost	4,292,444	= \$7,150/TON VOC REMOVED
		@ AN ASSUMED MAXIMUM POTENTIAL
NOTES:		TREATMENT OF 75% OF ALL PROCESS
		EMISSIONS = 600 TPY

[1] Original equipment costs reflect this date.

[2] VAPCCI = Vatavuk Air Pollution Control Cost Index (for thermal incinerators) corresponding to year and quarter shown. Original equipment cost, purchased equipment cost, and total capital investment have been escalated to this date via the VAPCCI and control equipment vendor data.

COST ANALYSIS FOR VOC CONTROLS FOR THE BOILER HOUSE:

Assumptions:

رم ^م د د د

۳ ۲.

> 1. Capital investment = \$0.0 2. Utility costs = \$0.0 3. Process costs = \$0.0 4. Labor & maint. costs = \$24/Hr. 5. Operating hours = 8,760/Yr.

Using cost factors from U.S. EPA's OAQPS cost manual, the following is a cost analysis based on labor and maintenance costs only:

Direct annual costs

Operating labor Supervisor	\$13,140 \$1,971
	\$14,454 \$14,454
Utilities	\$0.0 \$0.0 \$0.0
Indirect annual costs	
Administration SProperty taxes/insurance SP	\$26,411 \$0.0 \$0.0 \$0.0
Total annual costs =	\$70 , 430
VOC omigaions roduction A 100%	control -

VOC emissions reduction @ 100% control = 5 TPY Cost effectiveness = \$14,086/ton VOC removed

APPENDIX D

ۍ د

PRE AND POST CONTROL INSTALLATION SUMMARY

4

L

V&S PROPOSED POTENTIAL TO EMIT AN	D CONTROL EFFICIENCY:				
PROCESS - HYDROGENATION					
EMISSION	EXISTING CONTROL	UNCONTROLLED	CONTROLLED	PROPOSED	PER
EMISSION UNIT	DEVICE	PTE TPY	PTE TPY	REDUCTION	V
				TPY	CON
1 TANKS T-100 & T- 101		12.93	2.3	10.6	i
2 TANK T-106	CONDENSER @ 6 C	0.80	0.2	0.6	
3 METERING TNK	CONDENSER @ 6 C	48.86	1.59	47.3	9
4 FILTER BLOW #1	CONDENSER @ 6 C	67.66	1.770	65.9	1
5 FILTER BLOW #2	CONDENSER @ 6 C	157.29	4.12	153.2	1
6 AUTOCLAVES 1 & 2 AND TNK - 303	CONDENSER @ 6 C	508.91	61.47	447.4	1
7 OB TANK	UNCRONTROLLED	1.20	1.2	0.0	
8 TNK T- 501	CONDENSER @ 6 C	110.43	1.63	108.8	9
9 AUTOCLAVE BLOWOUT	UNCRONTROLLED	324.05	6.17	317.9	
11 TNKS T-102 & T-105	CONDENSER @ 6 C	70.16	1.83	68.3	ŝ
12 SWEETLAND BLOWOUT	CONDENSER @ 6 C	4.00	1.43	2.6	i
13 CATALYST TANK	UNCRONTROLLED	1.04	1.04	0.0	
14 PRECOAT TANK	UNCRONTROLLED	0.03	0.03	0.0	
PROCESS - WATER WHITE POLY	PROCESS TOTAL =	1307.36	84.78	1222.6	ç
1 FEED DRYERS 2 REACTORS 3 BLEND TANKS 4 SLURRY TNK 5 RECLAIMER 6 RECLAIMER STORAGE TNK	CONDENSER @ 6 C CONDENSER @ 6 C UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED	403.97 225.42 14.26 0.71 2.61 2.49	13.69 15.38 14.26 0.71 1.37 2.49	390.3 210.0 0.0 0.0 1.2 0.0	1
7 NEUTRALIZER	CONDENSER @ 6 C	19.26	3.00	16.3	8
8 NEUTRALIZER EXHAUST	UNCONTROLLED	1.31	1.31	0.0	
9 FILTRATE RECIEVER	CONDENSER @ 6 C	27.67	3.33	24.3	
10 FUNDA FILTER	UNCONTROLLED	5.25	5.25	0.0	
11 AUX RECIEVER	UNCONTROLLED	3.86	3.86	0.0	
	PROCESS TOTAL =	706.81	64.66	642.2	Ş
TOTAL AFTER PROPOSED C FOR HDROGENATION AND		2014.17	149.44	1864,74	Ş
TOTAL WITH EXISTING CON FOR HDROGENATION AND		2009.80	451.42	1558.38	7
TOTAL WITH EXISTING CON FOR ALL PROCESSES	ITROL =	4408.37	793.74	3614.63	8
TOTAL AFTER PROPOSED (CONTROLS =	4412.74	491.76	3920.98	8

ų

AIR QUALITY PROGRAM 301 39th Street, Bldg. #7 Pittsburgh, PA 15201-1811

Major Source INSTALLATION PERMIT

Issued To:	Eastman Chemical Resins, Inc.	ACHD Permit#:
	Jefferson Site	
	2200 State Highway 837	
	West Elizabeth, PA 15088-0545	Date of Issuance:

ACHD Permit#:	0058-1026
Date of Issuance:	April 21, 2020

Expiration Date:

(See Section III.12)

Issued By:

Digitally signed by JoAnn Truchan, PE Date: 2020.04.22 09:09:00 -04'00'

JoAnn Truchan, P.E. Section Chief, Engineering **Prepared By:**

Helm bernich D

Digitally signed by Helen Gurvich Date: 2020.04.22 08:54:50 -04'00'

Helen O. Gurvich Air Quality Engineer [This page left intentionally blank]

TABLE OF CONTENTS

I.	CO	NTACT INFORMATION	4	
II.	FACILITY DESCRIPTION			
III.	GENERAL CONDITIONS			
IV.	SITE LEVEL TERMS AND CONDITIONS11			
V.	EN	EMISSION UNIT LEVEL TERMS AND CONDITIONS		
	A.	C-5 – Storage Tanks		
	В.	C-5 OPERATIONS – PASTILLATING BELTS #1 AND #2 (S055)		
	C.	MP POLY UNIT (\$034)		
	D.	WW POLY UNIT (S013, S020, S023, S027)		
	E.	WW POLY STORAGE TANKS (S025)		
	F.	LTC PROCESS OPERATIONS (S108, S109, S110, S111, S112, S113, S114)		
	G.	DRESINATE PRODUCTION LINE (S085)		
	H.	Hydrogenation Unit (S004, S007, S012)		
	I.	WASTEWATER TREATMENT PLANT (F027, F033, F034, F035)		
VI.	ALTERNATIVE OPERATING SCENARIOS			

AMENDMENTS:

DATE SECTION(S)

I. CONTACT INFORMATION

Facility Location:	Eastman Chemical Resins, Inc. Jefferson Site 2200 State Highway 837 West Elizabeth, PA 15088-0545			
Permittee/Owner:	Eastman Chemical Resins, Inc. Jefferson Site 2200 State Highway 837 West Elizabeth, PA 15088-0545			
Responsible Official: Title: Company: Address:	Eugene M. Ingram Jefferson Site Manager Eastman Chemical Resins, Inc. Jefferson Site 2200 State Highway 837 P.O. Box 545 West Elizabeth, PA 15088-0545			
Telephone Number: Fax Number:	412-384-2520 412-384-7311			
Facility Contact: Title: Telephone Number: Fax Number: E-mail Address:	Janice Kane Senior Environmental Coordinator 412-384-2520, ext. 2243 412-384-7311 jsnyderkane@eastman.com			
AGENCY ADDRESSES:				
ACHD Contact:	Chief Engineer Allegheny County Health Department Air Quality Program 301 39th Street, Building #7 Pittsburgh, PA 15201-1811 aqpermits@alleghenycounty.us			
EPA Contact:	Enforcement Programs Section (3AP12) USEPA Region III 1650 Arch Street			

Philadelphia, PA 19103-2029

II. FACILITY DESCRIPTION

FACILITY DESCRIPTION

The Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) produces synthetic hydrocarbon resins from C5 feedstock, monomers, solvents and catalysts by way of cationic polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products. The plant is comprised of three polymerization processes (C5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC1, LTC2, and C-5), and an emulsion process, five boilers ranging from 18.6 MM Btu/hr to 38.2 MM Btu/hr, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes.

The facility is a major source of volatile organic compounds (VOCs) and Hazardous Air Pollutants (HAPs); and a minor source of particulate matter (PM), particulate matter $<10 \mu$ m in diameter (PM₁₀), particulate matter $<2.5 \mu$ m in diameter (PM_{2.5}), nitrogen oxides (NO_X), sulfur oxides (SO_X), as defined in §2102.20 of Article XXI. The facility is also a minor source of greenhouse gas emissions (CO₂e) as defined in the U.S. EPA Greenhouse Gas Tailoring Rule.

INSTALLATION DESCRIPTION

This permit is an installation addressing the requirements for case-by-case Reasonably Achievable Control Technology (2008 Ozone RACT, or RACT II) for incorporation into the Pennsylvania State Implementation Plan.

DECLARATION OF POLICY

Pollution prevention is recognized as the preferred strategy (over pollution control) for reducing risk to air resources. Accordingly, pollution prevention measures should be integrated into air pollution control programs wherever possible, and the adoption by sources of cost-effective compliance strategies, incorporating pollution prevention, is encouraged. The Department will give expedited consideration to any permit modification request based on pollution prevention principles.

The permittee is subject to the terms and conditions set forth below. These terms and conditions constitute provisions of *Allegheny County Health Department Rules and Regulations, Article XXI Air Pollution Control.* The subject equipment has been conditionally approved for operation. The equipment shall be operated in conformity with the plans, specifications, conditions, and instructions which are part of your application, and may be periodically inspected for compliance by the Department. In the event that the terms and conditions of this permit or the applicable provisions of Article XXI conflict with the application for this permit, these terms and conditions and the applicable provisions of Article XXI shall prevail. Additionally, nothing in this permit relieves the permittee from the obligation to comply with all applicable Federal, State and Local laws and regulations.

III. GENERAL CONDITIONS

1. **Prohibition of Air Pollution (§2101.11)**

It shall be a violation of this permit to fail to comply with, or to cause or assist in the violation of, any requirement of this permit, or any order or permit issued pursuant to authority granted by Article XXI. The permittee shall not willfully, negligently, or through the failure to provide and operate necessary control equipment or to take necessary precautions, operate any source of air contaminants in such manner that emissions from such source:

- a. Exceed the amounts permitted by this permit or by any order or permit issued pursuant to Article XXI;
- b. Cause an exceedance of the ambient air quality standards established by Article XXI §2101.10; or
- c. May reasonably be anticipated to endanger the public health, safety, or welfare.

2. Nuisances (§2101.13)

Any violation of any requirement of this Permit shall constitute a nuisance.

3. **Definitions (§2101.20)**

- a. Except as specifically provided in this permit, terms used retain the meaning accorded them under the applicable provisions and requirements of Article XXI or the applicable federal or state regulation. Whenever used in this permit, or in any action taken pursuant to this permit, the words and phrases shall have the meanings stated, unless the context clearly indicates otherwise.
- b. Unless specified otherwise in this permit or in the applicable regulation, the term "*year*" shall mean any twelve (12) consecutive months.

4. Certification (§2102.01)

Any report or compliance certification submitted under this permit shall contain written certification by a responsible official as to truth, accuracy, and completeness. This certification and any other certification required under this permit shall be signed by a responsible official of the source, and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

5. **Operation and Maintenance (§2105.03)**

All air pollution control equipment required by this permit or Article XXI, and all equivalent compliance techniques that have been approved by the Department, shall be properly installed, maintained, and operated consistent with good air pollution control practice.

6. Conditions (§2102.03.c)

It shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02, for any person to fail to comply with any terms or conditions set forth in this permit.

7. Transfers (§2102.03.e)

This permit shall not be transferable from one person to another, except in accordance with Article XXI §2102.03.e and in cases of change-in-ownership which are documented to the satisfaction of the Department, and shall be valid only for the specific sources and equipment for which this permit was issued. The transfer of permits in the case of change-in-ownership may be made consistent with the administrative permit amendment procedure of Article XXI §2103.14.b.

8. Effect (§2102.03.g)

Issuance of this permit shall not in any manner relieve any person of the duty to fully comply with the requirements of Article XXI or any other provision of law, nor shall it in any manner preclude or affect the right of the Department to initiate any enforcement action whatsoever for violations of Article XXI or this Permit, whether occurring before or after the issuance of such permit. Further, the issuance of this permit shall not be a defense to any nuisance action, nor shall such permit be construed as a certificate of compliance with the requirements of Article XXI or this Permit.

9. General Requirements (§2102.04.a)

It shall be a violation of this Permit giving rise to the remedies set forth in Article XXI §2109 for any person to install, modify, replace, reconstruct, or reactivate any source or air pollution control equipment to which this Permit applies unless either:

- a. The Department has first issued an Installation Permit for such source or equipment; or
- b. Such action is solely a reactivation of a source with a current Operating Permit, which is approved under §2103.13 of Article XXI.

10. Conditions (§2102.04.e)

Further, the initiation of installation, modification, replacement, reconstruction, or reactivation under this

Installation Permit and any reactivation plan shall be deemed acceptance by the source of all terms and conditions specified by the Department in this permit and plan.

11. Revocation (§2102.04.f)

- a. The Department may, at any time, revoke this Installation Permit if it finds that:
 - 1) Any statement made in the permit application is not true, or that material information has not been disclosed in the application;
 - 2) The source is not being installed, modified, replaced, reconstructed, or reactivated in the manner indicated by this permit or applicable reactivation plan;
 - 3) Air contaminants will not be controlled to the degree indicated by this permit;
 - 4) Any term or condition of this permit has not been complied with;
 - 5) The Department has been denied lawful access to the premises or records, charts, instruments and the like as authorized by this Permit; or
- b. Prior to the date on which construction of the proposed source has commenced the Department may, revoke this Installation Permit if a significantly better air pollution control technology has become available for such source, a more stringent regulation applicable to such source has been adopted, or any other change has occurred which requires a more stringent degree of control of air contaminants.

12. Term (§2102.04.g)

This Installation Permit shall expire in 18 months if construction has not commenced within such period or shall expire 18 months after such construction has been suspended, if construction is not resumed within such period. In any event, this Installation Permit shall expire upon completion of construction, except that this Installation Permit shall authorize temporary operation to facilitate shakedown of sources and air cleaning devices, to permit operations pending issuance of a related subsequent Operating Permit, or to permit the evaluation of the air contamination aspects of the source. Such temporary operation period shall be valid for a limited time, not to exceed 180 days, but may be extended for additional limited periods, each not to exceed 120 days, except that no temporary operation shall be authorized or extended which may circumvent the requirements of this Permit.

13. Annual Installation Permit Administrative Fee (§2102.10.c & e)

No later than 30 days after the date of issuance of this Installation Permit and on or before the last day of the month in which this permit was issued in each year thereafter, during the term of this permit until a subsequent corresponding Operating Permit or amended Operating Permit is properly applied for, the owner or operator of such source shall pay to the Department, in addition to all other applicable emission and administration fees, an Annual Installation Permit Administration Fee in an amount of \$750.

14. Severability Requirement (§2103.12.l)

The provisions of this permit are severable, and if any provision of this permit is determined to by a court of competent jurisdiction to be invalid or unenforceable, such a determination will not affect the remaining provisions of this permit.

15. Reporting Requirements (§2103.12.k)

a. The permittee shall submit reports of any required monitoring at least every six (6) months. All

instances of deviations from permit requirements must be clearly identified in such reports. All required reports must be certified by the Responsible Official.

- b. Prompt reporting of deviations from permit requirements is required, including those attributable to upset conditions as defined in this permit and Article XXI §2108.01.c, the probable cause of such deviations, and any corrective actions or preventive measures taken.
- c. All reports submitted to the Department shall comply with the certification requirements of General Condition III.4 above.
- d. Semiannual reports required by this permit shall be submitted to the Department as follows:
 - 1) One semiannual report is due by July 31 of each year for the time period beginning January 1 and ending June 30.
 - 2) One semiannual report is due by February 1 of each year for the time period beginning July 1 and ending December 31.
 - 3) The first semiannual report shall be due July 31, 2020 for the time period beginning on the issuance date of this permit through June 30, 2020.
- e. Reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

16. Minor Installation Permit Modifications (§2102.10.d)

Modifications to this Installation Permit may be applied for but only upon submission of an application with a fee in the amount of \$300 and where:

- a. No reassessment of any control technology determination is required; and
- b. No reassessment of any ambient air quality impact is required.

17. Violations (§2104.06)

The violation of any emission standard established by this Permit shall be a violation of this Permit giving rise to the remedies provided by Article §2109.02.

18. Other Requirements Not Affected (§2105.02)

Compliance with the requirements of this permit shall not in any manner relieve any person from the duty to fully comply with any other applicable federal, state, or county statute, rule, regulation, or the like, including, but not limited to, any applicable NSPSs, NESHAPs, MACTs, or Generally Achievable Control Technology standards now or hereafter established by the EPA, and any applicable requirement of BACT or LAER as provided by Article XXI, any condition contained in this Installation Permit and/or any additional or more stringent requirements contained in an order issued to such person pursuant to Part I of Article XXI.

19. Other Rights and Remedies Preserved (§2109.02.b)

Nothing in this permit shall be construed as impairing any right or remedy now existing or hereafter created in equity, common law or statutory law with respect to air pollution, nor shall any court be deprived of such jurisdiction for the reason that such air pollution constitutes a violation of this permit

20. Penalties, Fines, and Interest (§2109.07.a)

A source that fails to pay any fee required under this Permit or article XXI when due shall pay a civil penalty of 50% of the fee amount, plus interest on the fee amount computed in accordance with of Article XXI §2109.06.a.4 from the date the fee was required to be paid. In addition, the source may have its permit revoked.

21. Appeals (§2109.10)

In accordance with State Law and County regulations and ordinances, any person aggrieved by an order or other final action of the Department issued pursuant to Article XXI shall have the right to appeal the action to the Director in accordance with the applicable County regulations and ordinances.

IV. SITE LEVEL TERMS AND CONDITIONS

1. Reporting of Upset Conditions (§2103.12.k.2)

The permittee shall promptly report all deviations from permit requirements, including those attributable to upset conditions as defined in Article XXI §2108.01.c, the probable cause of such deviations, and any corrective actions or preventive measures taken.

2. Visible Emissions (§2104.01.a)

Except as provided for by Article XXI §2108.01.d pertaining to a cold start, no person shall operate, or allow to be operated, any source in such manner that the opacity of visible emissions from a flue or process fugitive emissions from such source, excluding uncombined water:

- a. Equal or exceed an opacity of 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- b. Equal or exceed an opacity of 60% at any time.

3. Odor Emissions (§2104.04) (County-only enforceable)

No person shall operate, or allow to be operated, any source in such manner that emissions of malodorous matter from such source are perceptible beyond the property line.

4. Materials Handling (§2104.05)

The permittee shall not conduct, or allow to be conducted, any materials handling operation in such manner that emissions from such operation are visible at or beyond the property line.

5. **Operation and Maintenance (§2105.03)**

All air pollution control equipment required by this permit or any order under Article XXI, and all equivalent compliance techniques approved by the Department, shall be properly installed, maintained, and operated consistently with good air pollution control practice.

6. **Open Burning (§2105.50)**

No person shall conduct, or allow to be conducted, the open burning of any material, except where the Department has issued an Open Burning Permit to such person in accordance with Article XXI §2105.50 or where the open burning is conducted solely for the purpose of non-commercial preparation of food for human consumption, recreation, light, ornament, or provision of warmth for outside workers, and in a manner which contributes a negligible amount of air contaminants.

7. Shutdown of Control Equipment (§2108.01.b)

a. In the event any air pollution control equipment is shut down for reasons other than a breakdown, the person responsible for such equipment shall report, in writing, to the Department the intent to shut down such equipment at least 24 hours prior to the planned shutdown. Notwithstanding the submission of such report, the equipment shall not be shut down until the approval of the Department is obtained; provided, however, that no such report shall be required if the source(s)

served by such air pollution control equipment is also shut down at all times that such equipment is shut down.

- b. The Department shall act on all requested shutdowns as promptly as possible. If the Department does not take action on such requests within ten (10) calendar days of receipt of the notice, the request shall be deemed denied, and upon request, the owner or operator of the affected source shall have a right to appeal in accordance with the provisions of Article XI.
- c. The prior report required by Site Level Condition IV.7.a above shall include:
 - 1) Identification of the specific equipment to be shut down, its location and permit number (if permitted), together with an identification of the source(s) affected;
 - 2) The reasons for the shutdown;
 - 3) The expected length of time that the equipment will be out of service;
 - 4) Identification of the nature and quantity of emissions likely to occur during the shutdown;
 - 5) Measures, including extra labor and equipment, which will be taken to minimize the length of the shutdown, the amount of air contaminants emitted, or the ambient effects of the emissions;
 - 6) Measures which will be taken to shut down or curtail the affected source(s) or the reasons why it is impossible or impracticable to shut down or curtail the affected source(s) during the shutdown; and
 - 7) Such other information as may be required by the Department.
- d. Shutdown reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

8. Breakdowns (§2108.01.c)

- a. In the event that any air pollution control equipment, process equipment, or other source of air contaminants breaks down in such manner as to have a substantial likelihood of causing the emission of air contaminants in violation of this permit, or of causing the emission into the open air of potentially toxic or hazardous materials, the person responsible for such equipment or source shall immediately, but in no event later than sixty (60) minutes after the commencement of the breakdown, notify the Department of such breakdown and shall, as expeditiously as possible but in no event later than seven (7) days after the original notification, provide written notice to the Department.
- b. To the maximum extent possible, all oral and written notices required shall include all pertinent facts, including:
 - 1) Identification of the specific equipment which has broken down, its location and permit number (if permitted), together with an identification of all related devices, equipment, and other sources which will be affected.
 - 2) The nature and probable cause of the breakdown.
 - 3) The expected length of time that the equipment will be inoperable or that the emissions will continue.
 - 4) Identification of the specific material(s) which are being, or are likely to be emitted, together with a statement concerning its toxic qualities, including its qualities as an irritant, and its potential for causing illness, disability, or mortality.
 - 5) The estimated quantity of each material being or likely to be emitted.

- 6) Measures, including extra labor and equipment, taken or to be taken to minimize the length of the breakdown, the amount of air contaminants emitted, or the ambient effects of the emissions, together with an implementation schedule.
- 7) Measures being taken to shut down or curtail the affected source(s) or the reasons why it is impossible or impractical to shut down the source(s), or any part thereof, during the breakdown.
- c. Notices required shall be updated, in writing, as needed to advise the Department of changes in the information contained therein. In addition, any changes concerning potentially toxic or hazardous emissions shall be reported immediately. All additional information requested by the Department shall be submitted as expeditiously as practicable.
- d. Unless otherwise directed by the Department, the Department shall be notified whenever the condition causing the breakdown is corrected or the equipment or other source is placed back in operation by no later than 9:00 AM on the next County business day. Within seven (7) days thereafter, written notice shall be submitted pursuant to Paragraphs a and b above.
- e. Breakdown reporting shall not apply to breakdowns of air pollution control equipment which occur during the initial startup of said equipment, provided that emissions resulting from the breakdown are of the same nature and quantity as the emissions occurring prior to startup of the air pollution control equipment.
- f. In no case shall the reporting of a breakdown prevent prosecution for any violation of this permit or Article XXI.
- g. Breakdown reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

9. Cold Start (§2108.01.d)

In the event of a cold start on any fuel-burning or combustion equipment, except stationary internal combustion engines and combustion turbines used by utilities to meet peak load demands, the person responsible for such equipment shall report in writing to the Department the intent to perform such cold start at least 24 hours prior to the planned cold start. Such report shall identify the equipment and fuel(s) involved and shall include the expected time and duration of the startup. Upon written application from the person responsible for fuel-burning or combustion equipment which is routinely used to meet peak load demands and which is shown by experience not to be excessively emissive during a cold start, the Department may waive these requirements and may instead require periodic reports listing all cold starts which occurred during the report period. The Department shall make such waiver in writing, specifying such terms and conditions as are appropriate to achieve the purposes of Article XXI. Such waiver may be emailed to the Department at any time by written notice to the applicant. Cold start notifications may be emailed to the Department at agreports@alleghenycounty.us.

10. Monitoring of Malodorous Matter Beyond Facility Boundaries (§2104.04)

The permittee shall take all reasonable action as may be necessary to prevent malodorous matter from becoming perceptible beyond facility boundaries. Further, the permittee shall perform such observations as may be deemed necessary along facility boundaries to insure that malodorous matter beyond the facility boundary in accordance with Article XXI §2107.13 is not perceptible and record all findings and corrective action measures taken.

11. Emissions Inventory Statements (§2108.01.e & g)

- a. Emissions inventory statements in accordance with §2108.01.e shall be submitted to the Department by March 15 of each year for the preceding calendar year. The Department may require more frequent submittals if the Department determines that more frequent submissions are required by the EPA or that analysis of the data on a more frequent basis is necessary to implement the requirements of Article XXI or the Clean Air Act.
- b. The failure to submit any report or update within the time specified, the knowing submission of false information, or the willful failure to submit a complete report shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

12. Orders (§2108.01.f)

In addition to meeting the requirements Site Level Conditions IV.7 through IV.11, inclusive, the person responsible for any source shall, upon order by the Department, report to the Department such information as the Department may require in order to assess the actual and potential contribution of the source to air quality. The order shall specify a reasonable time in which to make such a report.

13. Violations (§2108.01.g)

The failure to submit any report or update thereof required by Site Level Conditions IV.7 through IV.12 above, inclusive, within the time specified, the knowing submission of false information, or the willful failure to submit a complete report shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

14. Emissions Testing (§2108.02)

- a. **Orders:** No later than 60 days after achieving full production or 120 days after startup, whichever is earlier, the permittee shall conduct, or cause to be conducted, such emissions tests as are specified by the Department to demonstrate compliance with the applicable requirements of this permit and shall submit the results of such tests to the Department in writing. Upon written application setting forth all information necessary to evaluate the application, the Department may, for good cause shown, extend the time for conducting such tests beyond 120 days after startup but shall not extend the time beyond 60 days after achieving full production. Emissions testing shall comply with all applicable requirements of Article XXI, §2108.02.e.
- b. **Tests by the Department:** Notwithstanding any tests conducted pursuant to this permit, the Department or another entity designated by the Department may conduct emissions testing on any source or air pollution control equipment. At the request of the Department, the permittee shall provide adequate sampling ports, safe sampling platforms and adequate utilities for the performance of such tests.
- c. **Testing Requirements:** No later than 45 days prior to conducting any tests required by this permit, the person responsible for the affected source shall submit for the Department's approval a written test protocol explaining the intended testing plan, including any deviations from standard testing procedures, the proposed operating conditions of the source during the test, calibration data for specific test equipment and a demonstration that the tests will be conducted under the direct supervision of persons qualified by training and experience satisfactory to the Department to conduct such tests. In addition, at least 30 days prior to conducting such tests, the person responsible

shall notify the Department in writing of the time(s) and date(s) on which the tests will be conducted and shall allow Department personnel to observe such tests, record data, provide pre-weighed filters, analyze samples in a County laboratory and to take samples for independent analysis. Test results shall be comprehensively and accurately reported in the units of measurement specified by the applicable emission limitations of this permit.

- d. Test methods and procedures shall conform to the applicable reference method set forth in this permit or Article XXI Part G, or where those methods are not applicable, to an alternative sampling and testing procedure approved by the Department consistent with Article XXI §2108.02.e.2.
- e. **Violations:** The failure to perform tests as required by this permit or an order of the Department, the failure to submit test results within the time specified, the knowing submission of false information, the willful failure to submit complete results, or the refusal to allow the Department, upon presentation of a search warrant, to conduct tests, shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

15. Abrasive Blasting (§2105.51)

- a. Except where such blasting is a part of a process requiring an operating permit , no person shall conduct or allow to be conducted, abrasive blasting or power tool cleaning of any surface, structure, or part thereof, which has a total area greater than 1,000 square feet unless such abrasive blasting complies with all applicable requirements of Article XXI §2105.51.
- b. In addition to complying with all applicable provisions of §2105.51, no person shall conduct, or allow to be conducted, abrasive blasting of any surface unless such abrasive blasting also complies with all other applicable requirements of Article XXI unless such requirements are specifically addressed by §2105.51.

16. Asbestos Abatement (§2105.62, §2105.63)

In the event of removal, encasement, or encapsulation of Asbestos-Containing Material (ACM) at a facility or in the event of the demolition of any facility, the permittee shall comply with all applicable provisions of Article XXI §2105.62 and §2105.63.

17. Volatile Organic Compound Storage Tanks (§2105.12.a)

No person shall place or store, or allow to be placed or stored, a volatile organic compound having a vapor pressure of 1.5 psia or greater under actual storage conditions in any aboveground stationary storage tank having a capacity equal to or greater than 2,000 gallons but less than or equal to 40,000 gallons, unless there is in operation on such tank pressure relief valves which are set to release at the higher of 0.7 psig of pressure or 0.3 psig of vacuum or at the highest possible pressure and vacuum in accordance with State or local fire codes, National Fire Prevention Association guidelines, or other national consensus standard approved in writing by the Department. Petroleum liquid storage vessels that are used to store produced crude oil and condensate prior to lease custody transfer are exempt from these requirements.

18. Permit Source Premises (§2105.40)

a. **General.** No person shall operate, or allow to be operated, any source for which a permit is required by Article XXI Part C in such manner that emissions from any open land, roadway, haul road, yard, or other premises located upon the source or from any material being transported within such source

or from any source-owned access road, haul road, or parking lot over five (5) parking spaces:

- 1) Are visible at or beyond the property line of such source;
- 2) Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or
- 3) Have an opacity of 60% or more at any time.
- b. **Deposition on Other Premises:** Visible emissions from any solid or liquid material that has been deposited by any means from a source onto any other premises shall be considered emissions from such source within the meaning of Site Level Condition IV.18.a above.

19. Parking Lots and Roadways (§2105.42)

- a. The permittee shall not maintain for use, or allow to be used, any parking lot over 50 parking spaces or used by more than 50 vehicles in any day or any other roadway carrying more than 100 vehicles in any day or 15 vehicles in any hour in such manner that emissions from such parking lot or roadway:
 - 1) Are visible at or beyond the property line;
 - 2) Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any 60 minute period; or
 - 3) Have an opacity of 60% or more at any time.
- b. Visible emissions from any solid or liquid material that has been deposited by any means from a parking lot or roadway onto any other premises shall be considered emissions from such parking lot or roadway.
- c. Site Level Condition IV.19.a above shall apply during any repairs or maintenance done to such parking lot or roadway.
- d. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.19 may be enforced by any municipal or local government unit having jurisdiction over the place where such parking lots or roadways are located. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.19.

20. Permit Source Transport (§2105.43)

- a. No person shall transport, or allow to be transported, any solid or liquid material outside the boundary line of any source for which a permit is required by Article XXI Part C in such manner that there is any visible emission, leak, spill, or other escape of such material during transport.
- b. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.20 may be enforced by any municipal or local government unit having jurisdiction over the place where such visible emission, leak, spill, or other escape of material during transport occurs. Such enforcement shall be in accordance with the laws governing such municipal or local government

unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violation of Site Level Condition IV.20.

21. Construction and Land Clearing (§2105.45)

- a. No person shall conduct, or allow to be conducted, any construction or land clearing activities in such manner that the opacity of emissions from such activities:
 - 1) Equal or exceed 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or
 - 2) Equal or exceed 60% at any time.
- b. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.21 may be enforced by any municipal or local government unit having jurisdiction over the place where such construction or land clearing activities occur. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.21.

22. Mining (§2105.46)

No person shall conduct, or allow to be conducted, any mining activities in such manner that emissions from such activities:

- a. Are visible at or beyond the property line;
- b. Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- c. Have an opacity of 60% or more at any time.

23. Demolition (§2105.47)

- a. No person shall conduct, or allow to be conducted, any demolition activities in such manner that the opacity of the emissions from such activities equal or exceed 20% for a period or periods aggregating more than three (3) minutes in any 60 minute period.
- b. Notwithstanding any other provisions of this permit, the prohibitions of Site Level Condition IV.23 may be enforced by any municipal or local government unit having jurisdiction over the place where such demolition activities occur. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.23.

24. Fugitive Emissions (§2105.49)

The person responsible for a source of fugitive emissions, in addition to complying with all other applicable provisions of this permit shall take all reasonable actions to prevent fugitive air contaminants from becoming airborne. Such actions may include, but are not limited to:

- a. The use of asphalt, oil, water, or suitable chemicals for dust control;
- b. The paving and maintenance of roadways, parking lots and the like;
- c. The prompt removal of earth or other material which has been deposited by leaks from transport,

erosion or other means;

- d. The adoption of work or other practices to minimize emissions;
- e. Enclosure of the source; and
- f. The proper hooding, venting, and collection of fugitive emissions.

25. Episode Plans (§2106.02)

Allegheny County Health Department

The permittee shall upon written request of the Department, submit a source curtailment plan, consistent with good industrial practice and safe operating procedures, designed to reduce emissions of air contaminants during air pollution episodes. Such plans shall meet the requirements of Article XXI §2106.02.

26. New Source Performance Standards (§2105.05)

- a. It shall be a violation of this permit giving rise to the remedies provided by §2109.02 of Article XXI for any person to operate, or allow to be operated, any source in a manner that does not comply with all requirements of any applicable NSPS now or hereafter established by the EPA, except if such person has obtained from EPA a waiver pursuant to Section 111 or Section 129 of the Clean Air Act or is otherwise lawfully temporarily relieved of the duty to comply with such requirements.
- b. Any person who operates, or allows to be operated, any source subject to any NSPS shall conduct, or cause to be conducted, such tests, measurements, monitoring and the like as is required by such standard. All notices, reports, test results and the like as are required by such standard shall be submitted to the Department in the manner and time specified by such standard. All information, data and the like which is required to be maintained by such standard shall be made available to the Department upon request for inspection and copying.

27. Miscellaneous Organic Chemical Manufacturing NESHAP (40 CFR Part 63, Subpart FFFF)

The permittee shall comply with all applicable requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart FFFF – the "Miscellaneous Organic Chemical Manufacturing NESHAP" or "MON". [25 PA Code §129.99; 25 PA Code §129.100]

V. EMISSION UNIT LEVEL TERMS AND CONDITIONS

A. <u>C-5 – Storage Tanks</u>

1. **Restrictions:**

The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the C5 VOC storage tanks. [§2102.04.b.5]

- a. The permittee shall do the following for all VOC storage tanks and associated equipment: [§2105.03, 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in according with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The VOC storage tanks shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

B. <u>C-5 Operations – Pastillating Belts #1 and #2 (8055)</u>

1. **Restrictions:**

The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with Pastillating Belts #1 and #2. [2102.04.b.5]

- a. The permittee shall do the following for Pastillating Belts #1 and #2 and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Pastillating Belts #1 and #2 shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

C. <u>MP Poly Unit (S034)</u>

1. **Restrictions:**

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the MP Poly Unit. [2102.04.b.5]
- b. The permittee shall properly maintain and operate the condensers E-500-5, E-701-5, and E-701-4 at all times when emissions are routed to them. [§2105.03; RACT Order #257, condition 1.7; 25 PA Code §129.99]
- c. The inlet coolant temperature to the condenser E-701-4 (S034) shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.2.A; 25 PA Code §129.99]
- d. If measured one-hour block average exit vapor temperatures for the condenser E-701-4 (S034) exceed 35°C from the condenser, the permittee shall take the following actions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.C; 25 PA Code §129.99]
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-701-4 condenser that continuously monitors the coolant inlet temperature at all times when emissions are routed to it. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, condition 1.1 and 1.2; 25 PA Code §129.99]

3. Record Keeping Requirements:

a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for MP Poly Unit (filtrate system: filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The MP Poly Unit (filtrate system: filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

D. <u>WW Poly Unit (S013, S020, S023, S027)</u>

1. **Restrictions:**

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the WW Poly Unit. [2102.04.b.5]
- b. Refrigerated vent condensers [E-200-7 (S013), E-900-7 (S020), E-903-3 (S023), and E-901-7 (S027)]: The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - The inlet coolant temperature to each condenser shall not exceed 10°C in any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions;
 - The exit vapor temperature of each condenser shall not exceed 35°C over any one-hour block average when emissions are being routed through them, except as specified in condition V.A.1.e.3) below;
 - 3) If measured one-hour block average exit vapor temperatures exceed 35°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-200-7, E-900-7, E-901-7, and E-903-3 condensers that continuously monitor the coolant inlet temperature. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, conditions 1.1 -1.3; 25 PA Code §129.99]

3. Record Keeping Requirements:

- a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

- The permittee shall do the following for WW Poly Unit (feed dryers and regeneration, west filtrate receiver, solvent wash receiver, and east filtrate receiver) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The WW Poly Unit (feed dryers and regeneration, west filtrate receiver, solvent wash receiver, and east filtrate receiver) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

E. <u>WW Poly Storage Tanks (S025)</u>

1. **Restrictions:**

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the WW Poly Storage Tanks. [2102.04.b.5]
- b. The inlet coolant temperature to the condenser E-202-1 shall not exceed 10°C (50°F) over any onehour block average when emissions are routed through the condensers with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.4; 25 PA Code §129.99]

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for WW Poly storage tanks (73, 75, 76, 77) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The WW Poly storage tanks (73, 75, 76, 77) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

F. LTC Process Operations (S108, S109, S110, S111, S112, S113, S114)

1. **Restrictions:**

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the LTC Process Operations. [2102.04.b.5]
- b. Cooling tower water chilled vent condensers [E-301B-E3 (S109); E-301-4 (S108); E-607-2 (S110); E-RK5-4 (S111); E-RK6-3 (S112); E-RK7-4 (S113)]: The condensers shall be properly operated and maintained according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.H; 25 PA Code §129.99]
 - The inlet coolant temperature to each condenser shall not exceed 10°F (5.6°C) above ambient air temperature over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions and except that at no time will coolant temperature be required to be less than 50°F (10°C).
 - 2) The exit vapor temperature of each condenser shall not exceed 40°C over any one-hour block average when emissions are being routed through them, except as specified in paragraph 3).
 - 3) If measured one-hour block average exit vapor temperatures exceed 40°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the cooling tower is operating properly by reviewing current operating conditions (e.g. that the cooling system is operating and circulating cooling water, and that cooling water is being supplied at less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to less than 50°F (10 °C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature to less than 50°F (10 °C). Exit vapor temperature exceeding 40°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 40°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to be less than 50°F (10°C)), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 40°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.
- c. The vacuum leak rate from the #1 shall not exceed 10 lb/hr. The vacuum leak rate from #2 LTC Vacuum System shall not exceed 15 lb/hr. Compliance with this condition shall be demonstrated during regular compliance testing performed at least once every five years after the most recent stack test. [§2102.04.b.6; §2102.04.e; 25 PA Code §129.99 & §129.100]

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain the following data on-site for these operations [§2103.12.j
 & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]:
 - 1) All records of monitoring required by V.A.3 above.
 - 2) Records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment.
 - 3) Maximum resin (lb/min) and polymerizate (gal/min) feed rates (daily).
 - 4) Amount (lbs.) and type of resin and polymerizate (monthly, 12-month rolling total)
 - 5) Changes in #4 LTC Vacuum System vacuum pump status (upon occurrence).

- a. The permittee shall do the following for LTC Process (#1 and #2 Vacuum systems and #1/#2 Pastillator Belt) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The LTC Process (#1 and #2 Vacuum systems and #1/#2 Pastillator Belt) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

G. <u>Dresinate Production Line (S085)</u>

1. **Restrictions:**

The permittee shall continue to comply with all regulatory and Permit requirements. [2102.04.b.5]

- a. The permittee shall do the following for Dresinate Production Line (Double Drum Dryer) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Dresinate Production Line (Double Drum Dryer) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

H. Hydrogenation Unit (S004, S007, S012)

1. **Restrictions:**

- a. The maximum production rate for Hydrogenation Unit process shall not exceed 22 million pounds per 12-month rolling period. [§2102.04.e; 25 PA Code §129.99]
- Refrigerated vent condensers E-104-2 (S012), E-201-2 (S004), E-403-2 (S007): The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The outlet coolant temperature shall not exceed at any time 40° F.
 - 2) Instrumentation shall be provided to continuously monitor the coolant outlet temperature of each condenser to within one (1) degree Fahrenheit at all times.

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain production records and records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

3. Monitoring Requirements:

a. The permittee shall monitor and record the exit vapor temperature of each refrigerated vent condensers at least once every 15 minutes when the process is in operation. [§2102.04.b.6, §2102.04.e., §2103.12.i]

- a. The permittee shall do the following for Hydrogenation Unit (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank, Vent tanks, Autoclaves #1 and #2, Storage tanks 102, 105, 106) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Hydrogenation Unit (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank, Vent tanks, Autoclaves #1 and #2, Storage tanks 102, 105, 106) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

I. Wastewater Treatment Plant (F027, F033, F034, F035)

- a. The permittee shall do the following for Wastewater Treatment Plant (Bioaeration tank, tanks 702A, 702B, and 702C) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Wastewater Treatment Plant (Bioaeration tank, tanks 702A, 702B, and 702C) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

VI. ALTERNATIVE OPERATING SCENARIOS

There are no alternative operating scenarios for this permit