Table of Contents for Eastman Chemical Resins, Inc. SIP Package

RACT 2 Case-by-Case Evaluation Installation Permit No. 0058-I026

Description	Page No.
RACT SIP Completeness Checklist	2-3
SIP Permit (redacted)	4-18
SIP Technical Support Document (review memo)	19-28
SIP Comment Response Document	29-35
Draft Installation Permit	36-66
Draft Technical Support Document	67-75
RACT Evaluation (ERG)	76-98
RACT Evaluation (facility)	99-226
RACT I Order	227-270
Final Issued Installation Permit	271-302

Pennsylvania Department of Environmental Protection Bureau of Air Quality

RACT SIP COMPLETENESS CHECKLIST

TO BE FILLED IN BY REGIONAL STAFF AND SUBMITTED TO CENTRAL OFFICE

Facility Na	me: <u>Eastma</u>	n Chemical	Resins, Inc.
RACT Plan	Approval/Per	mit Number:	Installation Permit No. 0058-I026
Plan Appro	oval/Permit Issu	uance Date: <u>A</u>	pril 21, 2020
			TECHNICAL MATERIALS
<u>Included</u>	<u>Not</u> <u>Included</u>	<u>Not</u> <u>Applicable</u>	
			Identification of all regulated (NOx and VOC) pollutants affected by the RACT plan (Review memo and RACT Permit)
\boxtimes			Quantification of the changes in plan allowable emissions from the affected sources as a result of RACT implementation. (Review Memo)
\boxtimes			Rationale as to why applicable CTG or ACT regulation is not RACT for the facility. (Review Memo)
			Demonstration that the NAAQS, PSD increment, reasonable further progress demonstration, and visibility, as applicable, are protected if the plan is approved and implemented. (Review Memo)
			In the event of actual emission increase as a result of RACT SIP revision: Modeling information to support the proposed revision, including input data, output data, model used, ambient monitoring data used, meteorological data used, justification for use of offsite data (where used), modes of models used, assumptions, and other information relevant to the determination of adequacy of the modeling analysis. (Review Memo)
			Include evidence, where necessary that emission limitations are based on continuous emission reduction technology. (Review Memo)
			State in RACT PA/OP that expiration date shown in PA or OP is for state purposes. Either use the statement below or redact the expiration date on the permit.
			(Sample: The expiration date shown in this permit is for state purposes. For federal enforcement purposes the conditions of this operating permit which pertain to the implementation of RACT regulations shall remain in effect as part of the State Implementation Plan (SIP) until replaced pursuant to 40 CFR 51 and approved by the U.S. Environmental Protection Agency (EPA). The operating permit shall become enforceable by the U.S. EPA upon its approval of the above as a revision to the SIP.) (RACT Permit)
			Include evidence that the State has the necessary legal authority under State law to adopt and implement the RACT plan. (Reference of PA's Air Pollution Control Act (January 8, 1960, P.L. 2119, as amended and 25 PA Code Chapter 127 (NSR), and 25 PA Code Chapter 129 §§129.91 – 95 in RACT PA/OP). (Review memo or more likely operating permit)

(Back)

			State that independent technical and economic justification for RACT determination by the Department was performed. As long as you reviewed the companies proposal you may agree with it but that must be stated. (Review memo)
			Confidential Business Information excluded, highlighted or marked. Please also redact all checks from the application. (Review Memo, RACT Permit, RACT Plan by the company)
\boxtimes			Adequate compliance demonstration, monitoring, recordkeeping, work practice standards, and reporting requirements. (Review memo and RACT Permit)
			ADMINISTRATIVE DOCUMENTS
Attached	Not Attached	<u>Not</u> Applicable	
\boxtimes			Signed copy of final RACT Plan Approval/Operating Permit.
			Redacted copy of the RACT Plan Approval/Operating Permit. Reviewer should be able to read the redacted text. (We can do electronically if the PA/OP is uploaded in AIMS or available in pdf format). Make sure that the expiration date of the operating permit is redacted. SIPs do not expire.
			Signed Technical Support Document or Review Memorandum. The review memo should contain a discussion about previous case by case RACT determinations so that requirements can be compared
			Public Notice evidence: Include a copy of the actual published notice of the public hearing as it appeared in the local newspaper(s). The newspaper page must be included to show the date of publication. The notice must specifically identify by title and number each RACT regulation adopted or amended. A signed affidavit showing the dates of publication and the newspaper clipping is best. Next best is a copy of the newspaper clippings from all days the article was published. An email showing that the newspaper article was purchased is acceptable unless the EPA receives comments during their comment period stating that there is no proof of publication. The newspaper notice must say that the case by case requirements will be submitted to the EPA as an amendment to the SIP
\boxtimes			A separate formal certification duly signed indicating that public hearings were held. If no public hearings were held the review memo should state that.
			Public hearing minutes: This document must include certification that the hearing was held in accordance with the information in the public notice. It must also list the RACT regulations that were adopted, the date and place of the public hearing, and name and affiliation of each commenter. If there were no comments made during the notice period or at the hearing, please indicate that in the review memo.
\boxtimes			Comment and Response Document: A compilation of EPA, company, and public comments and Department's responses to these comments.
\boxtimes			Copy of RACT proposal, amendments, and other written correspondence between the Department and the facility.

AIR QUALITY PROGRAM 301 39th Street, Bldg. #7 Pittsburgh, PA 15201-1811

Major Source INSTALLATION PERMIT

Issued To: Eastman Chemical Resins, Inc.

Jefferson Site

2200 State Highway 837

West Elizabeth, PA 15088-0545

ACHD Permit#:

Date of Issuance: April 21, 2020

Expiration Date: (See Section III.12)

Issued By:

Digitally signed by JoAnn Truchan, PE Date: 2020.04.22 09:09:00 -04'00'

JoAnn Truchan, P.E. Section Chief, Engineering **Prepared By:**

Digitally signed by Helen Gurvich Date: 2020.04.22 08:54:50 -04'00'

Helen O. Gurvich Air Quality Engineer

0058-I026

IV. SITE LEVEL TERMS AND CONDITIONS

Pages 2 through10 have been redacted.

1. Reporting of Upset Conditions (§2103.12.k.2)

The permittee shall promptly report all deviations from permit requirements, including those attributable to upset conditions as defined in Article XXI §2108.01.e, the probable cause of such deviations, and any corrective actions or preventive measures taken.

2. Visible Emissions (§2104.01.a)

Except as provided for by Article XXI §2108.01.d pertaining to a cold start, no person shall operate, or allow to be operated, any source in such manner that the opacity of visible emissions from a flue or process fugitive emissions from such source, excluding uncombined water:

- a. Equal or exceed an opacity of 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- b. Equal or exceed an opacity of 60% at any time.

3. Odor Emissions (§2104.04) (County-only enforceable)

No person shall operate, or allow to be operated, any source in such manner that emissions of malodorous matter from such source are perceptible beyond the property line.

4. Materials Handling (§2104.05)

The permittee shall not conduct, or allow to be conducted, any materials handling operation in such manner that emissions from such operation are visible at or beyond the property line.

5. Operation and Maintenance (§2105.03)

All air pollution control equipment required by this permit or any order under Article XXI, and all equivalent compliance techniques approved by the Department, shall be properly installed, maintained, and operated consistently with good air pollution control practice.

6. Open Burning (§2105.50)

No person shall conduct, or allow to be conducted, the open burning of any material, except where the Department has issued an Open Burning Permit to such person in accordance with Article XXI §2105.50 or where the open burning is conducted solely for the purpose of non-commercial preparation of food for human consumption, recreation, light, ornament, or provision of warmth for outside workers, and in a manner which contributes a negligible amount of air contaminants.

7. Shutdown of Control Equipment (§2108.01.b)

a. In the event any air pollution control equipment is shut down for reasons other than a breakdown, the person responsible for such equipment shall report, in writing, to the Department the intent to shut down such equipment at least 24 hours prior to the planned shutdown. Notwithstanding the submission of such report, the equipment shall not be shut down until the approval of the Department is obtained; provided, however, that no such report shall be required if the source(s)

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.

Jefferson Site
Installation Permit #0058-I026

erosion or other means;

- d. The adoption of work or other practices to minimize emissions;
- e. Enclosure of the source; and
- f. The proper hooding, venting, and collection of fugitive emissions.

Pages 12 through 17 have been redacted.

25. Episode Plans (§2106.02)

The permittee shall upon written request of the Department, submit a source curtailment plan, consistent with good industrial practice and safe operating procedures, designed to reduce emissions of air contaminants during air pollution episodes. Such plans shall meet the requirements of Article XXI §2106.02.

26. New Source Performance Standards (§2105.05)

- a. It shall be a violation of this permit giving rise to the remedies provided by §2109.02 of Article XXI for any person to operate, or allow to be operated, any source in a manner that does not comply with all requirements of any applicable NSPS now or hereafter established by the EPA, except if such person has obtained from EPA a waiver pursuant to Section 111 or Section 129 of the Clean Air Act or is otherwise lawfully temporarily relieved of the duty to comply with such requirements.
- b. Any person who operates, or allows to be operated, any source subject to any NSPS shall conduct, or cause to be conducted, such tests, measurements, monitoring and the like as is required by such standard. All notices, reports, test results and the like as are required by such standard shall be submitted to the Department in the manner and time specified by such standard. All information, data and the like which is required to be maintained by such standard shall be made available to the Department upon request for inspection and copying.

27. Miscellaneous Organic Chemical Manufacturing NESHAP (40 CFR Part 63, Subpart FFFF)

The permittee shall comply with all applicable requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart FFFF – the "Miscellaneous Organic Chemical Manufacturing NESHAP" or "MON". [25 PA Code §129.99; 25 PA Code §129.100]

V. EMISSION UNIT LEVEL TERMS AND CONDITIONS

A. <u>C-5 – Storage Tanks</u>

1. Restrictions:

The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the C5 VOC storage tanks. [§2102.04.b.5]

- a. The permittee shall do the following for all VOC storage tanks and associated equipment: [§2105.03, 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in according with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The VOC storage tanks shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

B. C-5 Operations – Pastillating Belts #1 and #2 (S055)

1. Restrictions:

The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with Pastillating Belts #1 and #2. [2102.04.b.5]

- a. The permittee shall do the following for Pastillating Belts #1 and #2 and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Pastillating Belts #1 and #2 shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

C. MP Poly Unit (S034)

1. Restrictions:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the MP Poly Unit. [2102.04.b.5]
- b. The permittee shall properly maintain and operate the condensers E-500-5, E-701-5, and E-701-4 at all times when emissions are routed to them. [§2105.03; RACT Order #257, condition 1.7; 25 PA Code §129.99]
- c. The inlet coolant temperature to the condenser E-701-4 (S034) shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.2.A; 25 PA Code §129.99]
- d. If measured one-hour block average exit vapor temperatures for the condenser E-701-4 (S034) exceed 35°C from the condenser, the permittee shall take the following actions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.C; 25 PA Code §129.99]
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-701-4 condenser that continuously monitors the coolant inlet temperature at all times when emissions are routed to it. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, condition 1.1 and 1.2; 25 PA Code §129.99]

EMISSION UNIT LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.

Jefferson Site
Installation Permit #0058-I026

3. Record Keeping Requirements:

a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for MP Poly Unit (filtrate system: filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The MP Poly Unit (filtrate system: filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

D. <u>WW Poly Unit (S013, S020, S023, S027)</u>

1. Restrictions:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the WW Poly Unit. [2102.04.b.5]
- b. Refrigerated vent condensers [E-200-7 (S013), E-900-7 (S020), E-903-3 (S023), and E-901-7 (S027)]: The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°C in any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions;
 - 2) The exit vapor temperature of each condenser shall not exceed 35°C over any one-hour block average when emissions are being routed through them, except as specified in condition V.A.1.e.3) below:
 - 3) If measured one-hour block average exit vapor temperatures exceed 35°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-200-7, E-900-7, E-901-7, and E-903-3 condensers that continuously monitor the coolant inlet temperature. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the

EMISSION UNIT LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, conditions 1.1 -1.3; 25 PA Code §129.99]

3. Record Keeping Requirements:

- a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for WW Poly Unit (feed dryers and regeneration, west filtrate receiver, solvent wash receiver, and east filtrate receiver) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The WW Poly Unit (feed dryers and regeneration, west filtrate receiver, solvent wash receiver, and east filtrate receiver) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

E. WW Poly Storage Tanks (S025)

1. Restrictions:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the WW Poly Storage Tanks. [2102.04.b.5]
- b. The inlet coolant temperature to the condenser E-202-1 shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condensers with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.4; 25 PA Code §129.99]

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for WW Poly storage tanks (73, 75, 76, 77) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The WW Poly storage tanks (73, 75, 76, 77) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

F. LTC Process Operations (S108, S109, S110, S111, S112, S113, S114)

1. Restrictions:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the LTC Process Operations. [2102.04.b.5]
- b. Cooling tower water chilled vent condensers [E-301B-E3 (S109); E-301-4 (S108); E-607-2 (S110); E-RK5-4 (S111); E-RK6-3 (S112); E-RK7-4 (S113)]: The condensers shall be properly operated and maintained according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.H; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°F (5.6°C) above ambient air temperature over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions and except that at no time will coolant temperature be required to be less than 50°F (10°C).
 - 2) The exit vapor temperature of each condenser shall not exceed 40°C over any one-hour block average when emissions are being routed through them, except as specified in paragraph 3).
 - 3) If measured one-hour block average exit vapor temperatures exceed 40°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the cooling tower is operating properly by reviewing current operating conditions (e.g. that the cooling system is operating and circulating cooling water, and that cooling water is being supplied at less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to less than 50°F (10 °C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to less than 50°F (10 °C)). Exit vapor temperature exceeding 40°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 40°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to be less than 50°F (10°C)), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 40°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.
- c. The vacuum leak rate from the #1 shall not exceed 10 lb/hr. The vacuum leak rate from #2 LTC Vacuum System shall not exceed 15 lb/hr. Compliance with this condition shall be demonstrated during regular compliance testing performed at least once every five years after the most recent stack test. [§2102.04.b.6; §2102.04.e; 25 PA Code §129.99 & §129.100]

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain the following data on-site for these operations [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]:
 - 1) All records of monitoring required by V.A.3 above.
 - 2) Records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment.
 - 3) Maximum resin (lb/min) and polymerizate (gal/min) feed rates (daily).
 - 4) Amount (lbs.) and type of resin and polymerizate (monthly, 12-month rolling total)
 - 5) Changes in #4 LTC Vacuum System vacuum pump status (upon occurrence).

- a. The permittee shall do the following for LTC Process (#1 and #2 Vacuum systems and #1/#2 Pastillator Belt) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The LTC Process (#1 and #2 Vacuum systems and #1/#2 Pastillator Belt) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

EMISSION UNIT LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-1026

G. <u>Dresinate Production Line (S085)</u>

1. Restrictions:

The permittee shall continue to comply with all regulatory and Permit requirements. [2102.04.b.5]

- a. The permittee shall do the following for Dresinate Production Line (Double Drum Dryer) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Dresinate Production Line (Double Drum Dryer) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

H. Hydrogenation Unit (S004, S007, S012)

1. Restrictions:

- a. The maximum production rate for Hydrogenation Unit process shall not exceed 22 million pounds per 12-month rolling period. [§2102.04.e; 25 PA Code §129.99]
- b. Refrigerated vent condensers E-104-2 (S012), E-201-2 (S004), E-403-2 (S007): The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The outlet coolant temperature shall not exceed at any time 40°F.
 - 2) Instrumentation shall be provided to continuously monitor the coolant outlet temperature of each condenser to within one (1) degree Fahrenheit at all times.

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain production records and records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

3. Monitoring Requirements:

a. The permittee shall monitor and record the exit vapor temperature of each refrigerated vent condensers at least once every 15 minutes when the process is in operation. [§2102.04.b.6, §2102.04.e., §2103.12.i]

- a. The permittee shall do the following for Hydrogenation Unit (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank, Vent tanks, Autoclaves #1 and #2, Storage tanks 102, 105, 106) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Hydrogenation Unit (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank, Vent tanks, Autoclaves #1 and #2, Storage tanks 102, 105, 106) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

EMISSION UNIT LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

I. Wastewater Treatment Plant (F027, F033, F034, F035)

1. Work Practice Standard:

- a. The permittee shall do the following for Wastewater Treatment Plant (Bioaeration tank, tanks 702A, 702B, and 702C) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Wastewater Treatment Plant (Bioaeration tank, tanks 702A, 702B, and 702C) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

Pages 31 through 32 have been redacted.

ALLEGHENY COUNTY HEALTH DEPARTMENT AIR QUALITY PROGRAM

April 21, 2020

SUBJECT: Reasonably Available Control Technology (RACT II) Determination

Eastman Chemical Resins, Inc.

Jefferson Site

2200 State Highway 837, West Elizabeth, PA 15088-7311

Allegheny County

Installation Permit No. 0058-I026

TO: JoAnn Truchan, P.E.

Section Chief, Engineering

FROM: Helen O. Gurvich

Air Quality Engineer

I. Executive Summary

Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) is defined as a major source of VOC emissions and was subjected to a Reasonable Achievable Control Technology (RACT II) review by the Allegheny County Health Department (ACHD) required for the 1997 and 2008 Ozone National Ambient Air Quality Standard (NAAQS). The findings of the review established that the facility has few technically feasible controls options for controlling VOC emissions from the processes, but they are deemed financially infeasible due to their high cost per ton removed.

These findings are based on the following documents:

- RACT analysis performed by ERG (Eastman Chemical RACT Evaluations_9-23-15.docs)
- RACT analysis performed by Eastman Chemical Resins, Inc. (Eastman_RACT2_Report_20200115.pdf)
- Installation Permit No. 0058-I011d dated 5/15/2019
- Installation Permit No. 0058-I018a dated 3/07/2019
- Installation Permit No. 0058-I022a dated 9/20/2019
- Installation Permit No. 0058-I023a dated 12/23/2019
- Installation Permit No. 0058-I016a dated 04/14/2020
- Installation Permit No. 0058-I012a dated 10/30/2008
- Installation Permit No. 0058-I017 dated 7/22/2010
- New Installation Permit Application submitted at December 13, 2019
- New Installation Permit Application submitted at January 24, 2020

II. Regulatory Basis

ACHD requested all major sources of NO_X (potential emissions of 100 tons per year or greater) and all major sources of VOC (potential emissions of 50 tons per year or greater) to reevaluate NO_X and/or VOC RACT for incorporation into Allegheny County's portion of the PA SIP. This document is the result of ACHD's determination of RACT for Eastman based on the materials submitted by the subject source and other relevant information.

III. Facility Description

The Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) produces synthetic hydrocarbon resins from C₅ feedstock, monomers, solvents and catalysts by way of cationic polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products.

The plant is comprised of three polymerization processes (C5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC1, LTC2, and C-5), and an emulsion process, five boilers ranging from 18.6 MM Btu/hr to 38.2 MM Btu/hr, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes.

The facility is a major source of Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAPs) as defined in Article XXI, 2101.20. Detailed descriptions of the relevant emissions units are provided in the following tables.

The installation permit numbers listed are just for reference and are not incorporated into the SIP.

Table 1 Facility Sources Subject to Case-by-Case RACT II and Their Existing RACT I Limits

Source	Description	Rating	VOC PTE	VOC	VOC Limit
ID	•	Ü	(TPY)	Presumptive Limit (RACT II)	(RACT I) – Consent Order No. 257
S055	Pastillating Belts, UHF Filter – C-5 operations (IP #0058-I018a)	22,000 lbs/hr	6.21	25 Pa Code 129.99	Good operating practices
S034	Filtrate system (filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) – MP Poly Unit (IP #0058-I022a)	103,000,000 lbs/yr	10.33	25 Pa Code 129.99	Condensers, good operating practices
S013	Feed dryers and regeneration – WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	4.86	25 Pa Code 129.99	Condensers, good operating practices
S020	West Filtrate Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	5.11	25 Pa Code 129.99	Condensers, good operating practices
S023	Solvent Wash Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	7.52	25 Pa Code 129.99	Good operating practices
S027	East Filtrate Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	5.11	25 Pa Code 129.99	Good operating practices
S025	Storage Tanks 73/75/76/77- WW Poly Unit (IP #0058-I023a)	75,200 gal each	5.4	25 Pa Code 129.99	Good operating practices
S109	#1 Vacuum System – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	3.80	25 Pa Code 129.99	Good operating practices
S110	#2 Vacuum System – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	8.09	25 Pa Code 129.99	Good operating practices
S114	#1/#2 Pastillator Belt – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	2.80	25 Pa Code 129.99	Good operating practices
S004	Metering Tanks (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank) – Hydrogenation Unit (based on December 2019 testing by Eastman)	22,500,000 lbs/yr	13	Throughput restriction of 22.5 MM lbs/yr, 25 Pa Code 129.99	Condensers, good operating practices
S012	Storage tanks 102, 105, 106 - Hydrogenation Unit (based on December 2019 testing by Eastman)	2 - 6,000 gal each; 1 - 10,000 gal	6.3	Throughput restriction of 22.5 MM lbs/yr, 25 Pa Code 129.99	Condensers, good operating practices
S007	Vent tanks, Autoclaves #1 and #2 - Hydrogenation Unit (based on December 2019 testing by Eastman)	Autoclaves - 1,000 gal each	15	Throughput restriction of 22.5	Condensers, good operating practices

Source	Description	Rating	VOC PTE	VOC	VOC Limit
ID			(TPY)	Presumptive	(RACT I) –
				Limit (RACT II)	Consent Order
					No. 257
				MM lbs/yr, 25 Pa	
				Code 129.99	
F033,	Tanks 702A, 702B, 702C -	50,000 gal each	8.84	25 Pa Code 129.99	Good operating
F034,	Wastewater Treatment Plant (new IP				practices
F035	application)				
F027	Bio Aeration Tank - Wastewater	157,000 gal	15.25	25 Pa Code 129.99	Good operating
	Treatment Plant (new IP application)				practices
S085	Double Drum Dryer - Dresinate	500 lbs/hr	5.48	25 Pa Code 129.99	Good operating
	Production Line (IP #0058-I012a)				practices
	Fugitive Emissions from Equipment	NA	64.10	25 Pa Code 129.99	LDAR program
	Leaks (valves, pumps, pipe connectors,				
	etc.)				

Table 2 Facility Sources Subject to Presumptive RACT II per PA Code 129.97

Table 2 Facility Sources Subject to Presumptive RACT II per PA Code 129.97 Description Rating Stack ID VOC PTE Basis for Presumptive RACT								
Description	Rating	Stack ID			Presumptive RACT			
	0.50		(TPY)	Presumptive	Requirement			
C-5 Operations (Installation Permit #0058-I011d)								
Resin Kettles #9 and #10	140 MM	S053,	1.81	< 2.7 TPY	Install, maintain and operate the			
	lbs/yr	S054		VOC	source in accordance with the			
					manufacturer's specifications			
					and with good operating			
					practices			
Resin Storage Tanks (121,	19,432 -	S064,	1.774	< 2.7 TPY	Install, maintain and operate the			
123, 124, 366, 367, 601 & 602)	108,291	S066,		VOC	source in accordance with the			
	gal	S097,			manufacturer's specifications			
		S267 –			and with good operating			
		S270			practices			
Resin Storage Tank 504 and	60,914 &	S059,	2.00	< 2.7 TPY	Install, maintain and operate the			
161	158,630	S238		VOC	source in accordance with the			
	gal				manufacturer's specifications			
					and with good operating			
2 1 1 7 70	720 777	994.5	2.0	27.54.67.1	practices			
Raw material tank T-50	528,765	S216	2.8	25 PA Code	Install, maintain and operate the			
	gal			129.96(b)	source in accordance with the			
					manufacturer's specifications			
					and with good operating			
D 1 . 1 . T . 7.4	1.460.451	0000	1.66	. 2.7 EDV	practices			
Raw material tank T-54	1,469,451	S060	1.66	< 2.7 TPY	Install, maintain and operate the			
	gal			VOC	source in accordance with the			
					manufacturer's specifications			
					and with good operating			
Raw material tank T-55	570 596	S061	1.16	< 2.7 TPY	practices Install maintain and apparate the			
Raw material tank 1-33	579,586	5001	1.10	VOC	Install, maintain and operate the source in accordance with the			
	gal			VOC	manufacturer's specifications			
					and with good operating			
					practices			
	C-5 Oper	rations (Inst	allation Perm	<u> </u> nit #0058-I018a)	practices			
Pastillating Belts (Fugitive)	22,000	S055	1.09	< 2.7 TPY	Install, maintain and operate the			
r asimating Delts (Fugitive)	1bs/hr	5055	1.09	VOC	source in accordance with the			
	103/111			, OC	manufacturer's specifications			
					and with good operating			
					practices			
					practices			

Description	Rating	Stack ID	VOC PTE	Basis for	Presumptive RACT
		/=	(TPY)	Presumptive	Requirement
G. 1.50				nit #0058-I017)	
Storage tank 52	525,000 gal	S218	2.37	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
	MP Polymeri	zation Unit	(Installation I	Permit #0058-I02	2a)
Reactor	103 MM lbs/yr	S029	1.65	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
				Permit #0058-I02	
North and South Reactors	80 MM lbs/yr	S017	1.78	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
Storage tanks 68/69/74	75,200 gal each	S024	1.4	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
	WW Po	olymerizatio	n Unit (new I	P application)	
Storage Tank 35	169,000 gal	S075	1.0	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
			(Installation l	Permit #0058-I01	6a)
#4 Vacuum System	67.24 MM lb/yr	S124	1.46	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
	Hydrogena	tion Unit (b	ased on Decen	nber 2019 testing	
Storage tanks 100 and 101	6,000 gal each	S001	1.2	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
			new IP applic		
Neutralizer and reactor	21 acfm	S155	2.2	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
				testing in 2007)	
Tank RK2	1,000 gal	NA	1.21 ank (new IP a	< 2.7 TPY VOC	Install, maintain and operate the source in accordance with the manufacturer's specifications and with good operating practices
	- Cinc	- ~ · · · · · · · · · · · · · ·		-FF	

Description	Rating	Stack ID	VOC PTE	Basis for	Presumptive RACT
			(TPY)	Presumptive	Requirement
Storage Tank 78	169,000	S232	1.0	< 2.7 TPY	Install, maintain and operate
	gal			VOC	the source in accordance with
					the manufacturer's
					specifications and with good
					operating practices

Table 3 Facility Sources Exempt from RACT II per PA Code 129.96(c) {< 1 TPY NOx; < 1 TPY VOC}

Description	Rating	Stack ID	VOC PTE (TPY)
C-5 Operations (Installati			(III)
Thermal Oxidizer or Carbon Beds for 500 battery tanks, if TO		S044	0.26
downtime	1 10 11111 105/ 11	S044A	0.20
Hot Oil Furnace	10.33 MMBtu/hr	S056	0.29
Resin Kettle #8	140 MM lbs/yr	S052	0.38
Sparkler Filter with condenser	140 MM lbs/yr	S312	0.05
Sparkler Precoat	140 MM lbs/yr	NA	0.01
Resin Product Loading	140 MM lbs/yr	NA	0.94
Raw material tank T-500	112,251 gal	S058	0.19
Raw material tank T-511	15,228 gal	S274	0.1
MP Polymerization Unit (Inst.			0.1
Storage tank T-301	75,202 gal	NA	0.46
Storage tank T-302	75,202 gal	NA	0.46
Storage tank T-303	75,202 gal	NA	0.46
Preblend Tank	103 MM lbs/yr	S035	0.99
Dryers regeneration, Precoat tank, Mole sieve drain tank	103 MM lbs/yr	S033	0.51
WW Polymerization Unit (Inst			0.01
Feed Dryer regeneration	404 reg/yr	S013a	0.01
East Preblend tank	80 MM lbs/yr	S014	0.57
North Preblend tank	80 MM lbs/yr	S015	0.57
Slurry tank	80 MM lbs/yr	S016	0.02
North Neutralizer	80 MM lbs/yr	S018	0.31
Funda Filter Steam Out/Flushing	80 MM lbs/yr	S019	0.01
Funda Filter Condensate Tank	80 MM lbs/yr	S019a	0.00
South Neutralizer	80 MM lbs/yr	S021	0.31
Reclaim Pot	80 MM lbs/yr	S022	0.13
Storage Tank 10	110,159 gal	S195	0.29
Storage Tank 22	15,863 gal	S206	0.03
Storage Tank 24	15,863 gal	S208	0.03
Storage Tank 23	15,863 gal	S207	0.03
Storage Tank 25	15,863 gal	S209	-
Storage Tank 27	16,257 gal	S211	0.04
Storage Tank 26	16,257 gal	S210	
Storage Tank 28	16,257 gal	S212	0.42
Storage Tank 29	16,257 gal	S213	•
Storage Tank 34	169,000 gal	S074	0.27
Storage Tank 71	75,200 gal	S230	0.29
Storage Tank 72	75,200 gal	S231	0.42
Storage Tank 200	25,381 gal	S239	
Storage Tank 201	25,381 gal	S240	0.18
Storage Tank 202	25,381 gal	S241	
Storage Tank 204	41,878 gal		
Storage Tank 205	25,381 gal	S300	0.04
Storage Tank 206	25,381 gal		
Storage Tank 207	25,381 gal		
	75,200 gal	S228	0.3

Description	Rating	Stack ID	VOC PTE (TPY)
Storage Tank 67	75,200 gal	S026	0.9
LTC Process Operations (Insta	llation Permit #005	8-I016a)	
Reclaim Solution Tank	67.24 MM lbs/yr	S108	0.58
Resin Kettle #5	67.24 MM lbs/yr	S111	0.32
Resin Kettle #6	67.24 MM lbs/yr	S112	0.24
Resin Kettle #7	67.24 MM lbs/yr	S113	0.68
Berndorf Belt	67.24 MM lbs/yr	S165	0.53
#1/#2 oil/water separator	67.24 MM lbs/yr	S110A	0.01
#4 oil/water separator	67.24 MM lbs/yr	S125	0.01
Drumming operation	67.24 MM lbs/yr	NA	0.18
Truck loading	67.24 MM lbs/yr	NA	0.37
LTC #2 Heater	8.8 MM Btu/hr	S107	0.25
LTC #4 Heater	10 MM Btu/hr	S119	0.28
Wastewater Treatment Pla			
Tanks 701A and 701B, Back Porch Sumps	Tanks – 50,000	S147	0.48
The state of the s	gal each; sumps		
	– 17,500 gal total		
Bio Clarifier	55,000 gal	F028	0.11
Sludge Batch Tank	5,200 gal	F036	0.00
Sludge Solids Handling	6,000 gal	F037	0.00
Dresinate Production Line (Inst.			0.00
Tank R-1-A	67,631 gal	S187	0.01
Tank 782	10,000 gal	S290	0.01
Emulsion Process (based o			0.01
Tank RK1	1,000 gal	-	0.67
Blend tanks 1, 2, 3, and 4	1,2 - 6,000 gal	S162	0.28
Biolit talks 1, 2, 3, and 1	each; 3,4 – 5,000	5102	0.20
	gal each		
Other Storage Tanks (Eastman judg		terial stored)	
Tank 4	88,122 gal	NA	<1
Tank 80	11,982 gal	NA	<1
Tank 151	1,503,943 gal	NA	<1
Tank 208	25,379 gal	NA	<1
Tank 252	30,455 gal	NA	<1
Tank 261	20,000 gal	NA	<1
Tank 262	20,079 gal	NA	<1
Tank 263	20,726 gal	NA	<1
Tank 264	20,000 gal	NA	<1
Tank 265	21,134 gal	NA NA	<1
Tank 365	20,000 gal	NA NA	<1
Tank 511	16,356 gal	NA NA	<1
Tank 761	10,000 gal	NA NA	<1
Tank 764	17,500 gal	NA NA	<1
Tank 766	3,800 gal	NA NA	<1
Tank 700	8,768 gal	NA NA	<1
Tank 7/3 Tank 783	8,768 gai 11,400 gal	NA NA	<1
Combustion		INA	<1
	18.6 MM Btu/hr	C1 / 1	0.44
Unilux Boiler 1 (IP #0058-I020)		S141	
Unilux Boiler 2 (IP #0058-I020)	18.6 MM Btu/hr	S141	0.44
Unilux Boiler 3 (IP #0058-I020)	18.6 MM Btu/hr	S143	0.44
Unilux Boiler 4 (IP #0058-I020)	18.6 MM Btu/hr	S142	0.44
Boiler house emergency generator (IP #0058-I020)	250 kW	F100	0.01
Trane Boiler	38 MM Btu/hr	S144	0.92

IV. RACT Determination

Two detailed RACT Reviews were performed to evaluate the Eastman facility; one was performed by Eastman, and one by Allegheny County Health Department (ACHD). Both submissions were considered in the final RACT disposition for the Facility and findings from each were incorporated into the ACHD RACT II Determination.

It has been determined that, based on the configuration and operation of these tanks, it is not technically feasible to enclose or capture and control the following sources that are subject to case-by-case analysis:

- Raw material tank T-50 (C-5 operations): this tank is internal floating roof tank. There is no reasonable method to capture emissions from floating roof tank.
- Tanks 702A, 702B, 702C (Wastewater Treatment Plant): all of these tanks are open-top tanks used for pretreatment prior to the biological treatment operations. There is no reasonable method to capture emissions from these open-top tanks. Enclosure or a floating roof is not technically feasible due to the tank configuration and operation.
- Bio Aeration Tank (Wastewater Treatment Plant): this biological treatment tank is open to the atmosphere. There is no reasonable method to capture the emissions from this operation. Enclosure or a floating roof is not technically feasible due to the tank configuration and operation.

The Technically Feasible Control Options for sources where is it was determined that an economic analysis is required for Eastman are detailed in Table 4. All control cost analyses were conducted pursuant to procedures provided in US EPA's Office of Air Quality Planning and Standards (OAQPS) Control Cost Manual, 7th Edition.

Table 4 – Technically Feasible VOC Control Cost Comparisons

Control Option		S109 LTC	S110 LTC	S114 LTC	S013 & S013a WW Poly	S020 WW Poly	S023 WW Poly	S027 WW Poly
Thermal	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation	Cost	\$143,908	\$148,047	\$311,632	\$156,264	\$183,607	\$175,518	\$175,934
(98%)	\$/ton	40,137	19,443	118,251	34,162	38,176	24,798	36,653
Catalytic	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation (98%)	Cost	\$134,852	\$135,637	\$254,524	\$138,270	\$154,741	\$148,790	\$149,202
(90 70)	\$/ton	37,705	17,814	96,581	30,228	32,174	21,022	31,084
Carbon Adsorption	tpy VOC Removed	3.5	7.4	2.4	4.4	4.7	6.9	4.7
(fixed bed)	Cost	\$181,762	\$179,679	\$180,804	\$154,297	\$156,903	\$156,790	\$155,442
(90-95%)	\$/ton	52,426	24,343	74,706	34,797	33,654	22,852	33,073
Rotary Concentrator/	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation	Cost	\$184,606	\$184,634	\$219,307	\$184,832	\$187,503	\$186,464	\$186,464
(98%)	\$/ton	51,616	24,249	83,218	40,408	38,986	26,345	38,847
Refrigerated	tpy VOC Removed	3.5	7.4	2.6	4.4	4.7	6.9	4.7
Condenser	Cost	\$136,399	\$138,457	\$1,296,659	\$149,704	\$219,179	\$189,142	\$192,802
(95%)	\$/ton	39,342	18,758	507,565	33,761	47,011	27,567	41,022

Table 4 – Technically Feasible VOC Control Cost Comparisons (continue)

Control Option		S025 WW Poly	S055 C-5	S034 MP Poly	S004 Hydro	S007 Hydro	S012 Hydro	S085 Dresinate
Thermal	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$154,798	\$526,415	\$177,803	\$165,140	\$174,148	\$146,413	\$345,875
(98%)	\$/ton	30,178	90,761	18,288	13,536	12,335	24,692	66,816
Catalytic	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$137,691	\$412,727	\$150,236	\$142,844	\$147,584	\$135,286	\$280,531
(98%)	\$/ton	26,843	71,160	15,452	11,708	10,454	22,816	54,193
Carbon Adsorption	tpy VOC Removed	5.0	5.4	8.9	10.3	13.0	5.4	4.8
(fixed bed)	Cost	\$156,423	\$207,403	\$158,992	\$161,638	\$161,521	\$180,771	\$186,358
(90-95%)	\$/ton	31,458	38,408	17,807	15,693	12,458	33,197	39,200
Rotary Concentrator/	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$184,776	\$285,728	\$186,833	\$185,480	\$186,486	\$184,620	\$229,409
(98%)	\$/ton	36,022	49,263	19,216	15,203	13,209	31,136	44,317
Refrigerated	tpy VOC Removed	5.0	5.7	9.4	11.5	13.7	5.7	5.0
Condenser (95%)	Cost	\$146,875	\$2,920,397	\$193,751	\$160,986	\$182,016	\$137,554	\$1,504,896
(93%)	\$/ton	29,538	512,350	20,557	13,999	13,300	23,931	299,894

ACHD has determined that thermal oxidation, catalytic oxidation, carbon adsorption (fixed bed), rotary concentrator/oxidation, and refrigerated condenser are technically feasible control options for controlling VOC emissions from the processes of the Eastman facility, but they are deemed financially infeasible due to their high cost per ton removed.

ACHD has determined that that it was unnecessary to conduct RACT evaluations on the equipment leak emissions for processes WW Poly, MP Poly, or the LTC process lines. The source is subject to the MON. Under the MON, the source is required to have a Leak Detection and Repair (LDAR) program. These requirements are relatively stringent, and ACHD does not believe more stringent requirements would be considered cost-effective. The LDAR requirements of the MON are considered RACT for the emissions from equipment leaks.

V. RACT Summary

Based on the findings in this RACT analysis, the Eastman facility has few technically feasible controls options for controlling VOC emissions from the processes, but they are deemed financially infeasible due to their high cost per ton removed.

The potential VOC emissions from the Hydro operations are based on the results of the stack test conducted in December 2019 and a throughput restriction of 22,500,000 lbs/year. Eastman proposes that RACT II for Hydro is a throughput limit of 22,500,000 lbs/year. The upcoming Installation Permit application for this process will be based on that limit.

The new RACT II conditions will not result in any additional reductions in VOC from the Eastman. The conditions of Plan Approval Order and Agreement #257 (RACT I), issued January 14, 1997, have been superseded by the case-by-case and presumptive RACT II conditions in this proposed permit. The RACT II conditions are at least as stringent as those from RACT I.

VI. RACT II Permit Conditions

Source ID	Description	Permit Condition 0058-I026	RACT II Regulations
NA	Site Level Terms and Conditions	Condition IV.27	25 PA Code §129.99 25 PA Code §129.100
Storage Tanks	C-5 Operations (Installation Permit #0058-I011d)	Condition V.A.2.a Condition V.A.2.b	25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
	,		Ü
S055	C-5 Operations (Installation Permit #0058-I018a)	Condition V.B.2.a Condition V.B.2.b	25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
S034	MP Poly Unit (Installation Permit #0058-I022a)	Condition V.C.1.b Condition V.C.1.c	25 PA Code §129.99 25 PA Code §129.99
		Condition V.C.1.d Condition V.C.2.a Condition V.C.3.a Condition V.C.4.a	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
		Condition V.C.4.b	25 PA Code §129.100 25 PA Code §129.99
S013, S020, S023, S027	WW Poly Unit (Installation Permit #0058-I023a)	Condition V.D.1.b Condition V.D.2.a Condition V.D.3.a	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100
		Condition V.D.3.b Condition V.D.4.a Condition V.D.4.b	25 PA Code §129.100 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
S025	WW Poly Storage Tanks (Installation Permit #0058-I023a)	Condition V.E.1.b Condition V.E.2.a	25 PA Code §129.99 25 PA Code §129.100
		Condition V.E.2.b Condition V.E.3.a Condition V.E.3.b	25 PA Code §129.100 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
S109, S110, S114		Condition V.F.1.b Condition V.F.1.c	25 PA Code §129.99 25 PA Code §129.99
	LTC Process Operations (Installation Permit #0058-I016a)	Condition V.F.2.a Condition V.F.3.a	25 PA Code §129.100 25 PA Code §129.100 25 PA Code §129.99 25 PA Code §129.100
		Condition V.F.3.b	25 PA Code §129.99
S085	Dresinate Production Line (Installation Permit #0058-I012a)	Condition V.G.2.a	25 PA Code §129.99 25 PA Code §129.100
		Condition V.G.2.b Condition V.H.1.a	25 PA Code §129.99 25 PA Code §129.99
S004, S007, S012	Hydrogenation Unit	Condition V.H.1.a Condition V.H.2.a Condition V.H.2.b	25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.100

Source ID	Description	Permit Condition	RACT II Regulations
		0058-I026	
		Condition V.H.3.a	25 PA Code §129.99
		Condition V.H.4.a	25 PA Code §129.99
			25 PA Code §129.100
		Condition V.H.4.b	25 PA Code §129.99
F027, F033, F034, F035	Wastewater Treatment Plant	Condition V.I.1.a	25 PA Code §129.99
			25 PA Code §129.100
		Condition V.I.1.b	25 PA Code §129.99

ALLEGHENY COUNTY HEALTH DEPARTMENT Air Quality Program

SUMMARY OF PUBLIC COMMENTS AND DEPARTMENT RESPONSES ON THE PROPOSED ISSUANCE OF EASTMAN CHEMICAL RESINS, INC., JEFFERSON SITE, INSTALLATION PERMIT NO. 0058-I026

[Notice of the opportunity for public comment appeared in the legal section of the Pittsburgh Post-Gazette on February 6, 2020. The public comment period ended on March 17, 2020.]

1. <u>COMMENT:</u> ACHD has indicated that the RACT II determinations for certain sources are based in part on information in a Draft Installation Permit (IP No. 0058-I016a) that hasn't been issued yet, and two Installation Permit applications that have been submitted by Eastman. All Installation Permits that are being relied on to inform the RACT II Determinations for the facility should be issued prior to issuing the final Installation Permit for RACT II.

RESPONSE: Installation Permit No, 0058-I016a was issued at April 14, 2020. The RACT II evaluation was not based on any other unissued permits.

2. COMMENT: In the permit review memo, ACHD indicated that Raw Material Tank T50 (C-5 Operations) is a raw material tank subject to case-by-case RACT. Please explain if the tank is subject to Source Standards for tanks found at 25 PA Code 129.56. Tanks that meet the criteria for sources subject to this regulation are not subject to RACT per the applicability criteria at 25 PA Code 129.96.(b).

RESPONSE: This tank is subject to Source Standards for tanks found at 25 PA Code 129.56, so this tank T50 will be removed from the Table 1 "Facility Sources Subject to Case-by-Case RACT II and Their Existing RACT I Limits" and put to the Table 2 "Facility Sources Subject to Presumptive RACT II per PA Code 129.97".

3. <u>COMMENT:</u> In the permit review memo, ACHD indicated that Tanks 702A, 702B, 702C, and the Bioaeration Tank associated with the Wastewater Treatment Plant are open-top tanks and that there are no reasonable methods for capturing emissions from these types of tanks. ACHD should indicate each control method evaluated for the tanks and justify whether they were technically infeasible or economically infeasible.

RESPONSE: The only viable method of control for these tanks would be to enclose the tanks or install a floating roof. Because of the configuration and operation of these tanks, neither enclosing them nor installing a floating roof is technically feasible.

4. COMMENT: In ACHD's review memo, ACHD has indicated that it did not perform a RACT evaluation for equipment leak emissions from Sources WW Poly, MP Poly, or the LTC process lines because these sources are subject to MON. While MON may be the most technically/cost feasible control option for these sources, ACHD still needs to perform a technical feasibility and cost evaluation for other possible control options as part of the RACT case by case analysis for these sources to demonstrate that there aren't other control options that are more cost effective and result in greater control of VOC emissions.

RESPONSE: A RACT evaluation was performed on the individual equipment and processes within each of these process lines. Beyond an LDAR program, there is no technically feasible means of controlling emissions from equipment leaks not otherwise accounted for in the RACT evaluations of the individual processes. A RACT citation was added to Condition IV.27 to incorporate the conditions of the MON.

5. <u>COMMENT</u>: Condition V.A. for C-5 Storage Tanks – Commenter notes that Work Practice Standard 2.a.1 states that Eastman should perform regular maintenance "considering the manufacturer's or the operator's

maintenance procedures". Commenter asked to explain and justify how this condition is enforceable as a practical matter. For instance, the condition could be revised to "Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures."

RESPONSE: The revision has been made to the final permit.

- **6. COMMENT:** The permit conditions for the following sources should further define how the sources should be properly maintained and operated and include associated monitoring and recordkeeping requirements to ensure compliance with the work practices:
 - a. source V.B C-5 Operations Pastillating Belts #1 and #2 (S055)
 - b. V.C MP Poly Unit (S034)
 - c. V.D. WW Poly Unit (S013, S013a, S020, S023, and S027)
 - d. V.E. WW Poly Unit Storage Tanks (S025)
 - e. V.F LTC Process Operations (S109, S110, S114)
 - f. V.G Dresinate Production Line (S085)
 - g. V.H. Hydrogenation Unit (S004, S007, S012)
 - h. V.I Wastewater Treatment Plant (F027, F033, F034, F035)

RESPONSE: The Work Practice Standard conditions were added to all mentioned sources. The revision has been made to the final permit.

7. <u>COMMENT:</u> Permit Condition V.C MP Poly Unit (S034) - The permit should identify what corrective actions will be taken by Eastman when inlet coolant temperature requirements are not being met.

RESPONSE: The corrective actions for S034 was added and the revision has been made to the final permit.

8. <u>COMMENT:</u> The following sources use condensers as a VOC emissions control device: V.D. WW Poly Unit (S013, S013a, S020, S023, and S027), V.E. WW Poly Unit Storage Tanks (S025), and V.H. Hydrogenation Unit (S004, S007, S012). For these sources, please explain and justify the recordkeeping requirements. For instance, a recordkeeping condition similar to Condition No. V.F.3.a.2. for LTC Process Operations (S109, S110, S114) could be included for the above mentioned units. The condition requires Eastman to keep "records of operation, inspection, calibration, maintenance, and/or replacement of process or control equipment"

RESPONSE: The recordkeeping requirements were added, and the revision has been made to the final permit, with the exception of the Hydrogenation Unit (see comment #37 below).

9. COMMENT: Permit Condition V.E. WW Poly Unit Storage Tanks (S025) - ACHD should indicate the frequency at which Eastman should monitor and record condenser coolant temperatures in Condition V.E.2.

RESPONSE: Conditions for monitoring and recordkeeping for S025 are included in the Installation Permit No.0058-I023a and therefore do not need to be included in RACT Permit. No revisions were made.

10. <u>COMMENT:</u> Permit Condition V.F LTC Process Operations (S109, S110, S114) - ACHD should incorporate the short-term emission rate of VOC vacuum leak rate for the #4 LTC Vacuum system (10 lb/hr as proposed in Draft Installation Permit IP No. 0058-I016a) as part of the RACT II determination for this source. ACHD should also include the appropriate monitoring and recordkeeping in the permit as part of the RACT determination to ensure compliance with the VOC emission limit for the #4 LTC Vacuum.

RESPONSE: The #4 LTC Vacuum System is not subject to case-by-case RACT. As there is no feasible way to monitor the continuous vacuum leak rate, the case-by-case RACT determination for the #1 and #2 Vacuum System is proper operation and maintenance (condition V.F.3.a) and the LDAR requirements of the MON

(condition IV.27). See response to comment 4 above. In addition, Condition V.F.1.c was added to the permit for short-term emissions and testing requirements for #1 and #2 Vacuum System.

11. <u>COMMENT:</u> Permit Condition V.H. Hydrogenation Unit (S004, S007, S012) - ACHD should indicate the frequency at which Eastman should monitor and record condenser coolant temperatures in Condition V.H.2.

RESPONSE: Monitoring condition was added to the final permit. See also comment #37 below.

12. <u>COMMENT:</u> Section II: Facility Description. It should be noted in the facility description that this RACT II obligation will replace the 1997 RACT Order No. 257 (RACT I) and the requirement to determine RACT as set forth in paragraph 78 of the December 8, 2011 consent decree between Eastman Chemical and the US EPA (United States of America and Allegheny County Health Department vs. Eastman Chemical Resins, Inc., Civil Action No. 11-1240). 25 PA Code §129.99(g) requires that this RACT permit supersede the 1997 RACT Order unless the 1997 RACT Order contains more stringent requirements. As noted in Section V of the permit and technical support document, the requirements in this RACT IP are not more stringent than those found in the 1997 RACT Order. Moreover, the Consent Decree requires that this RACT Order "supersede in its entirety the 1997 RACT Order". See Paragraph 78 of the Consent Decree.

RESPONSE: The Department has the authority and statutory obligation to make a RACT determination and issue to this permit to meet the 2008 Ozone RACT (RACT II). Furthermore, there is nothing in the Consent Decree that prohibits the Department from doing so. Paragraph 78 of the Consent Decree states "Within ninety (90) Days after Eastman's receipt of the last of the Process Unit-wide Article XXI installation permits for the Facility required by this Consent Decree, Eastman shall submit to ACHD a VOC RACT Proposal for the Facility." As the conditions of the Consent Decree have not yet been fully met, the conditions of the 1997 Consent Order No. 257 (RACT I) are still in effect, except where the Department determined RACT to be the same as RACT I.

13. <u>COMMENT</u>: Section III: General Conditions and Section IV: Site Level Terms and Conditions. Eastman requests that the ACHD remove the terms and conditions found in Sections III and IV from this RACT Installation Permit. These terms and conditions are a recitation of the referenced Article XXI rules that are already part of the Pennsylvania State Implementation Plan (SIP). They should not be incorporated into the SIP as part of this case-by-case RACT SIP Amendment. Similarly, Sections I, II and VI should also not be incorporated into the SIP as they do not contain applicable requirements that must be incorporated into the SIP pursuant to 25 PA Code §129.99(h). Only the Section V Emission Unit Level Terms and Conditions need to be incorporated into the SIP pursuant to this requirement.

The commenter has also provided changes shown in Section III and IV to illustrate how these boilerplate conditions have been modified from what appears in Article XXI. Eastman is not requesting that the tracked changes shown in Sections III and IV be made in this Installation Permit.

RESPONSE: Prior to submission for incorporation into the SIP, the permit will be redacted such that only those conditions subject to 25 PA Code §129.99 will be included. However, as this is still an enforceable installation permit, the conditions in Sections I-IV, and VI are still included in the final issued permit.

As the commenter notes, Sections III and IV contain boilerplate language found in all installation permits, and therefore remain unchanged.

14. <u>COMMENT:</u> Section V: Emission Unit Level Terms and Conditions. The commenter notes that this RACT II obligation will replace the 1997 RACT Order No. 257 (RACT I) and the requirement to determine RACT as set forth in paragraph 78 of the December 8, 2011 consent decree. See comment #12 above.

RESPONSE: See response to comment #12 above.

15. <u>COMMENT:</u> Condition V.A.1. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the C5 VOC storage tanks".

RESPONSE: The revision has been made to the final permit.

16. COMMENT: Conditions V.A.2.a and V.A.2.b. These conditions should be clarified to specify "VOC" storage tanks.

RESPONSE: The revision has been made to the final permit.

17. COMMENT: Conditions V.A.2.b, V.B.2, V.C.1.b, V.C.2, V.C.3, V.D.1.b, V.D.2, V.D.3, V.D.4, V.E.1.b, V.E.2, V.E.3, V.F.1.b, V.F.3, V.F.4, V.G.2, V.H.2, V.H.3, and V.I.1. Paragraph 78 of the consent decree states "The new RACT Order ... required by this Paragraph shall supersede [sic] in its entirety the 1997 RACT Order unless the 1997 RACT Order contains more stringent requirements. That is not the case for 1997 RACT Order section 1.7, which is a general provision requiring that Eastman properly maintain and operate the equipment. Therefore, references to section 1.7 should be removed. This comment also applies other instances when conditions 1.1 through 1.7 are referenced.

RESPONSE: See response to comment #12 above. In these conditions, the RACT II requirement was determined to be continuation of RACT I. The permit remains unchanged for these conditions and all subsequent conditions where section 1.7 of the 1997 RACT Order is referenced.

18. <u>COMMENT:</u> Condition V.B.1. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC control requirements in the applicable Installation Permit associated with S055".

RESPONSE: The revision has been made to the final permit, with the exception of using "Pastillating Belts #1 and #2" instead of "S055".

19. <u>COMMENT:</u> Condition V.C.1.a. That this condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with S034"

RESPONSE: The revision has been made to the final permit, with the exception of using "MP Poly Unit" instead of "S055"

20. <u>COMMENT:</u> Conditions V.C.1.b, V.C.1.c, and V.C.2. Condensers E-400-6 and E-203-4 are not associated with the MP Poly Process stack S034 and should be removed from these conditions.

RESPONSE: The revision has been made to the final permit.

21. COMMENT: Condition V.C.2. This comment should clarify that it only applies when emissions are being routed to the condenser

RESPONSE: The Department agrees and the revision has been made to the final permit.

22. COMMENT: Condition V.C.3. The requirement to keep and maintain records of monthly and 12-month moving polymerizate production should be removed since there is no production limit subject to RACT.

RESPONSE: The Department agrees, and the revision has been made to the final permit.

23. <u>COMMENT:</u> Section V.D. Emission point S013a should be removed as there is no such emission point in Installation Permit #0058-I023a.

RESPONSE: Emission point S013a included in Technical Support Document for Installation Permit #0058-I023a. VOC emissions for this point is 0.01 tpy. This emission point included in Table 3 of Section III and removed from Table 1 of this Section and from Section VI. Also this emission point removed from the permit.

24. <u>COMMENT:</u> Condition V.D.1.a. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with S013, S020, S023, and S027".

RESPONSE: The revision has been made to the final permit, with the exception of using "WW Poly Unit" instead of "S013, S020, S023, and S027".

25. <u>COMMENT</u>: Condition V.D.1.b. The following condensers are not included in the table in Section VI of the Technical Support Document as subject to RACT II permit conditions and should be removed: E-600-9, E-601-11, E-700-6, and E-701-7.

RESPONSE: The revision has been made to the final permit.

26. <u>COMMENT</u>: Condition V.D.1.b.3.b). This condition should read "...when the coolant supply temperature is more-less than 50°F (10°C), or when the coolant supply is interrupted."

RESPONSE: The Department disagrees. The purpose of this condition is to document instances of temperature exceedances due to problems with the coolant. This would be if the coolant is too hot or not properly flowing. The permit remains unchanged.

27. COMMENT: Condition V.D.2. The following condensers are not associated with the listed emission points of this section and should be removed: E-300-4, E-301-4, E-600-9, E-601-11, E-700-6, E-701-7, and E-800-3.

RESPONSE: The revision has been made to the final permit.

28. <u>COMMENT:</u> Condition V.D.3. The requirement to keep and maintain records of monthly and 12-month moving polymerizate production should be removed since there is no production limit subject to RACT.

RESPONSE: The revision has been made to the final permit.

29. <u>COMMENT:</u> Condition V.E.1.a. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with S025".

RESPONSE: The revision has been made to the final permit, with the exception of using "WW Poly Storage Tanks" instead of "S025".

30. <u>COMMENT:</u> Condition V.E.1.b. Condensers E-201-2 and E-67-3 are not associated with the WW Poly Storage Tanks and should be removed.

RESPONSE: The revision has been made to the final permit.

31. <u>COMMENT:</u> Section V.F. The LTC process should also include emission points S108, S111, S112, and S113. S114 should be corrected to S124.

RESPONSE: The revision has been made to the final permit.

32. <u>COMMENT:</u> Condition V.F.1.a. This condition should be clarified to read "Continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with S108, S109, S110, S111, S112, S113, and S124".

RESPONSE: The revision has been made to the final permit, with the exception of using "LTC Process Operations" instead of "S108, S109, S110, S111, S112, S113, and S114". Please note that the change from S114 to S124 is incorrect. S124 is the emission point for the #4 Vacuum System which is not subject to case-by-case RACT. S114 is the emission point for the LTC #1/#2 Pastillator Belts which are subject to case-by-case RACT.

33. <u>COMMENT:</u> Condition V.F.1.3.b). his condition should read "...when the coolant supply temperature is more less than 50°F (10°C), or when the coolant supply is interrupted."

RESPONSE: The Department disagrees. The purpose of this condition is to document instances of temperature exceedances due to problems with the coolant. This would be if the coolant is too hot or not properly flowing. The permit remains unchanged.

34. <u>COMMENT:</u> Condition V.F.3.a.6). This condition should be removed, as Eastman is not utilizing the Air Emissions Inventory Improvement Program (EIIP) and has no plans to do so.

RESPONSE: The revision has been made to the final permit.

35. <u>COMMENT:</u> Condition V.G.1. This condition should be clarified to read "*Continue to comply with all applicable regulatory and Permit-requirements*". There are no control requirements in the applicable permit, so the phrase "and Permit" should be removed.

RESPONSE: The Department disagrees. The purpose of this condition is to reiterate that all conditions of the applicable permit still apply, and that this permit does not remove them. The permit remains unchanged.

36. COMMENT: Condition V.H.1.b. The following condensers are part of the Hydrogenation Unit and should be added: E-104-2 (S012), E-201-2 (S004), E-403-2 (S007).

RESPONSE: The revision has been made to the final permit.

37. COMMENT: Condition V.H.1.b.1)-3). This section conflicts with Consent Order paragraph 19 and Appendix A, which require condensers to comply with ACHD Permit # 0058-I001. ACHD Permit # 0058-I001 includes compliance temperatures for condenser water outlets, not inlets. Requiring the inlet coolant to be a higher temperature (50°F, as per this section) than the outlet temperature (40°F, as per IP #0058-I001, condition 3.b) is not logical and does not indicate compliance. Also, monitoring both inlet and outlet coolant temperatures is excessive and redundant and does not improve compliance. There currently is no instrumentation in place to monitor and comply with the proposed refrigerated inlet coolant temperature limits of this section. Section V.H.1.b.1) through 3) should be deleted; and Eastman will continue to comply with Consent Order paragraph 19 and Appendix A and ACHD Permit # 0058-I001.

RESPONSE: The Department partially agrees and partially disagrees. The purpose of this condition was to provide for a means of demonstrating if an exceedance of outlet vapor temperature is due solely to ambient conditions and to be consistent with other condensers and the language agreed upon between Eastman, ACHD, and the EPA. However, the Department does agree that the in the case of the Hydrogenation Unit, this language does not apply. The Department also agrees that the language in Installation Permit #0058-I001, along with the requirements from Appendix A of the consent decree constitute RACT. The permit has been amended to remove

the previous conditions and replace them with that of IP #0058-I001.

LIST OF COMMENTERS

Name	Affiliation	
Gwendolyn Supplee	EPA, Region III	
	Permit Branch, 3AD10	
Cymthia Stahl DhD	EPA, Region III	
Cynthia Stahl, PhD	Permit Branch, 3AD10	
Janice S. Kane, P.E.	Eastman Chemical Resins, Inc.	
Environmental Coordinator	Jefferson Site	

AIR QUALITY PROGRAM 301 39th Street, Bldg. #7 Pittsburgh, PA 15201-1811

Major Source INSTALLATION PERMIT

Issued To:	Eastman Chemical Resins, Inc. Jefferson Site 2200 State Highway 837	ACHD Permit#:	0058-I026	
	West Elizabeth, PA 15088-0545	Date of Issuance:		
		Expiration Date:	(See Section III.12)	
<u>Issued By</u> :	JoAnn Truchan, P.E. Section Chief, Engineering		en O. Gurvich Quality Engineer	_

Proposed: February 15, 2020

TABLE OF CONTENTS

I.	CONTACT INFORMATION	4
II.	FACILITY DESCRIPTION	
III.	GENERAL CONDITIONS	
IV.	SITE LEVEL TERMS AND CONDITIONS	11
V.	EMISSION UNIT LEVEL TERMS AND CONDITIONS	
	A. C-5 – STORAGE TANKS	19
	B. C-5 OPERATIONS – PASTILLATING BELTS #1 AND #2 (S055)	20
	C. MP POLY UNIT (S034)	
	D. WW POLY UNIT (S013, S013A, S020, S023, S027)	22
	E. WW POLY STORAGE TANKS (S025)	24
	F. LTC Process Operations (S109, S110, S114)	25
	G. Dresinate Production Line (S085)	27
	H. Hydrogenation Unit (S004, S007, S012)	28
	I. WASTEWATER TREATMENT PLANT (F027, F033, F034, F035)	
VI.	ALTERNATIVE OPERATING SCENARIOS	31

AMENDMENTS:

DATE SECTION(S)

I. CONTACT INFORMATION

Facility Location: Eastman Chemical Resins, Inc.

Jefferson Site

2200 State Highway 837

West Elizabeth, PA 15088-0545

Permittee/Owner: Eastman Chemical Resins, Inc.

Jefferson Site

2200 State Highway 837

West Elizabeth, PA 15088-0545

Responsible Official: Eugene M. Ingram

Title: Jefferson Site Manager

Company: Eastman Chemical Resins, Inc.

Jefferson Site

Address: 2200 State Highway 837

P.O. Box 545

West Elizabeth, PA 15088-0545

Telephone Number: 412-384-2520 **Fax Number:** 412-384-7311

Facility Contact: Janice Kane

Title: Senior Environmental Coordinator

Telephone Number: 412-384-2520, ext. 2243

Fax Number: 412-384-7311

E-mail Address: jsnyderkane@eastman.com

AGENCY ADDRESSES:

ACHD Contact: Chief Engineer

Allegheny County Health Department

Air Quality Program

301 39th Street, Building #7 Pittsburgh, PA 15201-1811 appermits@alleghenycounty.us

EPA Contact: Enforcement Programs Section (3AP12)

USEPA Region III 1650 Arch Street

Philadelphia, PA 19103-2029

II. FACILITY DESCRIPTION

FACILITY DESCRIPTION

The Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) produces synthetic hydrocarbon resins from C5 feedstock, monomers, solvents and catalysts by way of cationic polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products. The plant is comprised of three polymerization processes (C5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC1, LTC2, and C-5), and an emulsion process, five boilers ranging from 18.6 MM Btu/hr to 38.2 MM Btu/hr, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes.

The facility is a major source of volatile organic compounds (VOCs) and Hazardous Air Pollutants (HAPs); and a minor source of particulate matter (PM), particulate matter <10 μ m in diameter (PM₁₀), particulate matter <2.5 μ m in diameter (PM_{2.5}), nitrogen oxides (NO_X), sulfur oxides (SO_X), as defined in §2102.20 of Article XXI. The facility is also a minor source of greenhouse gas emissions (CO₂e) as defined in the U.S. EPA Greenhouse Gas Tailoring Rule.

INSTALLATION DESCRIPTION

This permit is an installation addressing the requirements for case-by-case RACT for this facility.

DECLARATION OF POLICY

Pollution prevention is recognized as the preferred strategy (over pollution control) for reducing risk to air resources. Accordingly, pollution prevention measures should be integrated into air pollution control programs wherever possible, and the adoption by sources of cost-effective compliance strategies, incorporating pollution prevention, is encouraged. The Department will give expedited consideration to any permit modification request based on pollution prevention principles.

The permittee is subject to the terms and conditions set forth below. These terms and conditions constitute provisions of Allegheny County Health Department Rules and Regulations, Article XXI Air Pollution Control. The subject equipment has been conditionally approved for operation. The equipment shall be operated in conformity with the plans, specifications, conditions, and instructions which are part of your application, and may be periodically inspected for compliance by the Department. In the event that the terms and conditions of this permit or the applicable provisions of Article XXI conflict with the application for this permit, these terms and conditions and the applicable provisions of Article XXI shall prevail. Additionally, nothing in this permit relieves the permittee from the obligation to comply with all applicable Federal, State and Local laws and regulations.

III. GENERAL CONDITIONS

1. Prohibition of Air Pollution (§2101.11)

It shall be a violation of this permit to fail to comply with, or to cause or assist in the violation of, any requirement of this permit, or any order or permit issued pursuant to authority granted by Article XXI. The permittee shall not willfully, negligently, or through the failure to provide and operate necessary control equipment or to take necessary precautions, operate any source of air contaminants in such manner that emissions from such source:

- a. Exceed the amounts permitted by this permit or by any order or permit issued pursuant to Article XXI;
- b. Cause an exceedance of the ambient air quality standards established by Article XXI §2101.10; or
- c. May reasonably be anticipated to endanger the public health, safety, or welfare.

2. Nuisances (§2101.13)

Any violation of any requirement of this Permit shall constitute a nuisance.

3. **Definitions** (§2101.20)

- a. Except as specifically provided in this permit, terms used retain the meaning accorded them under the applicable provisions and requirements of Article XXI or the applicable federal or state regulation. Whenever used in this permit, or in any action taken pursuant to this permit, the words and phrases shall have the meanings stated, unless the context clearly indicates otherwise.
- b. Unless specified otherwise in this permit or in the applicable regulation, the term "*year*" shall mean any twelve (12) consecutive months.

4. **Certification (§2102.01)**

Any report or compliance certification submitted under this permit shall contain written certification by a responsible official as to truth, accuracy, and completeness. This certification and any other certification required under this permit shall be signed by a responsible official of the source, and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

5. Operation and Maintenance (§2105.03)

All air pollution control equipment required by this permit or Article XXI, and all equivalent compliance techniques that have been approved by the Department, shall be properly installed, maintained, and operated consistent with good air pollution control practice.

6. Conditions (§2102.03.c)

It shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02, for any person to fail to comply with any terms or conditions set forth in this permit.

7. Transfers (§2102.03.e)

This permit shall not be transferable from one person to another, except in accordance with Article XXI §2102.03.e and in cases of change-in-ownership which are documented to the satisfaction of the Department, and shall be valid only for the specific sources and equipment for which this permit was issued. The transfer of permits in the case of change-in-ownership may be made consistent with the administrative permit amendment procedure of Article XXI §2103.14.b.

8. Effect (§2102.03.g)

Issuance of this permit shall not in any manner relieve any person of the duty to fully comply with the requirements of Article XXI or any other provision of law, nor shall it in any manner preclude or affect the right of the Department to initiate any enforcement action whatsoever for violations of Article XXI or this Permit, whether occurring before or after the issuance of such permit. Further, the issuance of this permit shall not be a defense to any nuisance action, nor shall such permit be construed as a certificate of compliance with the requirements of Article XXI or this Permit.

9. General Requirements (§2102.04.a)

It shall be a violation of this Permit giving rise to the remedies set forth in Article XXI §2109 for any person to install, modify, replace, reconstruct, or reactivate any source or air pollution control equipment to which this Permit applies unless either:

- a. The Department has first issued an Installation Permit for such source or equipment; or
- b. Such action is solely a reactivation of a source with a current Operating Permit, which is approved under §2103.13 of Article XXI.

10. Conditions (§2102.04.e)

Further, the initiation of installation, modification, replacement, reconstruction, or reactivation under this

Installation Permit and any reactivation plan shall be deemed acceptance by the source of all terms and conditions specified by the Department in this permit and plan.

11. Revocation (§2102.04.f)

- a. The Department may, at any time, revoke this Installation Permit if it finds that:
 - 1) Any statement made in the permit application is not true, or that material information has not been disclosed in the application;
 - 2) The source is not being installed, modified, replaced, reconstructed, or reactivated in the manner indicated by this permit or applicable reactivation plan;
 - 3) Air contaminants will not be controlled to the degree indicated by this permit;
 - 4) Any term or condition of this permit has not been complied with;
 - 5) The Department has been denied lawful access to the premises or records, charts, instruments and the like as authorized by this Permit; or
- b. Prior to the date on which construction of the proposed source has commenced the Department may, revoke this Installation Permit if a significantly better air pollution control technology has become available for such source, a more stringent regulation applicable to such source has been adopted, or any other change has occurred which requires a more stringent degree of control of air contaminants.

12. Term (§2102.04.g)

This Installation Permit shall expire in 18 months if construction has not commenced within such period or shall expire 18 months after such construction has been suspended, if construction is not resumed within such period. In any event, this Installation Permit shall expire upon completion of construction, except that this Installation Permit shall authorize temporary operation to facilitate shakedown of sources and air cleaning devices, to permit operations pending issuance of a related subsequent Operating Permit, or to permit the evaluation of the air contamination aspects of the source. Such temporary operation period shall be valid for a limited time, not to exceed 180 days, but may be extended for additional limited periods, each not to exceed 120 days, except that no temporary operation shall be authorized or extended which may circumvent the requirements of this Permit.

13. Annual Installation Permit Administrative Fee (§2102.10.c & e)

No later than 30 days after the date of issuance of this Installation Permit and on or before the last day of the month in which this permit was issued in each year thereafter, during the term of this permit until a subsequent corresponding Operating Permit or amended Operating Permit is properly applied for, the owner or operator of such source shall pay to the Department, in addition to all other applicable emission and administration fees, an Annual Installation Permit Administration Fee in an amount of \$750.

14. Severability Requirement (§2103.12.l)

The provisions of this permit are severable, and if any provision of this permit is determined to by a court of competent jurisdiction to be invalid or unenforceable, such a determination will not affect the remaining provisions of this permit.

15. Reporting Requirements (§2103.12.k)

a. The permittee shall submit reports of any required monitoring at least every six (6) months. All

instances of deviations from permit requirements must be clearly identified in such reports. All required reports must be certified by the Responsible Official.

- b. Prompt reporting of deviations from permit requirements is required, including those attributable to upset conditions as defined in this permit and Article XXI §2108.01.c, the probable cause of such deviations, and any corrective actions or preventive measures taken.
- c. All reports submitted to the Department shall comply with the certification requirements of General Condition III.4 above.
- d. Semiannual reports required by this permit shall be submitted to the Department as follows:
 - 1) One semiannual report is due by July 31 of each year for the time period beginning January 1 and ending June 30.
 - 2) One semiannual report is due by February 1 of each year for the time period beginning July 1 and ending December 31.
 - 3) The first semiannual report shall be due July 31, 2020 for the time period beginning on the issuance date of this permit through June 30, 2020.
- e. Reports may be emailed to the Department at <u>agreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

16. Minor Installation Permit Modifications (§2102.10.d)

Modifications to this Installation Permit may be applied for but only upon submission of an application with a fee in the amount of \$300 and where:

- a. No reassessment of any control technology determination is required; and
- b. No reassessment of any ambient air quality impact is required.

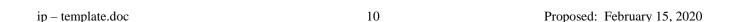
17. Violations (§2104.06)

The violation of any emission standard established by this Permit shall be a violation of this Permit giving rise to the remedies provided by Article §2109.02.

18. Other Requirements Not Affected (§2105.02)

Compliance with the requirements of this permit shall not in any manner relieve any person from the duty to fully comply with any other applicable federal, state, or county statute, rule, regulation, or the like, including, but not limited to, any applicable NSPSs, NESHAPs, MACTs, or Generally Achievable Control Technology standards now or hereafter established by the EPA, and any applicable requirement of BACT or LAER as provided by Article XXI, any condition contained in this Installation Permit and/or any additional or more stringent requirements contained in an order issued to such person pursuant to Part I of Article XXI.

19. Other Rights and Remedies Preserved (§2109.02.b)


Nothing in this permit shall be construed as impairing any right or remedy now existing or hereafter created in equity, common law or statutory law with respect to air pollution, nor shall any court be deprived of such jurisdiction for the reason that such air pollution constitutes a violation of this permit

20. Penalties, Fines, and Interest (§2109.07.a)

A source that fails to pay any fee required under this Permit or article XXI when due shall pay a civil penalty of 50% of the fee amount, plus interest on the fee amount computed in accordance with of Article XXI §2109.06.a.4 from the date the fee was required to be paid. In addition, the source may have its permit revoked.

21. Appeals (§2109.10)

In accordance with State Law and County regulations and ordinances, any person aggrieved by an order or other final action of the Department issued pursuant to Article XXI shall have the right to appeal the action to the Director in accordance with the applicable County regulations and ordinances.

IV. SITE LEVEL TERMS AND CONDITIONS

1. Reporting of Upset Conditions (§2103.12.k.2)

The permittee shall promptly report all deviations from permit requirements, including those attributable to upset conditions as defined in Article XXI §2108.01.c, the probable cause of such deviations, and any corrective actions or preventive measures taken.

2. Visible Emissions (§2104.01.a)

Except as provided for by Article XXI §2108.01.d pertaining to a cold start, no person shall operate, or allow to be operated, any source in such manner that the opacity of visible emissions from a flue or process fugitive emissions from such source, excluding uncombined water:

- a. Equal or exceed an opacity of 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- b. Equal or exceed an opacity of 60% at any time.

3. Odor Emissions (§2104.04) (County-only enforceable)

No person shall operate, or allow to be operated, any source in such manner that emissions of malodorous matter from such source are perceptible beyond the property line.

4. Materials Handling (§2104.05)

The permittee shall not conduct, or allow to be conducted, any materials handling operation in such manner that emissions from such operation are visible at or beyond the property line.

5. Operation and Maintenance (§2105.03)

All air pollution control equipment required by this permit or any order under Article XXI, and all equivalent compliance techniques approved by the Department, shall be properly installed, maintained, and operated consistently with good air pollution control practice.

6. **Open Burning (§2105.50)**

No person shall conduct, or allow to be conducted, the open burning of any material, except where the Department has issued an Open Burning Permit to such person in accordance with Article XXI §2105.50 or where the open burning is conducted solely for the purpose of non-commercial preparation of food for human consumption, recreation, light, ornament, or provision of warmth for outside workers, and in a manner which contributes a negligible amount of air contaminants.

7. Shutdown of Control Equipment (§2108.01.b)

a. In the event any air pollution control equipment is shut down for reasons other than a breakdown, the person responsible for such equipment shall report, in writing, to the Department the intent to shut down such equipment at least 24 hours prior to the planned shutdown. Notwithstanding the submission of such report, the equipment shall not be shut down until the approval of the Department is obtained; provided, however, that no such report shall be required if the source(s)

served by such air pollution control equipment is also shut down at all times that such equipment is shut down.

- b. The Department shall act on all requested shutdowns as promptly as possible. If the Department does not take action on such requests within ten (10) calendar days of receipt of the notice, the request shall be deemed denied, and upon request, the owner or operator of the affected source shall have a right to appeal in accordance with the provisions of Article XI.
- c. The prior report required by Site Level Condition IV.7.a above shall include:
 - 1) Identification of the specific equipment to be shut down, its location and permit number (if permitted), together with an identification of the source(s) affected;
 - 2) The reasons for the shutdown;
 - 3) The expected length of time that the equipment will be out of service;
 - 4) Identification of the nature and quantity of emissions likely to occur during the shutdown;
 - 5) Measures, including extra labor and equipment, which will be taken to minimize the length of the shutdown, the amount of air contaminants emitted, or the ambient effects of the emissions;
 - 6) Measures which will be taken to shut down or curtail the affected source(s) or the reasons why it is impossible or impracticable to shut down or curtail the affected source(s) during the shutdown; and
 - 7) Such other information as may be required by the Department.
- d. Shutdown reports may be emailed to the Department at aqreports@alleghenycounty.us in lieu of mailing a hard copy.

8. **Breakdowns (§2108.01.c)**

- a. In the event that any air pollution control equipment, process equipment, or other source of air contaminants breaks down in such manner as to have a substantial likelihood of causing the emission of air contaminants in violation of this permit, or of causing the emission into the open air of potentially toxic or hazardous materials, the person responsible for such equipment or source shall immediately, but in no event later than sixty (60) minutes after the commencement of the breakdown, notify the Department of such breakdown and shall, as expeditiously as possible but in no event later than seven (7) days after the original notification, provide written notice to the Department.
- b. To the maximum extent possible, all oral and written notices required shall include all pertinent facts, including:
 - Identification of the specific equipment which has broken down, its location and permit number (if permitted), together with an identification of all related devices, equipment, and other sources which will be affected.
 - 2) The nature and probable cause of the breakdown.
 - 3) The expected length of time that the equipment will be inoperable or that the emissions will continue.
 - 4) Identification of the specific material(s) which are being, or are likely to be emitted, together with a statement concerning its toxic qualities, including its qualities as an irritant, and its potential for causing illness, disability, or mortality.
 - 5) The estimated quantity of each material being or likely to be emitted.

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc. Jefferson Site Installation Permit #0058-I026

- 6) Measures, including extra labor and equipment, taken or to be taken to minimize the length of the breakdown, the amount of air contaminants emitted, or the ambient effects of the emissions, together with an implementation schedule.
- 7) Measures being taken to shut down or curtail the affected source(s) or the reasons why it is impossible or impractical to shut down the source(s), or any part thereof, during the breakdown.
- c. Notices required shall be updated, in writing, as needed to advise the Department of changes in the information contained therein. In addition, any changes concerning potentially toxic or hazardous emissions shall be reported immediately. All additional information requested by the Department shall be submitted as expeditiously as practicable.
- d. Unless otherwise directed by the Department, the Department shall be notified whenever the condition causing the breakdown is corrected or the equipment or other source is placed back in operation by no later than 9:00 AM on the next County business day. Within seven (7) days thereafter, written notice shall be submitted pursuant to Paragraphs a and b above.
- e. Breakdown reporting shall not apply to breakdowns of air pollution control equipment which occur during the initial startup of said equipment, provided that emissions resulting from the breakdown are of the same nature and quantity as the emissions occurring prior to startup of the air pollution control equipment.
- f. In no case shall the reporting of a breakdown prevent prosecution for any violation of this permit or Article XXI.
- g. Breakdown reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

9. Cold Start (§2108.01.d)

In the event of a cold start on any fuel-burning or combustion equipment, except stationary internal combustion engines and combustion turbines used by utilities to meet peak load demands, the person responsible for such equipment shall report in writing to the Department the intent to perform such cold start at least 24 hours prior to the planned cold start. Such report shall identify the equipment and fuel(s) involved and shall include the expected time and duration of the startup. Upon written application from the person responsible for fuel-burning or combustion equipment which is routinely used to meet peak load demands and which is shown by experience not to be excessively emissive during a cold start, the Department may waive these requirements and may instead require periodic reports listing all cold starts which occurred during the report period. The Department shall make such waiver in writing, specifying such terms and conditions as are appropriate to achieve the purposes of Article XXI. Such waiver may be terminated by the Department at any time by written notice to the applicant. Cold start notifications may be emailed to the Department at agreports@alleghenycounty.us.

10. Monitoring of Malodorous Matter Beyond Facility Boundaries (§2104.04)

The permittee shall take all reasonable action as may be necessary to prevent malodorous matter from becoming perceptible beyond facility boundaries. Further, the permittee shall perform such observations as may be deemed necessary along facility boundaries to insure that malodorous matter beyond the facility boundary in accordance with Article XXI §2107.13 is not perceptible and record all findings and corrective action measures taken.

11. Emissions Inventory Statements (§2108.01.e & g)

- a. Emissions inventory statements in accordance with §2108.01.e shall be submitted to the Department by March 15 of each year for the preceding calendar year. The Department may require more frequent submittals if the Department determines that more frequent submissions are required by the EPA or that analysis of the data on a more frequent basis is necessary to implement the requirements of Article XXI or the Clean Air Act.
- b. The failure to submit any report or update within the time specified, the knowing submission of false information, or the willful failure to submit a complete report shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

12. Orders (§2108.01.f)

In addition to meeting the requirements Site Level Conditions IV.7 through IV.11, inclusive, the person responsible for any source shall, upon order by the Department, report to the Department such information as the Department may require in order to assess the actual and potential contribution of the source to air quality. The order shall specify a reasonable time in which to make such a report.

13. Violations (§2108.01.g)

The failure to submit any report or update thereof required by Site Level Conditions IV.7 through IV.12 above, inclusive, within the time specified, the knowing submission of false information, or the willful failure to submit a complete report shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

14. Emissions Testing (§2108.02)

- a. **Orders:** No later than 60 days after achieving full production or 120 days after startup, whichever is earlier, the permittee shall conduct, or cause to be conducted, such emissions tests as are specified by the Department to demonstrate compliance with the applicable requirements of this permit and shall submit the results of such tests to the Department in writing. Upon written application setting forth all information necessary to evaluate the application, the Department may, for good cause shown, extend the time for conducting such tests beyond 120 days after startup but shall not extend the time beyond 60 days after achieving full production. Emissions testing shall comply with all applicable requirements of Article XXI, §2108.02.e.
- b. **Tests by the Department:** Notwithstanding any tests conducted pursuant to this permit, the Department or another entity designated by the Department may conduct emissions testing on any source or air pollution control equipment. At the request of the Department, the permittee shall provide adequate sampling ports, safe sampling platforms and adequate utilities for the performance of such tests.
- c. **Testing Requirements:** No later than 45 days prior to conducting any tests required by this permit, the person responsible for the affected source shall submit for the Department's approval a written test protocol explaining the intended testing plan, including any deviations from standard testing procedures, the proposed operating conditions of the source during the test, calibration data for specific test equipment and a demonstration that the tests will be conducted under the direct supervision of persons qualified by training and experience satisfactory to the Department to conduct such tests. In addition, at least 30 days prior to conducting such tests, the person responsible

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.

Jefferson Site
Installation Permit #0058-I026

shall notify the Department in writing of the time(s) and date(s) on which the tests will be conducted and shall allow Department personnel to observe such tests, record data, provide pre-weighed filters, analyze samples in a County laboratory and to take samples for independent analysis. Test results shall be comprehensively and accurately reported in the units of measurement specified by the applicable emission limitations of this permit.

- d. Test methods and procedures shall conform to the applicable reference method set forth in this permit or Article XXI Part G, or where those methods are not applicable, to an alternative sampling and testing procedure approved by the Department consistent with Article XXI §2108.02.e.2.
- e. **Violations:** The failure to perform tests as required by this permit or an order of the Department, the failure to submit test results within the time specified, the knowing submission of false information, the willful failure to submit complete results, or the refusal to allow the Department, upon presentation of a search warrant, to conduct tests, shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

15. Abrasive Blasting (§2105.51)

- a. Except where such blasting is a part of a process requiring an operating permit, no person shall conduct or allow to be conducted, abrasive blasting or power tool cleaning of any surface, structure, or part thereof, which has a total area greater than 1,000 square feet unless such abrasive blasting complies with all applicable requirements of Article XXI §2105.51.
- b. In addition to complying with all applicable provisions of §2105.51, no person shall conduct, or allow to be conducted, abrasive blasting of any surface unless such abrasive blasting also complies with all other applicable requirements of Article XXI unless such requirements are specifically addressed by §2105.51.

16. Asbestos Abatement (§2105.62, §2105.63)

In the event of removal, encasement, or encapsulation of Asbestos-Containing Material (ACM) at a facility or in the event of the demolition of any facility, the permittee shall comply with all applicable provisions of Article XXI §2105.62 and §2105.63.

17. Volatile Organic Compound Storage Tanks (§2105.12.a)

No person shall place or store, or allow to be placed or stored, a volatile organic compound having a vapor pressure of 1.5 psia or greater under actual storage conditions in any aboveground stationary storage tank having a capacity equal to or greater than 2,000 gallons but less than or equal to 40,000 gallons, unless there is in operation on such tank pressure relief valves which are set to release at the higher of 0.7 psig of pressure or 0.3 psig of vacuum or at the highest possible pressure and vacuum in accordance with State or local fire codes, National Fire Prevention Association guidelines, or other national consensus standard approved in writing by the Department. Petroleum liquid storage vessels that are used to store produced crude oil and condensate prior to lease custody transfer are exempt from these requirements.

18. Permit Source Premises (§2105.40)

a. **General.** No person shall operate, or allow to be operated, any source for which a permit is required by Article XXI Part C in such manner that emissions from any open land, roadway, haul road, yard, or other premises located upon the source or from any material being transported within such source

or from any source-owned access road, haul road, or parking lot over five (5) parking spaces:

- 1) Are visible at or beyond the property line of such source;
- 2) Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or
- 3) Have an opacity of 60% or more at any time.
- b. **Deposition on Other Premises:** Visible emissions from any solid or liquid material that has been deposited by any means from a source onto any other premises shall be considered emissions from such source within the meaning of Site Level Condition IV.18.a above.

19. Parking Lots and Roadways (§2105.42)

- a. The permittee shall not maintain for use, or allow to be used, any parking lot over 50 parking spaces or used by more than 50 vehicles in any day or any other roadway carrying more than 100 vehicles in any day or 15 vehicles in any hour in such manner that emissions from such parking lot or roadway:
 - 1) Are visible at or beyond the property line;
 - 2) Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any 60 minute period; or
 - 3) Have an opacity of 60% or more at any time.
- b. Visible emissions from any solid or liquid material that has been deposited by any means from a parking lot or roadway onto any other premises shall be considered emissions from such parking lot or roadway.
- c. Site Level Condition IV.19.a above shall apply during any repairs or maintenance done to such parking lot or roadway.
- d. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.19 may be enforced by any municipal or local government unit having jurisdiction over the place where such parking lots or roadways are located. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.19.

20. Permit Source Transport (§2105.43)

- a. No person shall transport, or allow to be transported, any solid or liquid material outside the boundary line of any source for which a permit is required by Article XXI Part C in such manner that there is any visible emission, leak, spill, or other escape of such material during transport.
- b. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.20 may be enforced by any municipal or local government unit having jurisdiction over the place where such visible emission, leak, spill, or other escape of material during transport occurs. Such enforcement shall be in accordance with the laws governing such municipal or local government

unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violation of Site Level Condition IV.20.

21. Construction and Land Clearing (§2105.45)

- a. No person shall conduct, or allow to be conducted, any construction or land clearing activities in such manner that the opacity of emissions from such activities:
 - 1) Equal or exceed 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or
 - 2) Equal or exceed 60% at any time.
- b. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.21 may be enforced by any municipal or local government unit having jurisdiction over the place where such construction or land clearing activities occur. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.21.

22. Mining (§2105.46)

No person shall conduct, or allow to be conducted, any mining activities in such manner that emissions from such activities:

- a. Are visible at or beyond the property line;
- b. Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- c. Have an opacity of 60% or more at any time.

23. **Demolition** (§2105.47)

- a. No person shall conduct, or allow to be conducted, any demolition activities in such manner that the opacity of the emissions from such activities equal or exceed 20% for a period or periods aggregating more than three (3) minutes in any 60 minute period.
- b. Notwithstanding any other provisions of this permit, the prohibitions of Site Level Condition IV.23 may be enforced by any municipal or local government unit having jurisdiction over the place where such demolition activities occur. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.23.

24. Fugitive Emissions (§2105.49)

The person responsible for a source of fugitive emissions, in addition to complying with all other applicable provisions of this permit shall take all reasonable actions to prevent fugitive air contaminants from becoming airborne. Such actions may include, but are not limited to:

- a. The use of asphalt, oil, water, or suitable chemicals for dust control;
- b. The paying and maintenance of roadways, parking lots and the like;
- c. The prompt removal of earth or other material which has been deposited by leaks from transport,

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

erosion or other means;

- d. The adoption of work or other practices to minimize emissions;
- e. Enclosure of the source; and
- f. The proper hooding, venting, and collection of fugitive emissions.

25. Episode Plans (§2106.02)

The permittee shall upon written request of the Department, submit a source curtailment plan, consistent with good industrial practice and safe operating procedures, designed to reduce emissions of air contaminants during air pollution episodes. Such plans shall meet the requirements of Article XXI §2106.02.

26. New Source Performance Standards (§2105.05)

- a. It shall be a violation of this permit giving rise to the remedies provided by §2109.02 of Article XXI for any person to operate, or allow to be operated, any source in a manner that does not comply with all requirements of any applicable NSPS now or hereafter established by the EPA, except if such person has obtained from EPA a waiver pursuant to Section 111 or Section 129 of the Clean Air Act or is otherwise lawfully temporarily relieved of the duty to comply with such requirements.
- b. Any person who operates, or allows to be operated, any source subject to any NSPS shall conduct, or cause to be conducted, such tests, measurements, monitoring and the like as is required by such standard. All notices, reports, test results and the like as are required by such standard shall be submitted to the Department in the manner and time specified by such standard. All information, data and the like which is required to be maintained by such standard shall be made available to the Department upon request for inspection and copying.

27. Miscellaneous Organic Chemical Manufacturing NESHAP (40 CFR Part 63, Subpart FFFF)

The permittee shall comply with all applicable requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart FFFF – the "Miscellaneous Organic Chemical Manufacturing NESHAP" or "MON".

V. EMISSION UNIT LEVEL TERMS AND CONDITIONS

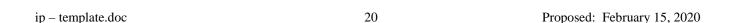
A. <u>C-5 – Storage Tanks</u>

1. Restrictions:

Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]

2. Work Practice Standard:

- a. The permittee shall do the following for all storage tanks and associated equipment: [\$2105.03; 25 PA Code \$129.99]
 - 1) Perform regular maintenance considering the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The storage tanks shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]


B. C-5 Operations – Pastillating Belts #1 and #2 (S055)

1. Restrictions:

Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]

2. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

C. MP Poly Unit (S034)

1. Restrictions:

- a. Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]
- b. The permittee shall properly maintain and operate the condensers E-400-6, E-500-5, E-701-5, E-701-4, and E-203-4 at all times when emissions are routed to them. [§2105.03; RACT Order #257, condition 1.7; 25 PA Code §129.99]
- c. The inlet coolant temperature to the condensers E-203-4 (S035) and E-701-4 (S034) shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condensers with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.2.A; 25 PA Code §129.99]

2. Monitoring Requirements:

The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-203-4, E-701-4, and E-400-6 condensers that continuously monitors the coolant inlet temperature. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, condition 1.1 and 1.2; 25 PA Code §129.99]

3. Record Keeping Requirements:

The permittee shall keep and maintain records of monthly and twelve months moving polymerizate production and condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

4. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

D. WW Poly Unit (S013, S013a, S020, S023, S027)

1. Restrictions:

- a. Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]
- b. Refrigerated vent condensers [E-200-7 (S013), E-600-9 and E-601-11 (S017), E-700-6 (S018), E-900-7 (S020), E-701-7 (S021), E-903-3 (S023), and E-901-7 (S027)]: The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°C any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions;
 - 2) The exit vapor temperature of each condenser shall not exceed 35°C over any one-hour block average when emissions are being routed through them, except as specified in condition V.D.1.b.3) below;
 - 3) If measured one-hour block average exit vapor temperatures exceed 35°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-200-7, E-300-4, E-301-4, E-600-9, E-601-11, E-700-6, E-701-7, E-800-3, E-900-7, E-901-7, E-903-3, and E-1001-7 condensers that continuously monitor the coolant inlet temperature. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, conditions 1.1 -1.3; 25 PA Code §129.99]

3. Record Keeping Requirements:

The permittee shall keep and maintain records of monthly and twelve months moving polymerizate production and condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

4. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

E. WW Poly Storage Tanks (S025)

1. Restrictions:

- a. Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]
- b. The inlet coolant temperature to the condensers E-201-1, E-202-1, and E-67-3 shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condensers with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.4; 25 PA Code §129.99]

2. Record Keeping Requirements:

The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

3. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

ip – template.doc 24 Proposed: February 15, 2020

F. LTC Process Operations (S109, S110, S114)

1. Restrictions:

- a. Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]
- b. Cooling tower water chilled vent condensers [E-301B-E3 (S109); E-301-4 (S108); E-607-2 (S110); E-RK5-4 (S111); E-RK6-3 (S112); E-RK7-4 (S113)]: The condensers shall be properly operated and maintained according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06(b)3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.H; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°F (5.6°C) above ambient air temperature over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions and except that at no time will coolant temperature be required to be less than 50°F (10°C).
 - 2) The exit vapor temperature of each condenser shall not exceed 40°C over any one-hour block average when emissions are being routed through them, except as specified in paragraph 3).
 - 3) If measured one-hour block average exit vapor temperatures exceed 40°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the cooling tower is operating properly by reviewing current operating conditions (e.g. that the cooling system is operating and circulating cooling water, and that cooling water is being supplied at less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to less than 50°F (10 °C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to less than 50°F (10 °C)). Exit vapor temperature exceeding 40°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 40°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to be less than 50°F (10°C)), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 40°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall monitor and record the exit vapor temperature of each of the following condensers at least once every 15 minutes when the process is in operation: S108, S109, S110, S111, S112, S113, and S124. [§2102.04.b.6, §2102.04.e., §2103.12.i; 25 PA Code §129.100]

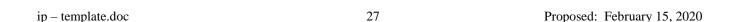
b. The permittee shall continuously monitor when the vacuum pump for each system is in operation. [§2102.04.b.6, §2102.04.e., §2103.12.i; 25 PA Code §129.100]

3. Record Keeping Requirements:

- a. The permittee shall keep and maintain the following data on-site for these operations [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]:
 - 1) All records of monitoring required by V.F.2 above.
 - 2) Records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment.
 - 3) Maximum resin (lb/min) and polymerizate (gal/min) feed rates (daily).
 - 4) Amount (lbs.) and type of resin and polymerizate (monthly, 12-month rolling total)
 - 5) Changes in #4 LTC Vacuum System vacuum pump status (upon occurrence).
 - 6) Any additional data/records not provided by items V.F.2.a.1) and V.F.2.a.2) above that are necessary to accurately assess emissions in accordance with the EIIP methodology.

4. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]


G. <u>Dresinate Production Line (S085)</u>

1. Restrictions:

Continue to comply with all applicable regulatory and Permit requirements. [2102.04.b.5]

2. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

H. Hydrogenation Unit (S004, S007, S012)

1. Restrictions:

- a. The maximum production rate for Hydrogenation Unit process shall not exceed 22 million pounds per 12-month rolling period. [§2102.04.e; 25 PA Code §129.99]
- b. Refrigerated vent condensers: The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - The inlet coolant temperature to each condenser shall not exceed 10°C any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions;
 - 2) The exit vapor temperature of each condenser shall not exceed 35°C over any one-hour block average when emissions are being routed through them, except as specified in condition V.H.1.b.3) below;
 - 3) If measured one-hour block average exit vapor temperatures exceed 35°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Record Keeping Requirements:

The permittee shall keep and maintain production records and records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

3. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate

emergency situations, according to good engineering and air pollution control practices. [§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

I. Wastewater Treatment Plant (F027, F033, F034, F035)

1. Work Practice Standard:

The permittee shall properly maintain and operate all existing process equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices.[§2102.04.e; RACT Order #257, condition 1.7; 25 PA Code §129.99]

VI. ALTERNATIVE OPERATING SCENARIOS

There are no alternative operating scenarios for this permit

ALLEGHENY COUNTY HEALTH DEPARTMENT AIR QUALITY PROGRAM

February 7, 2020

SUBJECT: Reasonably Available Control Technology (RACT II) Determination

Eastman Chemical Resins, Inc.

Jefferson Site

2200 State Highway 837, West Elizabeth, PA 15088-7311

Allegheny County

Installation Permit No. 0058-I026

TO: JoAnn Truchan, P.E.

Section Chief, Engineering

FROM: Helen O. Gurvich

Air Quality Engineer

I. Executive Summary

Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) is defined as a major source of VOC emissions and was subjected to a Reasonable Achievable Control Technology (RACT II) review by the Allegheny County Health Department (ACHD) required for the 1997 and 2008 Ozone National Ambient Air Quality Standard (NAAQS). The findings of the review established that the facility has technically feasible controls options for controlling VOC emissions from the processes, but they are deemed financially infeasible due to their high cost per ton removed.

These findings are based on the following documents:

- RACT analysis performed by ERG (Eastman Chemical RACT Evaluations_9-23-15.docs)
- RACT analysis performed by Eastman Chemical Resins, Inc. (Eastman_RACT2_Report_20200115.pdf)
- Installation Permit No. 0058-I011d dated 5/15/2019
- Installation Permit No. 0058-I018a dated 3/07/2019
- Installation Permit No. 0058-I022a dated 9/20/2019
- Installation Permit No. 0058-I023a dated 12/23/2019
- Installation Permit No. 0058-I016a dated (not issue yet)
- Installation Permit No. 0058-I012a dated 10/30/2008
- Installation Permit No. 0058-I017 dated 7/22/2010
- Consent Order and Agreement No. 257 (RACT I) dated January 14, 1997
- New Installation Permit Application submitted December 13, 2019
- New Installation Permit Application submitted January 24, 2020

II. Regulatory Basis

ACHD requested all major sources of NO_X (potential emissions of 100 tons per year or greater) and all major sources of VOC (potential emissions of 50 tons per year or greater) to reevaluate NO_X and/or VOC RACT for incorporation into Allegheny County's portion of the PA SIP. This document is the result of ACHD's determination of RACT for Eastman based on the materials submitted by the subject source and other relevant information.

III. Facility Description

The Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) produces synthetic hydrocarbon resins from C₅ feedstock, monomers, solvents and catalysts by way of cationic polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products.

The plant is comprised of three polymerization processes (C5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC1, LTC2, and C-5), and an emulsion process, five boilers ranging from 18.6 MM Btu/hr to 38.2 MM Btu/hr, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes.

The facility is a major source of Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAPs) as defined in Article XXI, 2101.20. Detailed descriptions of the relevant emissions units are provided in the following tables.

Table 1 Facility Sources Subject to Case-by-Case RACT II and Their Existing RACT I Limits

Source ID	Description	Rating	VOC PTE (TPY)	VOC Presumptive Limit (RACT II)	VOC Limit (RACT I) – Consent Order No. 257
S216	Raw material tank T-50 – C-5 operations (IP #0058-I011d)	528,765 gal	2.8	Compliance with Article XXI, §2105.12	Compliance with Article XXI, \$2105.12
S055	Pastillating Belts, UHF Filter – C-5 operations (IP #0058-I018a)	22,000 lbs/hr	6.21	25 Pa Code 129.99	Good operating practices
S034	Filtrate system (filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) – MP Poly Unit (IP #0058-I022a)	103,000,000 lbs/yr	10.33	25 Pa Code 129.99	Condensers, good operating practices
S013 & S013a	Feed dryers and regeneration – WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	4.86	25 Pa Code 129.99	Condensers, good operating practices
S020	West Filtrate Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	5.11	25 Pa Code 129.99	Condensers, good operating practices
S023	Solvent Wash Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	7.52	25 Pa Code 129.99	Good operating practices
S027	East Filtrate Receiver - WW Poly Unit (IP #0058-I023a)	80,000,000 lbs/yr	5.11	25 Pa Code 129.99	Good operating practices
S025	Storage Tanks 73/75/76/77- WW Poly Unit (IP #0058-I023a)	75,200 gal each	5.4	25 Pa Code 129.99	Good operating practices
S109	#1 Vacuum System – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	3.80	25 Pa Code 129.99	Good operating practices
S110	#2 Vacuum System – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	8.09	25 Pa Code 129.99	Good operating practices
S114	#1/#2 Pastillator Belt – LTC Process (IP #0058-I016a)	67,240,000 lbs/yr	2.80	25 Pa Code 129.99	Good operating practices
S004	Metering Tanks (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank) – Hydrogenation Unit (based on December 2019 testing by Eastman)	22,500,000 lbs/yr	13	Throughput restriction of 22.5 MM lbs/yr, 25 Pa Code 129.99	Condensers, good operating practices
S012	Storage tanks 102, 105, 106 - Hydrogenation Unit (based on December 2019 testing by Eastman)	2 - 6,000 gal each; 1 – 10,000 gal	6.3	Throughput restriction of 22.5 MM lbs/yr, 25 Pa Code 129.99	Condensers, good operating practices

Source	Description	Rating	VOC PTE	VOC	VOC Limit
ID			(TPY)	Presumptive	(RACT I) –
				Limit (RACT II)	Consent Order
					No. 257
S007	Vent tanks, Autoclaves #1 and #2 -	Autoclaves -	15	Throughput	Condensers,
	Hydrogenation Unit (based on	1,000 gal each		restriction of 22.5	good operating
	December 2019 testing by Eastman)			MM lbs/yr, 25 Pa	practices
				Code 129.99	
F033,	Tanks 702A, 702B, 702C –	50,000 gal each	8.84	25 Pa Code 129.99	Good operating
F034,	Wastewater Treatment Plant (new IP				practices
F035	application)				
F027	Bio Aeration Tank - Wastewater	157,000 gal	15.25	25 Pa Code 129.99	Good operating
	Treatment Plant (new IP application)				practices
S085	Double Drum Dryer – Dresinate	500 lbs/hr	5.48	25 Pa Code 129.99	Good operating
	Production Line (IP #0058-I012a)				practices
	Fugitive Emissions from Equipment	NA	64.10	25 Pa Code 129.99	LDAR program
	Leaks (valves, pumps, pipe connectors,				
	etc.)				

Table 2 Facility Sources Subject to Presumptive RACT II per PA Code 129.97

Description	Rating	Stack ID	VOC PTE	Basis for	Presumptive RACT Requirement		
•			(TPY)	Presumptive	•		
C-5 Operations (Installation Permit #0058-I011d)							
Resin Kettles #9 and	140 MM	S053, S054	1.81	< 2.7 TPY	Install, maintain and operate the		
#10	lbs/yr			VOC	source in accordance with the		
					manufacturer's specifications and with		
					good operating practices		
Resin Storage Tanks	19,432 -	S064,	1.774	< 2.7 TPY	Install, maintain and operate the		
(121, 123, 124, 366,	108,291	S066,		VOC	source in accordance with the		
367, 601 & 602)	gal	S097, S267			manufacturer's specifications and with		
D : G . T 1 504	60.014.0	- S270	2.00	0.7 FDV	good operating practices		
Resin Storage Tank 504	60,914 &	S059, S238	2.00	< 2.7 TPY	Install, maintain and operate the		
and 161	158,630			VOC	source in accordance with the		
	gal				manufacturer's specifications and with		
Raw material tank T-54	1 460 451	5000	1.66	< 2.7 TPY	good operating practices		
Raw material tank 1-34	1,469,451	S060	1.00	< 2.7 TP Y VOC	Install, maintain and operate the source in accordance with the		
	gal			VOC	manufacturer's specifications and with		
					good operating practices		
Raw material tank T-55	579,586	S061	1.16	< 2.7 TPY	Install, maintain and operate the		
Kaw material tank 1-33	gal	5001	1.10	VOC	source in accordance with the		
	Sai			100	manufacturer's specifications and with		
					good operating practices		
	C	5 Operations	(Installation F	Permit #0058-I0			
Pastillating Belts	22,000	S055	1.09	< 2.7 TPY	Install, maintain and operate the		
(Fugitive)	lbs/hr			VOC	source in accordance with the		
					manufacturer's specifications and with		
					good operating practices		
	C-5 Operations (Installation Permit #0058-I017)						
Storage tank 52	525,000	S218	2.37	< 2.7 TPY	Install, maintain and operate the		
	gal			VOC	source in accordance with the		
					manufacturer's specifications and with		
	MP Polymerization Unit (Installation Permit #0058-I022a)						
_					,		
Reactor	103 MM	S029	1.65	< 2.7 TPY	Install, maintain and operate the		
	lbs/yr			VOC	source in accordance with the		

Description	Rating	Stack ID	VOC PTE	Basis for	Presumptive RACT Requirement		
			(TPY)	Presumptive			
					manufacturer's specifications and with		
WW Polymerization Unit (Installation Permit #0058-I023a)							
North and South	80 MM	S017	1.78	< 2.7 TPY	Install, maintain and operate the		
Reactors	lbs/yr	3017	1.76	VOC	source in accordance with the		
Reactors	105/ y1			VOC	manufacturer's specifications and		
					with good operating practices		
Storage tanks 68/69/74	75,200	S024	1.4	< 2.7 TPY	Install, maintain and operate the		
Storage talks 00/05/11	gal each	5021	1.1	VOC	source in accordance with the		
	garcaen			, 50	manufacturer's specifications and		
					with good operating practices		
	v	VW Polymeri:	zation Unit (n	ew IP application			
Storage Tank 35	169,000	S075	1.0	< 2.7 TPY	Install, maintain and operate the		
	gal	20.0		VOC	source in accordance with the		
	8				manufacturer's specifications and		
					with good operating practices		
	LTC Pi	cocess Operat	ions (Installat	ion Permit #005			
#4 Vacuum System	67.24	S124	1.46	< 2.7 TPY	Install, maintain and operate the		
	MM lb/yr			VOC	source in accordance with the		
					manufacturer's specifications and		
					with good operating practices		
			it (based on D	ecember 2019 t			
Storage tanks 100 and	6,000 gal	S001	1.2	< 2.7 TPY	Install, maintain and operate the		
101	each			VOC	source in accordance with the		
					manufacturer's specifications and		
					with good operating practices		
			ant (new IP a				
Neutralizer and reactor	21 acfm	S155	2.2	< 2.7 TPY	Install, maintain and operate the		
				VOC	source in accordance with the		
					manufacturer's specifications and		
					with good operating practices		
E 1 DV/2				ack testing in 2			
Tank RK2	1,000 gal	NA	1.21	< 2.7 TPY	Install, maintain and operate the		
				VOC	source in accordance with the		
					manufacturer's specifications and		
			with good operating practices				
Other Storage Tank (new IP application)							
Storage Tank 78	169,000	S232	1.0	< 2.7 TPY	Install, maintain and operate the		
	gal			VOC	source in accordance with the		
					manufacturer's specifications and		
					with good operating practices		

Table 3 Facility Sources Exempt from RACT II per PA Code 129.96(c) {< 1 TPY NOx; < 1 TPY VOC}

Description	Rating	Stack ID	VOC PTE (TPY)					
C-5 Operations (Installation Permit #0058-I011d)								
Thermal Oxidizer or Carbon Beds for 500 battery tanks,	140 MM lbs/yr	S044	0.26					
if TO downtime		S044A						
Hot Oil Furnace	10.33 MMBtu/hr	S056	0.29					
Resin Kettle #8	140 MM lbs/yr	S052	0.38					
Sparkler Filter with condenser	140 MM lbs/yr	S312	0.05					
Sparkler Precoat	140 MM lbs/yr	NA	0.01					
Resin Product Loading	140 MM lbs/yr	NA	0.94					
Raw material tank T-500	112,251 gal	S058	0.19					
Raw material tank T-511	15,228 gal	S274	0.1					

Description	Rating	Stack ID	VOC PTE (TPY)					
•	(Installation Permit #005		VOCTIE (III)					
Storage tank T-301	75,202 gal	NA	0.46					
Storage tank T-302	75,202 gal	NA	0.46					
Storage tank T-303	75,202 gal	NA	0.46					
Preblend Tank	103 MM lbs/yr	S035	0.99					
Dryers regeneration, Precoat tank, Mole sieve drain tank	103 MM lbs/yr	S033	0.51					
WW Polymerization Unit (Installation Permit #0058-I023a)								
East Preblend tank	80 MM lbs/yr	S014	0.57					
North Preblend tank	80 MM lbs/yr	S015	0.57					
Slurry tank	80 MM lbs/yr	S016	0.02					
North Neutralizer	80 MM lbs/yr	S018	0.31					
Funda Filter Steam Out/Flushing	80 MM lbs/yr	S019	0.01					
Funda Filter Condensate Tank	80 MM lbs/yr	S019a	0.00					
South Neutralizer	80 MM lbs/yr	S021	0.31					
Reclaim Pot	80 MM lbs/yr	S022	0.13					
Storage Tank 10	110,159 gal	S195	0.29					
Storage Tank 22	15,863 gal	S206	0.03					
Storage Tank 24	15,863 gal	S208						
Storage Tank 23	15,863 gal	S207	0.03					
Storage Tank 25	15,863 gal	S209						
Storage Tank 27	16,257 gal	S211	0.04					
Storage Tank 26	16,257 gal	S210						
Storage Tank 28	16,257 gal	S212	0.42					
Storage Tank 29	16,257 gal	S213						
Storage Tank 34	169,000 gal	S074	0.27					
Storage Tank 71	75,200 gal	S230	0.29					
Storage Tank 72	75,200 gal	S231	0.42					
Storage Tank 200	25,381 gal	S239	01.12					
Storage Tank 201	25,381 gal	S240	0.18					
Storage Tank 202	25,381 gal	S241						
Storage Tank 204	41,878 gal							
Storage Tank 205	25,381 gal	S300	0.04					
Storage Tank 206	25,381 gal							
Storage Tank 207	25,381 gal							
Storage Tank 66	75,200 gal	S228	0.3					
Storage Tank 67	75,200 gal	S026	0.9					
<u> </u>	(Installation Permit #005		•					
Reclaim Solution Tank	67.24 MM lbs/yr	S108	0.58					
Resin Kettle #5	67.24 MM lbs/yr	S111	0.32					
Resin Kettle #6	67.24 MM lbs/yr	S112	0.24					
Resin Kettle #7	67.24 MM lbs/yr	S113	0.68					
Berndorf Belt	67.24 MM lbs/yr	S165	0.53					
#1/#2 oil/water separator	67.24 MM lbs/yr	S110A	0.01					
#4 oil/water separator	67.24 MM lbs/yr	S125	0.01					
Drumming operation	67.24 MM lbs/yr	NA	0.18					
Truck loading	67.24 MM lbs/yr	NA	0.37					
LTC #2 Heater	8.8 MM Btu/hr	S107	0.25					
LTC #4 Heater	10 MM Btu/hr	S119	0.28					
Wastewater Treatment Plant (new IP application)								
Tanks 701A and 701B, Back Porch Sumps	Tanks – 50,000 gal ea.; sumps – 17,500 gal total	S147	0.48					
Bio Clarifier	55,000 gal	F028	0.11					
Sludge Batch Tank	5,200 gal	F036	0.00					
Sludge Solids Handling	6,000 gal	F037	0.00					
, , , , , , , , , , , , , , , , , , ,								

Description	Rating	Stack ID	VOC PTE (TPY)					
Dresinate Production Line (Installation Permit #0058-I012a)								
Tank R-1-A	67,631 gal	S187	0.01					
Tank 782	10,000 gal	S290	0.01					
Emulsion Process (based on stack testing in 2007)								
Tank RK1	1,000 gal	-	0.67					
Blend tanks 1, 2, 3, and 4	1,2-6,000 gal each;	S162	0.28					
	3,4 - 5,000 gal each							
Other Storage Tanks (Eastma		aterial stored)						
Tank 4	88,122 gal	NA	<1					
Tank 80	11,982 gal	NA	<1					
Tank 151	1,503,943 gal	NA	<1					
Tank 208	25,379 gal	NA	<1					
Tank 252	30,455 gal	NA	<1					
Tank 261	20,000 gal	NA	<1					
Tank 262	20,079 gal	NA	<1					
Tank 263	20,726 gal	NA	<1					
Tank 264	20,000 gal	NA	<1					
Tank 265	21,134 gal	NA	<1					
Tank 365	20,000 gal	NA	<1					
Tank 511	16,356 gal	NA	<1					
Tank 761	10,000 gal	NA	<1					
Tank 764	17,500 gal	NA	<1					
Tank 766	3,800 gal	NA	<1					
Tank 775	8,768 gal	NA	<1					
Tank 783	11,400 gal	NA	<1					
Combustion Sources								
Unilux Boiler 1 (IP #0058-I020)	18.6 MM Btu/hr	S141	0.44					
Unilux Boiler 2 (IP #0058-I020)	18.6 MM Btu/hr	S141	0.44					
Unilux Boiler 3 (IP #0058-I020)	18.6 MM Btu/hr	S143	0.44					
Unilux Boiler 4 (IP #0058-I020)	18.6 MM Btu/hr	S142	0.44					
Boiler house emergency generator (IP #0058-I020)	250 kW	F100	0.01					
Trane Boiler	38 MM Btu/hr	S144	0.92					

IV. RACT Determination

Two detailed RACT Reviews were performed to evaluate the Eastman facility; one was performed by Eastman, and one by Allegheny County Health Department (ACHD). Both submissions were considered in the final RACT disposition for the Facility and findings from each were incorporated into the ACHD RACT II Determination.

It has been determined that it is not technically feasible to capture and control the following sources that are subject to case-by-case analysis:

- Raw material tank T-50 (C-5 operations): this tank is internal floating roof tank. There is no reasonable method to capture emissions from floating roof tank.
- Tanks 702A, 702B, 702C (Wastewater Treatment Plant): all of these tanks are open-top tanks used for pretreatment prior to the biological treatment operations. There is no reasonable method to capture emissions from these open-top tanks.
- Bio Aeration Tank (Wastewater Treatment Plant): this biological treatment tank is open to the atmosphere. There is no reasonable method to capture the emissions from this operation.

The Technically Feasible Control Options for sources where is it was determined that an economic analysis is required for Eastman are detailed in Table 4. All control cost analyses were conducted pursuant to procedures provided in US EPA's Office of Air Quality Planning and Standards (OAQPS) Control Cost Manual, 7th Edition.

Table 4 – Technically Feasible VOC Control Cost Comparisons

Control Option		S109 LTC	S110 LTC	S114 LTC	S013 & S013a WW Poly	S020 WW Poly	S023 WW Poly	S027 WW Poly
Thermal	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation	Cost	\$143,908	\$148,047	\$311,632	\$156,264	\$183,607	\$175,518	\$175,934
(98%)	\$/ton	40,137	19,443	118,251	34,162	38,176	24,798	36,653
Catalytic	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation (98%)	Cost	\$134,852	\$135,637	\$254,524	\$138,270	\$154,741	\$148,790	\$149,202
(90 70)	\$/ton	37,705	17,814	96,581	30,228	32,174	21,022	31,084
Carbon Adsorption	tpy VOC Removed	3.5	7.4	2.4	4.4	4.7	6.9	4.7
(fixed bed)	Cost	\$181,762	\$179,679	\$180,804	\$154,297	\$156,903	\$156,790	\$155,442
(90-95%)	\$/ton	52,426	24,343	74,706	34,797	33,654	22,852	33,073
Rotary Concentrator/	tpy VOC Removed	3.6	7.6	2.6	4.6	4.8	7.1	4.8
Oxidation	Cost	\$184,606	\$184,634	\$219,307	\$184,832	\$187,503	\$186,464	\$186,464
(98%)	\$/ton	51,616	24,249	83,218	40,408	38,986	26,345	38,847
Refrigerated	tpy VOC Removed	3.5	7.4	2.6	4.4	4.7	6.9	4.7
Condenser	Cost	\$136,399	\$138,457	\$1,296,659	\$149,704	\$219,179	\$189,142	\$192,802
(95%)	\$/ton	39,342	18,758	507,565	33,761	47,011	27,567	41,022

Table 4 – Technically Feasible VOC Control Cost Comparisons (continue)

Control		S025	S055	S034	S004	S007	S012	S085
Option		WW Poly	C-5	MP Poly	Hydro	Hydro	Hydro	Dresinate
Thermal	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$154,798	\$526,415	\$177,803	\$165,140	\$174,148	\$146,413	\$345,875
(98%)	\$/ton	30,178	90,761	18,288	13,536	12,335	24,692	66,816
Catalytic	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$137,691	\$412,727	\$150,236	\$142,844	\$147,584	\$135,286	\$280,531
(98%)	\$/ton	26,843	71,160	15,452	11,708	10,454	22,816	54,193
Carbon Adsorption	tpy VOC Removed	5.0	5.4	8.9	10.3	13.0	5.4	4.8
(fixed bed)	Cost	\$156,423	\$207,403	\$158,992	\$161,638	\$161,521	\$180,771	\$186,358
(90-95%)	\$/ton	31,458	38,408	17,807	15,693	12,458	33,197	39,200
Rotary Concentrator/	tpy VOC Removed	5.1	5.8	9.7	12.2	14.1	5.9	5.2
Oxidation	Cost	\$184,776	\$285,728	\$186,833	\$185,480	\$186,486	\$184,620	\$229,409
(98%)	\$/ton	36,022	49,263	19,216	15,203	13,209	31,136	44,317
Refrigerated	tpy VOC Removed	5.0	5.7	9.4	11.5	13.7	5.7	5.0
Condenser	Cost	\$146,875	\$2,920,397	\$193,751	\$160,986	\$182,016	\$137,554	\$1,504,896
(95%)	\$/ton	29,538	512,350	20,557	13,999	13,300	23,931	299,894

ACHD has determined that thermal oxidation, catalytic oxidation, carbon adsorption (fixed bed), rotary concentrator/oxidation, and refrigerated condenser are technically feasible control options for controlling VOC

emissions from the processes of the Eastman facility, but they are deemed financially infeasible due to their high cost per ton removed.

ACHD has determined that that it was unnecessary to conduct RACT evaluations on the equipment leak emissions for processes WW Poly, MP Poly, or the LTC process lines. The source is subject to the MON. Under the MON, the source is required to have a Leak Detection and Repair (LDAR) program. These requirements are relatively stringent, and ACHD does not believe more stringent requirements would be considered cost-effective. The LDAR requirements of the MON are considered RACT for the emissions from equipment leaks.

V. RACT Summary

Based on the findings in this RACT analysis, the Eastman facility has few technically feasible controls options for controlling VOC emissions from the processes, but they are deemed financially infeasible due to their high cost per ton removed.

The potential VOC emissions from the Hydro operations are based on the results of the stack test conducted in December 2019 and a throughput restriction of 22,500,000 lbs/year. Eastman proposes that RACT II for Hydro is a throughput limit of 22,500,000 lbs/year. The upcoming Installation Permit application for this process will be based on that limit.

The new RACT II conditions will not result in any additional reductions in VOC from the Eastman. The conditions of Plan Approval Order and Agreement #257 (RACT I), issued January 14, 1997, have been superseded by the case-by-case and presumptive RACT II conditions in this proposed permit. The RACT II conditions are at least as stringent as those from RACT I.

VI. RACT II Permit Conditions

Source ID	Description	Permit Condition 0058-I026	RACT II Regulations
Storage Tanks	C-5 Operations (Installation Permit #0058-I011d)	Condition V.A.2.a Condition V.A.2.b	25 PA Code §129.99 25 PA Code §129.99
S055	C-5 Operations (Installation Permit #0058-I018a)	Condition V.B.2	25 PA Code §129.99
S034	MP Poly Unit (Installation Permit #0058-I022a)	Condition V.C.1.b Condition V.C.1.c Condition V.C.2 Condition V.C.3 Condition V.C.4	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
S013, S013a, S020, S023, S027	WW Poly Unit (Installation Permit #0058-I023a)	Condition V.D.1.b Condition V.D.2 Condition V.D.3 Condition V.D.4	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
S025	WW Poly Storage Tanks (Installation Permit #0058-I023a)	Condition V.E.1.b Condition V.E.2 Condition V.E.3	25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99

Source ID	Description	Permit Condition 0058-I026	RACT II Regulations
S109, S110, S114	LTC Process Operations (Installation Permit #0058-I016a)	Condition V.F.1.b Condition V.F.2.a Condition V.F.2.b Condition V.F.3.a Condition V.F.4	25 PA Code \$129.99 25 PA Code \$129.100 25 PA Code \$129.100 25 PA Code \$129.100 25 PA Code \$129.99
S085	Dresinate Production Line (Installation Permit #0058-I012a)	Condition V.G.2	25 PA Code §129.99
S004, S007, S012	Hydrogenation Unit	Condition V.H.1.a Condition V.H.1.b Condition V.H.2 Condition V.H.3	25 PA Code §129.99 25 PA Code §129.99 25 PA Code §129.100 25 PA Code §129.99
F027, F033, F034, F035	Wastewater Treatment Plant	Condition V.I.1	25 PA Code §129.99

Allegheny County Health Department Office of Air Quality

Technical Support Document (TSD) REASONABLY AVAILABLE CONTROL TECHNOLOGY (RACT) DETERMINATION

Source Information

Source Name: Eastman Chemical Resins, Inc.

Source Location: 220 State Route 837, West Elizabeth, PA 15088

Mailing Address: P.O. Box 545, West Elizabeth, PA 15088

County: Allegheny County

SIC Code: 2821 (Plastics Materials, Synthetic Resins)

NAICS Code: 325211 (Plastics Material and Resin Manufacturing)

Part 70 Permit No.: 0058

Major Source: VOC

Permit Reviewer: ERG/ST

The Allegheny County Health Department (ACHD) has performed the following Reasonably Available Control Technology (RACT) analyses for a major source of VOC relating to a plastics material and synthetic resin manufacturing facility, located in West Elizabeth, Pennsylvania.

Background

Allegheny County was designated marginal nonattainment for the 2008 8-hour ozone on April 30, 2012 (published in 77 FR 30160, May 21, 2012). In order to implement the 2008 NAAQS for ozone, EPA issued a proposed rulemaking in June 2013 to provide steps and standards for states to develop and submit certain materials, dependent on each state's attainment status. Although Allegheny County is designated marginal nonattainment, Pennsylvania is also a part of the Ozone Transport Region (OTR), which must meet more stringent requirements, including submitting a RACT SIP for EPA approval. As such, Allegheny County must reevaluate the NOx and VOC RACT in the existing RACT SIP for the eight-hour ozone NAAQS.

ACHD requested all major sources of NOx (potential emissions of 100 tons per year or greater) and all major sources of VOC (potential emissions of 50 tons per year or greater) to reevaluate NOx and/or VOC RACT for incorporation into Allegheny County's portion of the PA State Implementation Plan (SIP). This document is the result of ACHD's review of the RACT re-evaluations submitted by the subject source and supplemented with additional information as needed by ACHD.

RACT Summary

VOC RACT evaluations were conducted for several equipment and operations at Eastman Chemical Resins, Inc. The RACT determinations are summarized below.

Unit Description	RACT	VOC PTE Before RACT (tpy)	VOC PTE After RACT (tpy)
Liquid Thermal Contact Unit:	Continue operating as permitted, and as required by the Consent Decree.	10.2	10.2

Eastman Chemical Resins, Inc.

RACT: Page 2 of 23

West Elizabeth, PA

#0058

Reviewer: ERG/ST

Resin Kettles #5, #6, and #7			
C-5 Polymerization Unit: Pastillating Belts #1 and #2	Continue operating as permitted, and as required by the Consent Decree.	4.5	4.5
Hydrogenation Unit: Vent Tank	Continue operating as permitted, and as required by the Consent Decree.	7.45	7.45
Dresinate TX Production Line: Double Drum	ine: Continue operating as permitted, and as		5.48
Total:		27.6	27.6
Emission Reduction		0	
Emission Reduction		0	

There are no provisions of the Proposed Pennsylvania Presumptive RACT that address VOC emissions from resin manufacturers.

Detailed documentation of the RACT evaluation follows.

RACT Evaluations

RACT is "the lowest emission limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility." (44 FR 53761, 9/17/1979)

ACHD provided the following guidance to the major sources of NOx and VOC in Allegheny County for performing the RACT analyses:

- 1. The analysis shall address all reasonably possible controls of VOCs and NOx including changes in operation and work practices.
- All control technology that is found to be technically infeasible must be accompanied by detailed and documented reason(s) as to why the technology is not feasible. General statements about the non-applicability of control technology to your industry will not be sufficient.
- 3. All changes in operation and work practices that are found not to be feasible require the same documentation as the controls in step #2 above.
- 4. All feasible control technology, changes in operation, work practices, etc. that are found to be cost prohibitive require a cost analysis demonstrating the cost per ton of pollutant controlled.
- The analysis shall be done according to the procedures in EPA's OAQPS Cost Manual, EPA's cost spreadsheets are recommended where applicable. The manual and spreadsheets may be found on the CATC/RBLC web page on EPA's Technology Transfer Network (TTN) at http://www.epa.gov/ttn/catc/.
- 6. All data used in cost estimates, such as exhaust flow rates or the amount of ductwork used need proper documentation. If vendor quotes are used in the analysis for equipment

costs, they are required to be supplied. Old analyses increased for inflation will not be acceptable. VATAVUK Air Pollution Control Cost Indexes shall be used with the aforementioned cost spreadsheets.

RACT: Page 3 of 23

Each RACT analysis section is organized by the following 4 steps, which incorporate the guidance elements provided by Allegheny:

- Step 1 Identify Control Options (guidance element 1)
- Step 2 Eliminate Technically Infeasible Control Options (guidance elements 2 and 3)
- Step 3 Evaluate Control Options, including costs and emission reductions (guidance elements 4, 5, and 6)
- Step 4 Select RACT (guidance element 1)

Source/Process Description

The Eastman Chemical Resins, Inc., West Elizabeth facility produces synthetic hydrocarbon resins from C5 feedstock, C9 feedstock, monomers, solvents and catalysts by way of cationic or thermal polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products. The plant is comprised of three polymerization processes (C-5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC 1, LTC 2, LTC 4, and C-5), and an emulsion process, boilers providing process heat, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes. The facility is a major source of Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAPs) as defined in Article XXI, 2101.20. Detailed descriptions of the relevant emissions units are provided in the following sections.

Table 1 shows the emission units that were identified as emitting VOC from this source. This table was developed using the list of emission units included in the 2011 Consent Decree and adding any equipment listed in installation permits that were not addressed in the 2011 Consent Decree. Also, equipment or processes listed in the 2013 actual emissions report submitted by the source that did not appear in the Consent Decree or in past permits were added to the list. Given different naming conventions and especially the generic naming conventions used in the 2013 actual emissions report, it is possible that using these three sources of information has led to redundant entries in Table 1. All efforts were made to avoid redundant entries; however, the titles/descriptions of the equipment did not always have enough detail to determine whether units were the same equipment. Appendix A provides a document that shows the equipment listed in Table 1 and how it was matched with the 2013 actual emissions report.

Those equipment shown in Table 1 that are noted as coming from the "Consent Decree Tanks List" are those tanks listed in Appendix F of the Consent Decree, but are not listed elsewhere in the Consent Decree. Therefore, these tanks are identified as being located at the Eastman facility, but they were not tested as part of the Consent Decree, nor were there any additional information available about the tanks other than what was listed in Appendix F of the Consent Decree.

Table 1: Listing of Emission Units That Emit VOC

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source			
	Process Unit: Water White Polymerization Unit (WW Poly)							
Feed Dryer	Condensers E-200-6 & E-200-7		2.3	S013	2011 Consent Decree			
West Pre-Blend Tank	Condenser E-301-4		0.13	S014	2011 Consent Decree			
North Pre-Blend Tank	Condenser E-300-4		0.13	S015	2011 Consent Decree			

RACT: Page 4 of 23

#0058

RACT: Page 5 of 23 Reviewer: ERG/ST

#0058

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source
Resin Kettle 5	Condenser E-RK5-4		3.5 ^g	S111	2011 Consent Decree
Resin Kettle 6	Condenser E-RK6-5		3.46 ^g	S112	2011 Consent Decree
Resin Kettle 7	Condenser E-RK7-4		3.24 ^g	S113	2011 Consent Decree
Drumming Operations			0.234 ^h		IP0058-I016
Equipment Leaks (Process Unit Fugitives)			12.605 ^h		IP0058-I016
#1 LTC Process heater (Natural Gas)		3 MMBtu/hr		S106	
#2 LTC Process heater (Natural Gas)		6.6 MMBtu/hr	0.465 ^h	S107	IP0058-I016
#4 LTC Process heater (Natural Gas)		10 MMBtu/hr		S119	
#3 LTC Unit/Flaker 4 Fume Scrubber			1.9100°		2013 Emissions Report
		Process Unit: C-	5 Polymerizatio	n	
C-5 Pastillating Belt #1	UHF Filter S-751-1 and Fume Filter		4.5	S055	2011 Consent Decree
C-5 Pastillating Belt #2	Demister		4.5	3033	2011 Consent Decree
C-5 Pastillating Belt Fugitives	Fugitives venting to outdoors		0.22	Roof vents	2011 Consent Decree
Tank 504	None		0.24	S059	2011 Consent Decree
Resin Kettle 8	None		0.2	S052	2011 Consent Decree
Tank 500	Thermal Oxidizer B- 411-1 or Carbon Beds A3631-1A and 2B Thermal Oxidizer B-				
501/502/503/505/50 6	411-1 or Carbon Beds A3631-1A and 2B				
CaCl2 Dryer]		
R-302-1 Reactor					
T-401-1 #1 Neutralizer					
S-405-1A South Funda Filter					
T-40-1 Filtrate Receiver			0.000	0044	ID0050 1044-
T-412-1 Wash Solvent Receiver			0.009 ⁱ	S044	IP0058-I011a
T-502-4	Thermal Oxidizer B-				
Depentanizer Overheads Receiver	411-1, fired with				
S-404-11 Pre-coat	natural gas		-		
Knockout Tank					
T-800-1 Reclaim Tank					
T-506-1 Inhibitor make-up tank					
R-303-1 Soaker	1		1		
T-402-1 #2	1		1		
Neutralizer					
S-405-1B North Funda Filter					

RACT: Page 6 of 23 #0058 Reviewer: ERG/ST

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source		
T-406-2 Filter Condensate							
Decanter							
T-412-1 Wash	-						
Solvent	<u> </u>						
T-404-1 Filter Pre- coat Tank							
T-403-1 Solvent Flush Tank							
T-506-3 Inhibitor Tank							
T-402A-1#2 Neutralizer							
Tank 52 (piperylene)	Internal Floating Roof	525,000		S218	IP0058-I017		
T-54	Floating Roof	125,000	3.6995 ^{c,j}		Consent Decree Tank List		
T-55	Floating Roof	500,000			Consent Decree Tank List		
C5 Hot Oil Heater (natural gas)		10.33 MMBtu/hr	0.24 ^k				
C-5 Finishing Area/Past Solid Handling			7.3309°		2013 Emissions Report		
C-5 Finishing Area/Sparkler Filters			0.0225°		2013 Emissions Report		
C-5 Finishing Area/Sparkler Precoat Tank			0.0121°		2013 Emissions Report		
C-5 Finishing Area/Resin Kettle 9/10			0.6803°		2013 Emissions Report		
		Process Unit:	Hydrogenation				
Metering Tank	Condensers E-200- 6, E-201-2 (aka E- 201-1)			0004	2011 Consent Decree		
Tank 103 (formerly Tank. 502)	Condensers E-200- 6, E-201-2 (aka E- 201-1)		0.02	S004	2011 Consent Decree		
Tank 104 (formerly Tank 501)	Condensers E-501- 4, E-200-6, E-201-2 (aka E-201-1)		0.015	S004	2011 Consent Decree		
Autoclave #1	Condensers E-401- 2, E-403-2	1000 gal.	0.15	S007	2011 Consent Decree		
Autoclave #2	Condensers E-402- 2, E-403-2	1000 gal.	0.09	S007	2011 Consent Decree		
Vent Tank	Condensers E-303-2 (aka E-303-3), E- 401-2, E-402-2, E- 403-2		7.45	S007	2011 Consent Decree		
Tanks 100/101	Condenser E-101-4	6,000 gal. (ea)	0.52	S001	2011 Consent Decree		
Tanks 102/105/106	Condensers E-104- 1, E-104-2	6,000 gal (102 & 105) 10,000 gal (106)	1.86	S012	2011 Consent Decree		
Hydrogenation Hot Oil Heater (Natural Gas)		20 MMBtu/hr	0.47 ^k				
Process Unit: Waste Water Treatment Plant							

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source
Tanks 701 A/B	Condenser E-701-3 & Carbon Beds A- 701-5A and 5B		0.68	S147	2011 Consent Decree
Raw/Final/Acid Sump/Flotation	Condenser E-713-2 & Carbon Beds A- 701-5A and 5B		0.00	3147	2011 Consent Decree
Biotreatment Tank			5.3210°		2013 Emissions Report
T-702A,702B 702C			2.1858°		2013 Emissions Report
Sludge Batch Tank			0.2810°		2013 Emissions Report
Solids Handling Tank			0.2810°		2013 Emissions Report
Lime Flash Mix Tank			0.3460°		2013 Emissions Report
Bio Clarifier			0.2880°		2013 Emissions Report
Storage Tanks/C5 WWTP Storage Tanks			0.9062°		2013 Emissions Report
Sumps/Assorted Plant Sumps			4.9221°		2013 Emissions Report
		Process Un	it: Pilot Plant		
Pilot Plant Reactor	Condenser E-113-6 and carbon bed achieving 95% control of VOC			S155	2011 Consent Decree
Pilot Plant Neutralizer and Funda Filter	Condenser E-150-7 and carbon bed achieving 95% control of VOC			S156	2011 Consent Decree
Pilot Plant/Building Exhaust			0.0004°		2013 Emissions Report
	<u> </u>	Process Unit:	Storage Tanks		
Tank 34	Emergency wa	aste and storm wa	ater tank	S074	2011 Consent Decree
Tank 35		169,000 gal	0.7	S075	2011 Consent Decree
Tank 78		169,000 gal	0.16	S232	2011 Consent Decree
Tank 161		163,000	0.32	S238	2011 Consent Decree
Tanks 160/162	C	out of service		N/A	2011 Consent Decree
By-Product Fuel Tank No.4	Condenser and	84,150 gal			
By-Product Fuel Tank No. 21	Condenser and Carbon Adsorption Unit	22,500 gal	0.03 ¹	S190	IP 0058-1009
By-Product Fuel Tank No. 253	5	20,000 gal			
Storage Tanks/Controlled Tanks			0.6714°		2013 Emissions Report
Storage Tanks/Styrene Storage Tanks			0.1967°		2013 Emissions Report
Storage Tanks/AMS Storage Tanks			0.0904°		2013 Emissions Report
Storage Tanks/Toluene Storage Tanks			0.1211°		2013 Emissions Report
Storage Tanks/Fuel Oil Storage Tanks			0.0749°		2013 Emissions Report
Storage Tanks/RHS Storage Tanks			0.9437°		2013 Emissions Report
Storage Tanks/HVD Poly Storage Tanks			0.5645°		2013 Emissions Report

RACT: Page 7 of 23 #0058 Reviewer: ERG/ST

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source	
Storage Tanks/RHS Poly Storage Tanks			0.5136°		2013 Emissions Report	
Storage Tanks/SHP Storage Tanks			0.3110°		2013 Emissions Report	
Storage Tanks/JRAF Storage Tanks			1.9325°		2013 Emissions Report	
Storage Tanks/A- 100 Storage Tanks			0.1610°		2013 Emissions Report	
Sunpar Oil			0.1608°		2013 Emissions Report	
PMS Tanks			0.0176°		2013 Emissions Report	
VT Storage			0.0150°		2013 Emissions Report	
Emulsion Waste Storage			0.1984°		2013 Emissions Report	
CTO Storage			0.0063°		2013 Emissions Report	
T-4-3-A (Heated)		25,000	3.5555		Consent Decree Tank List	
T-4-3-B (Heated)		25,000			Consent Decree Tank List	
T-9		110,000	+		Consent Decree Tank List	
T-10		110,000	+		Consent Decree Tank List	
T-16		107,000			Consent Decree Tank List	
T-22		15,500			Consent Decree Tank List	
T-23					Consent Decree Tank List	
T-24		15,500				
T-25		15,500			Consent Decree Tank List	
T-26		15,500			Consent Decree Tank List	
		15,000			Consent Decree Tank List	
T-27		15,000			Consent Decree Tank List	
T-28		15,000			Consent Decree Tank List	
T-29		15,000			Consent Decree Tank List	
T-50	Floating Roof	52,500			Consent Decree Tank List	
T-53		525,000			Consent Decree Tank List	
T-66		75,000			Consent Decree Tank List	
T-71		75,000			Consent Decree Tank List	
T-72		75,000			Consent Decree Tank List	
T-82 (Heated)		25,000			Consent Decree Tank List	
T-121		20,000			Consent Decree Tank List	
T-123		20,000			Consent Decree Tank List	
T-124		20,000			Consent Decree Tank List	
T-200		25,000			Consent Decree Tank List	
T-201		25,000			Consent Decree Tank List	
T-202		25,000			Consent Decree Tank List	
T-208		25,000			Consent Decree Tank List	
T-252		30,000			Consent Decree Tank List	
T-301		75,000			Consent Decree Tank List	
T-302		75,000	1		Consent Decree Tank List	
T-303		75,000	+		Consent Decree Tank List	
T-365 (Heated)		20,000	+		Consent Decree Tank List	
T-366 (Heated)		25,000	+		Consent Decree Tank List	
T-367 (Heated)		20,000			Consent Decree Tank List	
T-511		15,000	+		Consent Decree Tank List	
T-601 (Heated)		750,000			Consent Decree Tank List	
T-602 (Heated)		750,000	+		Consent Decree Tank List	
Process Unit: DTX- Dresinate TX Production Line						
Tank R-1-A Crude Tall Oil Storage Tank	Fioces	S OHIL. DIA- DIE	Insignificant ^m	S187		

RACT: Page 8 of 23 #0058 Eastman Chemical Resins, Inc. West Elizabeth, PA

Reviewer: ERG/ST

Equipment Description	Control and/or Process Device(s)	Capacity	VOC Emissions ^a (tpy)	Stack I.D.	Primary Information Source
Tank 782 Tall Oil Rosin Storage Tank			Insignificant ^m	S290	IP0058-I012a
Double Drum Dryer			5.48 ^m	S085	
		Support	Services		
B-U1 (Unilux water- tube boiler, Model ZF 1800HS)	Ultra-low NOx Burner - fired with natural gas	18.6 MMBtu/hr	0.44 ⁿ	S141	IP0058-I020
B-U2 (Unilux water- tube boiler, Model ZF 1800HS)	Ultra-low NOx Burner - fired with natural gas	18.6 MMBtu/hr	0.44 ⁿ	S141	IP0058-I020
B-U3 (Unilux water- tube boiler, Model ZF 1800HS)	Ultra-low NOx Burner - fired with natural gas	18.6 MMBtu/hr	0.44 ⁿ	S143	IP0058-I020
B-U4 (Unilux water- tube boiler, Model ZF 1800HS)	Ultra-low NOx Burner - fired with natural gas	18.6 MMBtu/hr	0.44 ⁿ	S143	IP0058-I020
Trane Boiler (Natural Gas)		38 MMBtu/hr	0.89 ^k		
Emulsion Ethylene Glycol Heater (Natural Gas)					
Boiler house emergency diesel generator		250 kw	0.01 ⁿ	F100	IP0058-I020
Misc. Natural Gas/Misc. Nat. Gas Usage			0.0400°		2013 Emissions Report
#1 & #2 LTC Unit/Truck Loading			0.0080°		2013 Emissions Report
Barge Dock			1.4242 ^c		2013 Emissions Report
Degreasers			0.8100°		2013 Emissions Report

RACT: Page 9 of 23

#0058

- ^a Emissions are from stack tests conducted between 2012 through 2014 in response to the Consent Decree, except where otherwise indicated. The emissions shown are considered potential-to-emit except where otherwise indicated.
- b It is not clear whether emissions from the Funda Filter Recycle Tank is included with the tested emissions from the Funda Filter Steam Out Process. The Consent Decree mentions this emission unit but does not specifically require testing.
- ^c Emissions data from 2013 Emissions Report. These emissions are assumed to be actual emissions.
- d Units called out in Consent Decree, but testing was not required. Emissions data is based on the 2013 Emissions Report for "Storage Tanks/200 Battery."
- Emissions for the WWPoly fugitives based on July 30, 1993 permit, IP 93-1-0012-P. Fugitives are subject to the MON (40 CFR 63, Subpart FFFF). Note that fugitives from the entire site are listed as 53.19 tpy in the 2013 Emissions Report.
- Emissions for the MP Poly fugitives are based on Installation Permit 94-1-0069-P issued April 13, 1995. Fugitives are subject to the MON (40 CFR 63, Subpart FFFF). Note that fugitives from the entire site are listed as 53.19 tpy in the 2013 Emissions Report.
- ⁹ Note that these emissions are greater than permitted emissions in #0058-I016. However, these emissions were calculated based on the stack test results and assuming that the equipment is operated 8760 hours per year. Based on the permit limits for these equipment, these equipment must be operated much less than 8760 hours per year. The stack test results in lb/hr do not exceed the permitted emissions in lb/hr.
- h Emission values are from the IP 0058-I016, issued May 31, 2011. These emission units were not found in Consent Decree.
- Based on a stack test conducted July 31 through August 1, 2013 and reported October 17, 2013. Testing conducted pursuant to installation permit.
- ¹ Emissions based on 2013 Emissions Report for "169-Storage Tanks/Piperylene Conc.." Based on IP0058-I017 issued July 22, 2010, tanks 52, 54, and 55 hold piperylene conc. In this permit emissions from tank 52 are limited to 2.37 tpy.
- k Emissions calculated using AP-42 emission factor for VOC from boilers less than 100 MMBtu/hr (5.5 lbs of VOC per scf).
- Emission value based on permit limit in IP0058-I009 issued October 3, 2002.
- ^m Emission values based on technical support document for IP 0058-I012a issued October 30, 2008. The actual permit limit for the dryer is 2.23 tpy but this appears to be in error, based on the discussion in the technical support document.
- ⁿ Emission values based on permit limits in IP0058-I020 issued July 28, 2011.

RACT Analyses Conducted in this Document

This source is a major source of VOC, but is not a major source of NOx; therefore, only VOC RACT analyses have been conducted and are provided in this document.

RACT: Page 10 of 23

Information was not available to assess the 36 tanks listed in Table 1 that were identified from the "Consent Decree Tanks List". The information shown in Table 1 is the only information available for these tanks. These tanks could very well overlap with the tanks listed from the 2013 Emissions Report, but the information is not available to determine if they are duplicate entries or not. Also, no information is available on what these tanks store, the design configuration of the tanks, or information on how they are used (e.g., number of turnovers, process tank or storage tank, etc.) Although, it is likely that the emissions from these tanks are relatively low, this could not be confirmed. A RACT evaluation was not conducted for these 26 tanks due to lack of information.

A RACT evaluation for the equipment listed in Table 1 that were identified from the "2013 Emissions Report" was also not conducted. There is no information available on these equipment, other than what is listed in Table 1 and it is unclear if these equipment are already included in other units listed in Table 1. It is very possible that the storage tanks and wastewater treatment equipment are subject to the National Emission Standards for Hazardous Air Pollutants (NESHAP): Miscellaneous Organic Chemical Manufacturing, 40 CFR 63, Subpart FFFF, often referred to as the "MON". The MON contains emission control requirements for certain tanks and wastewater streams; however, there is not enough information to determine which of the equipment are covered by the MON. If the MON applies, compliance with the MON would likely be RACT. There is also no information available to calculate potential-to-emit or determine the mechanism by which the emissions are released to determine possible control scenarios. RACT evaluations for the equipment listed in Table 1 that were identified from the "2013 Emissions Report" were not conducted due to lack of information.

ACHD determined that many of the equipment shown in Table 1 have relatively low emissions and considers it unlikely that additional controls would be technically and economically feasible for these emission units. Therefore, RACT for these equipment is compliance with current regulations, permit conditions, and the 2011 Consent Decree. A potential-to-emit of 15 pounds per day or 2.74 tons per year was used to assess equipment where the emissions were relatively low.

ACHD determined that it was unnecessary to conduct RACT evaluations on the equipment leak emissions for processes WW Poly, MP Poly, or the LTC process lines. The source is subject to the MON. Under the MON, the source is required to have a Leak Detection and Repair (LDAR) program. These requirements are relatively stringent and ACHD does not believe more stringent requirements would be considered cost effective. The LDAR requirements of the MON are considered RACT for the emissions from equipment leaks.

The RACT evaluations that were conducted are included in the sections indicated below:

- A. RACT for VOC Liquid Thermal Contact Unit: Resin Kettle 5 and Resin Kettle 6
- B. RACT for VOC C-5 Polymerization Unit: C-5 Pastillating Belts #1 and #2
- C. RACT for VOC Hydrogenation Unit: Vent Tank
- D. RACT for VOC Dresinate TX Production Line: Double Drum Dryer

A. RACT for VOC – Liquid Thermal Contact Unit: Resin Kettles #5, #6, and #7

RACT: Page 11 of 23

#0058

In this section, ACHD examines the feasibility of controlling emissions from the three resin kettles at the liquid thermal contact unit with one control device.

In the Liquid Thermal Contact Unit, heated resin product is initially charged to the kettles, then transferred to the pastillating belts where it is cooled in a pastillated form, and then packaged for final shipment and delivery. The Liquid Thermal Contact Unit has three (3) resin kettles (#5, #6, and #7). The VOC emissions from these operations are characterized by a low VOC concentration and multiple emission constituents. The VOC emissions from resin kettles #5, #6, and #7 are currently controlled by condensers (Condenser E-RK5-4, Condenser E-RK6-5, and Condenser E-RK7-4, respectively).

VOC emissions from these three resin kettles are limited in Installation Permit 0058-I016, issued on May 31, 2011, as shown in Table 2. A stack test was conducted on the kettles on August 2 through 24, 2012. The results of stack testing are shown in Table 2.

Table 2	Emission Limits a	and Stack Test F	Results for Resin	Kettles #5 #6	and #7
I abic L.		ilia olach i col i	ACOUNTS FOR TACOU	I INCLLICO π o. π o.	$\alpha m m m$

Emission Unit	Permit Limit (lb/hr)	Permit Limit (ton/yr)	Stack Test (lb/hr)	PTE Based on Stack Test (ton/yr) ^a
Resin Kettle #5	0.94	0.010	0.92	3.5
Resin Kettle #6	0.94	0.010	0.83	3.46
Resin Kettle #7	2.376	0.218	0.74	3.24
Total	4.256	0.228	1.77	10.2

^a The PTE was calculated assuming 8,760 hours of operation per year per kettle and using the lb/hr stack test results. However, given the difference between the lb/hr and ton/yr emission limits in the Installation Permit 0058-I016. It is likely that these units do not operate 8760 hours per year and that the PTE is actually equal to the Permit Limit. A RACT evaluation was conducted assuming the PTE calculated from the stack test results.

The Installation Permit 0058-I016 requires that emissions from these three resin kettles shall be exhausted through a cooling tower water-chilled condenser at all times. The permit also requires that exit vapor temperature from the condenser shall not exceed 45 degrees Celcius (113 degrees Fahrenheit) at any time when emissions are being routed through it, and that the exit vapor temperature of each of the condensers shall be continuously monitored when the process is in operation.

The data on inlet and outlet VOC concentrations from the stack test results from the testing conducted on August 2 through 24, 2012 indicated that the VOC removal efficiency of the condensers on Resin Kettles #5 and #7 are about 19% and 49%, respectively. The stack testing showed that the condenser on Resin Kettle #6 did not reduce VOC emissions.

Step 1 – Identify Control Options

According to information available in EPA's Control Techniques for Volatile Compound Emissions from Stationary Sources¹ and Control of Volatile Organic Compound Emissions from Reactor Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing

_

¹ US EPA, EPA 453/R-92-018.

*Industry*², remaining VOC emissions from the resin kettles after the exhaust exits the condensers could be controlled further using any number of controls including:

RACT: Page 12 of 23

- (a) Condenser
- (b) Thermal Oxidation
- (c) Catalytic Oxidation
- (d) Carbon Adsorption
- (e) Concentrator/Oxidation
- (f) Absorption (scrubbing)

A description of each of these technologies follows.

- (a) A refrigerated condenser is a control device that is used to cool an emission stream having organic vapors in it and to change the vapors to a liquid. The condensed organic vapors can be recovered, refined, and might be reused, preventing their release to the ambient air. A refrigerated condenser works best on emission streams containing high concentrations of volatile organic emissions. A refrigerated condenser works best in situations where the air stream is saturated with the organic compound, the organic vapor containment system limits air flow, and the required air flow does not overload a refrigeration system with heat. The removal efficiency of a condenser is directly related to lowest temperature that can be achieved in the condenser. Removal efficiencies range from 50-98%.
- (b) Thermal oxidizers are refractory lined enclosures with one or more burners in which the waste gas stream is routed through a high temperature combustion zone where it is heated and the combustible materials are burned. Thermal oxidizers typically operate at 1200 to 2100 degrees Fahrenheit with residence times typically ranging from 0.5 to 2 seconds. An efficient thermal oxidizer design must provide adequate residence time for complete combustion, sufficiently high temperatures for VOC destruction, and adequate velocities to ensure proper mixing without quenching combustion. The type of burners and their arrangement affect combustion rates and residence time; the more thorough the contact between the flame and VOC, the shorter the time required for complete combustion. Natural gas is required to ignite the flue gas mixtures and maintain combustion temperatures. Thermal oxidizers achieve 98% or more VOC reduction.
- (c) Catalytic oxidizers are similar to thermal oxidizers the units are enclosed structures that use heat to oxidize the combustible materials. However, in a catalytic oxidizer, a catalyst is used to lower the operating temperature needed to oxidize the VOCs by lowering the activation energy for oxidation. When a preheated gas stream is passed through a catalytic oxidizer, the catalyst bed initiates and promotes the oxidation of the VOC without being permanently altered itself. Note that steps must be taken to ensure complete combustion. The types of catalysts used include platinum, platinum alloys, copper chromate, copper oxide, chromium, manganese, and nickel. These catalysts are deposited in thin layers on an inert substrate, usually a honeycomb shaped ceramic. VOC destruction efficiency is dependent upon VOC composition and concentration, operating temperature, and the velocity of the gas passing through the bed. As the velocity increases, VOC destruction efficiency decreases. As temperature increases, VOC destruction efficiency increases. Catalytic oxidizers can achieve 98% or more VOC reduction.
- (d) Carbon adsorption is a process by which VOC is retained on a granular carbon surface, which is highly porous and has a very large surface-to-volume ratio. Organic vapors retained on the adsorbent are thereafter desorbed and both the adsorbate and absorbent are recovered. Carbon adsorption systems operated in two phases: adsorption and desorption. Adsorption is rapid and removes most of the VOC in the stream. Eventually, the adsorbent becomes saturated with the vapors and the system's efficiency drops. Regulatory

² US EPA, EPA-450/4-91-031.

considerations dictate that the adsorbent be regenerated or replaced soon after efficiency begins to decline. In regenerative systems, the adsorbent is reactivated with steam or hot air and the absorbate (solvent) is recovered for reuse or disposal. Non-regenerative systems require the removal of the adsorbent and replacement with fresh or previously regenerated carbon. Carbon adsorbers achieve 98% or more VOC reduction.

RACT: Page 13 of 23

#0058

- (e) Concentrator/oxidation systems combine the actions of carbon adsorption systems with thermal oxidizers and are used when vent gas has a low concentration of organics. Vapors pass through an adsorbing surface, and are collected. When the adsorber is saturated, the surface is desorbed, and the absorbate is oxidized in a thermal oxidizer. Concentrator/oxidation systems can achieve 98% or more VOC reduction.
- (f) Absorption devices work by dissolving the soluble components of a gaseous mixture in a liquid. A gas may be removed from an emissions stream by entering into solution or by chemically-reacting with the absorbing solvent. The absorbing liquids (solvents) used must be carefully chosen for high solute (VOC) solubility and include liquids such as water, mineral oils, non-volatile hydrocarbon oils, and aqueous solutions of oxidizing agents like sodium carbonate and sodium hydroxide. Absorption may occur in spray towers, venturi scrubbers, packed columns, and plate columns. High removal efficiencies occur when the ratio of solvent to solute is high, and the surface area for reactions is high. In absorption systems, the solvent must be stripped of solute prior to reuse. Absorption devices can achieve 70% or more VOC reduction.

Step 2 - Eliminate Technically Infeasible Control Options

It was determined that condensation, thermal oxidation, catalytic oxidation, carbon adsorption, and concentrator/oxidation are technically feasible control options for controlling VOC emissions from the resin kettles at the Liquid Thermal Contact Unit. Absorption is not technically feasible for controlling organic emission streams with a wide range of constituents. Therefore, absorption is determined to be not technically feasible for controlling VOC from this source.

Step 3 - Evaluate Control Options

Emissions and Emission Reductions

The resin kettles at the Liquid Thermal Contact Unit have a potential to emit VOC as shown in Table 2 above. The technically feasible control options for the combined emissions from the resin kettles for the Liquid Thermal Contact Unit with their estimated control efficiency are shown in Table 3.

Table 3. Technically Feasible Control Options for Resin Kettles #5, #6, and #7

Control Technology	Туре	Control Efficiency
Condensation	Removal/recovery	90%
Thermal Oxidation	Destruction	98%
Catalytic Oxidation	Destruction	98%
Carbon Adsorption	Removal/recovery	98%
Concentrator/Oxidation	Destruction	98%

These estimated efficiencies are based on information provided in the references cited in Step 1.

Economic Analysis

A thorough economic analysis of the technically feasible control options to control the combined VOC emissions from the resin kettles at the Liquid Thermal Contact Unit was conducted. See Appendix B for more information. The analysis estimates the total costs associated with the VOC control equipment, including the total capital investment of the various components intrinsic to the complete system, the estimated annual operating costs, and indirect annual costs. All costs, except for capital costs, were calculated using the methodology described in Section 6, Chapter 1 of the "EPA Air Pollution Control Cost Manual, Sixth Edition" (document # EPA 452-02-001). Capital costs are based on cost spreadsheets using the costing algorithms contained in the Cost Manual and EPA spreadsheets that were previously available from EPA. Information on exhaust stream physical properties (e.g. flowrate, temperature, density, heat content, etc) used in estimating the capital and annual costs of control came from stack test reports or, when not available, values used for performing the Neville Chemical RACT analyses were used, since Neville Chemical has a similar operation to Eastman's. Annualized costs are based on an interest rate of 7% and an equipment life of 15 years. The ductwork costs estimate only the capital cost for straight ductwork, and does not include costs for any structural supports, fire propagation prevention measures, exhaust mixing controls, engineering design, and other items.

RACT: Page 14 of 23

The basis of cost effectiveness, used to evaluate the control option, is the ratio of the annualized cost to the amount of VOC (tons) removed per year. A summary of the cost figures determined in the analysis is provided in the Table 4.

Table 4. Cost Analysis Summary for Resin Kettles at the Liquid Thermal Contact Unit

Control Option	Total Capital Investment (\$)	Total Annualized Cost (\$/yr)	Potential Additional VOC Removal from Add-on Control (ton/yr)	Cost Effectiveness (\$/ton VOC Removed)
Condenser	263,000	149,000	9.2	16,200
Thermal Oxidation	151,000	127,000	10.0	12,700
Catalytic Oxidation	81,800	111,000	10.0	11,100
Carbon Adsorption	1,300,000	415,000	10.0	41,500
Concentrator/ Oxidation	397,000	152,000	10.0	15,200

Step 4 - Select RACT

Based on the economic analysis summarized in Table 4, it is not cost effective to control the three resin kettles at the Liquid Thermal Contact Unit. ACHD has determined that RACT is continued compliance with existing requirements for the Liquid Thermal Contact Unit as specified in Installation Permit 0058-I016, and with the terms of the Consent Decree.

B. RACT for VOC – C-5 Polymerization Unit: C-5 Pastillating Belts #1 and #2

RACT: Page 15 of 23

#0058

At the C-5 Polymerization Unit's Pastillating Belts #1 and #2, resin product is formed into a solid pastillated form for shipment and delivery. Heated resin is initially charged to a resin kettle then transferred to the pastillating belts for pastillating where it is cooled, solidified, and placed in bags or supersacks. Emissions from the C-5 Polymerization Unit's Pastillating Belts #1 and #2 are vented to the UHF Filter S-751-1 and Fume Filter Demister. The VOC emissions from these operations are characterized by a low VOC concentration and multiple emission constituents.

VOC emissions from the C-5 Polymerization Unit's Pastillating Belt #2 are limited to 1.0 pounds per hour and 4.34 tons per year by Installation Permit 0058-I015, issued August 25, 2008, and Installation Permit 0058-I018, issued May 9, 2011. Pastillating Belt #1 does not appear to have a permit limit. Minimum capture efficiency of the UHF Filter/Fume Filter Demister is to be 90% and VOC control efficiency of the UHF Filter/Fume Filter Demister is to be 90%. A stack test was conducted on the UHF Filter/Fume Filter Demister controlling emissions from the Pastillating Belts #1 and #2 on May 22, 2012. The results of stack testing are shown in Table 5. The data on inlet and outlet VOC concentrations from the stack test results from the testing conducted on May 22, 2012 indicated that the VOC control efficiency of the UHF Filter and the Fume Filter Demister is 39.4%.

Table 5. Emission Limits and Stack Test Results for C-5 Pastillating Belt UHF Filter Vent

Emission Unit	Emission Limit (lb/hr)	Emission Limit (ton/yr)	Stack Test Results (lb/hr)	PTE Based on Stack Test (ton/yr) ^a
C-5 Pastillating Belt #1	-	-	1.03	4.5
C-5 Pastillating Belt #2	1.0	4.34	1.03	4.5

^a Assuming 8,760 hours of operation per year.

Step 1 – Identify Control Options

According to information available in EPA's Control Techniques for Volatile Compound Emissions from Stationary Sources³ and Control of Volatile Organic Compound Emissions from Reactor Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing Industry⁴, VOC emissions from the C-5 Polymerization Unit's Pastillating Belts #1 and #2 could be controlled using any number of controls including:

- (a) Thermal Oxidation
- (b) Catalytic Oxidation
- (c) Carbon Adsorption
- (d) Concentrator/Oxidation
- (e) Condensation
- (f) Absorption (scrubbing)

A description of each of these control technologies is provided in RACT Section A.

<u>Step 2 – Eliminate Technically Infeasible Control Options</u>

It was determined that thermal oxidation, catalytic oxidation, carbon adsorption, concentrator/oxidation, and condensation are technically feasible control options for controlling VOC

³ US EPA, EPA 453/R-92-018.

⁴ US EPA, EPA-450/4-91-031.

Eastman Chemical Resins, Inc. West Elizabeth, PA

Reviewer: ERG/ST

emissions from the C-5 Polymerization Unit's Pastillating Belts #1 and #2. Absorption is not technically feasible for controlling organic emission streams with a wide range of constituents. Therefore, absorption is determined to be not technically feasible for controlling VOC from this source.

RACT: Page 16 of 23

Step 3 - Evaluate Control Options

Emissions and Emission Reductions

The C-5 Polymerization Unit's Pastillating Belts #1 and #2 has a potential to emit VOC as shown in Table 5 above. These potential emissions are based on limits in the installation permit and stack test results. The technically feasible control options with their estimated control efficiency are as shown Table 6.

Table 6. Technically Feasible Control Options for the C-5 Polymerization Unit's Pastillating Belts #1 and #2

Control Technology	Туре	Control Efficiency
Thermal Oxidation	Destruction	98%
Catalytic Oxidation	Destruction	98%
Carbon Adsorption	Removal/recovery	98%
Concentrator/Oxidation	Destruction	98%
Condensation	Removal/recovery	90%

These estimated efficiencies are based on information provided in the references cited in Step 1.

Economic Analysis

A thorough economic analysis of the technically feasible control options to control the combined VOC emissions from the C-5 Polymerization Unit's Pastillating Belts #1 and #2 was conducted. See Appendix C for more information. The analysis estimates the total costs associated with the VOC control equipment, including the total capital investment of the various components intrinsic to the complete system, the estimated annual operating costs, and indirect annual costs. All costs, except for capital costs, were calculated using the methodology described in Section 6, Chapter 1 of the "EPA Air Pollution Control Cost Manual, Sixth Edition" (document # EPA 452-02-001). Capital costs are based on cost spreadsheets using the costing algorithms contained in the Cost Manual and EPA spreadsheets that were previously available from EPA. Information on exhaust stream physical properties (e.g. flowrate, temperature, density, heat content, etc) used in estimating the capital and annual costs of control came from stack test reports or, when not available, values used for performing the Neville Chemical RACT analyses were used, since Neville Chemical has a similar operation to Eastman's. Annualized costs are based on an interest rate of 7% and an equipment life of 15 years. The ductwork costs estimate only the capital cost for straight ductwork, and does not include costs for any structural supports, fire propagation prevention measures, exhaust mixing controls, engineering design, and other items.

The basis of cost effectiveness, used to evaluate the control option, is the ratio of the annualized cost to the amount of VOC (tons) removed per year. A summary of the cost figures determined in the analysis is provided in the Table 7.

Eastman Chemical Resins, Inc.

RACT: Page 17 of 23 West Elizabeth, PA Reviewer: ERG/ST

Table 7. Cost Analysis Summary for C-5 Polymerization Unit's Pastillating Belts #1 and #2

#0058

Control Option	Total Capital Investment (\$)	Total Annualized Cost (\$/yr)	Potential Additional VOC Removal from Add-on Control (ton/yr)	Cost Effectiveness (\$/ton VOC Removed)
Thermal Oxidation	394,000	1,010,000	4.4	230,000
Catalytic Oxidation	429,000	623,000	4.4	141,000
Carbon Adsorption	796,000	449,000	4.4	102,000
Concentrator/Oxidation	572,000	364,000	4.4	82,600
Condensation	3,280,000	1,930,000	4.1	476,000

Step 4 - Select RACT

Based on the economic analysis summarized in Table 7, it is not cost effective to control the C-5 Polymerization Unit's Pastillating Belts #1 and #2.

ACHD has determined that RACT for the C-5 Polymerization Unit's Pastillating Belts #1 and #2 is continued compliance with existing requirements for the C-5 Polymerization Unit's Pastillating Belts #1 and #2 as specified in Installation Permit 0058-I015, Installation Permit 0058-I018, and with the terms of the Consent Decree.

C. RACT for VOC - Hydrogenation Unit: Vent Tank

RACT: Page 18 of 23

#0058

The Hydrogenation Unit takes resins produced at the Water White Polymerization and Multipurpose Polymerization Processing units and further hydrogenates these resins to improve color and stability. Hydrogenation is a batch process. Feed is preheated, pumped into a metering tank, and then into an autoclave where hydrogen and a metal catalyst are added from the catalyst mix tank to react with the resin. Once the reaction is complete, the product is sent to the Vent Tank and then to tanks where the catalyst and solvents are filtered out. Emissions from the Vent Tank are vented to Condenser E-303-3 and then to Condensers E-401-2, Condenser E-402-2, and Condenser E-403-2 before being vented to the atmosphere via stack S007. This RACT analysis is for emissions from the Vent Tank.

There are no existing permits that specifically limit VOC emissions from the Hydrogenation Unit's Vent Tank. A stack test was conducted on the four condensers controlling VOC emissions from the Hydrogenation Unit's Vent Tank on April 10 and 11, 2013. VOC emissions at the inlet to the control devices were tested at 4.0 pounds per hour and VOC emissions at the outlet of the control devices were 1.7 pounds per hour. PTE for this unit is based on the stack testing results after the effect of controls.

Table 8. Stack Test Results for Hydrogenation Unit's Vent Tank

Emission Unit	Stack Test Results (lb/hr)	PTE Based on Stack Test (ton/yr) ^a
Hydrogenation Unit's Vent Tank	1.7	7.45

^a Assuming 8,760 hours of operation per year.

Step 1 - Identify Control Options

According to information available in EPA's Control Techniques for Volatile Compound Emissions from Stationary Sources⁵ and Control of Volatile Organic Compound Emissions from Reactor Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing Industry⁶, VOC emissions from the Hydrogenation Unit's Vent Tank could be controlled using any number of controls including:

- (a) Thermal Oxidation
- (b) Catalytic Oxidation
- (c) Carbon Adsorption
- (d) Concentrator/Oxidation
- (e) Condensation
- (f) Absorption (scrubbing)

A description of each of these control technologies is provided in RACT Section A.

Step 2 – Eliminate Technically Infeasible Control Options

It was determined that thermal oxidation, catalytic oxidation, carbon adsorption, concentrator/oxidation, and condensation are technically feasible control options for controlling VOC emissions from the Hydrogenation Unit's Vent Tank. Absorption is not technically feasible for controlling organic emission streams with a wide range of constituents. Therefore, absorption is determined to be not technically feasible for controlling VOC from this source.

⁵ US EPA, EPA 453/R-92-018.

⁶ US EPA, EPA-450/4-91-031.

Step 3 - Evaluate Control Options

Emissions and Emission Reductions

The Hydrogenation Unit's Vent Tank has a potential to emit VOC as shown in Table 8 above. These potential emissions are based on limits in the installation permit and stack test results. The technically feasible control options with their estimated control efficiency are as shown Table 9.

RACT: Page 19 of 23

Table 9. Technically Feasible Control Options for the Hydrogenation Unit's Vent Tank

Control Technology	Туре	Control Efficiency
Thermal Oxidation	Destruction	98%
Catalytic Oxidation	Destruction	98%
Carbon Adsorption	Removal/recovery	98%
Concentrator/Oxidation	Destruction	98%
Condensation	Removal/recovery	90%

These estimated efficiencies are based on information provided in the references cited in Step 1.

Economic Analysis

A thorough economic analysis of the technically feasible control options to control the combined VOC emissions from the Hydrogenation Unit's Vent Tank was conducted. See Appendix D for more information. The analysis estimates the total costs associated with the VOC control equipment, including the total capital investment of the various components intrinsic to the complete system, the estimated annual operating costs, and indirect annual costs. All costs, except for capital costs, were calculated using the methodology described in Section 6. Chapter 1 of the "EPA Air Pollution Control Cost Manual, Sixth Edition" (document # EPA 452-02-001). Capital costs are based on cost spreadsheets using the costing algorithms contained in the Cost Manual and EPA spreadsheets that were previously available from EPA. Information on exhaust stream physical properties (e.g. flowrate. temperature, density, heat content, etc) used in estimating the capital and annual costs of control came from stack test reports or, when not available, values used for performing the Neville Chemical RACT analyses were used, since Neville Chemical has a similar operation to Eastman's. Annualized costs are based on an interest rate of 7% and an equipment life of 15 years. The ductwork costs estimate only the capital cost for straight ductwork, and does not include costs for any structural supports, fire propagation prevention measures, exhaust mixing controls, engineering design, and other items.

The basis of cost effectiveness, used to evaluate the control option, is the ratio of the annualized cost to the amount of VOC (tons) removed per year. A summary of the cost figures determined in the analysis is provided in the Table 10.

Eastman Chemical Resins, Inc. West Elizabeth, PA

Reviewer: ERG/ST

Table 10. Cost Analysis Summary for Hydrogenation Unit's Vent Tank

RACT: Page 20 of 23

#0058

Control Option	Total Capital Investment (\$)	Total Annualized Cost (\$/yr)	Potential Additional VOC Removal from Add-on Control (ton/yr)	Cost Effectiveness (\$/ton VOC Removed)
Thermal Oxidation	122,000	118,000	7.3	16,200
Catalytic Oxidation	70,500	107,000	7.3	14,700
Carbon Adsorption	1,620,000	483,000	7.3	66,200
Concentrator/Oxidation	397,000	151,000	7.3	20,600
Condensation	213,000	137,000	6.7	20,400

Step 4 - Select RACT

Based on the economic analysis summarized in Table 10, it is not cost effective to control the Hydrogenation Unit's Vent Tank using either a thermal oxidizer, catalytic oxidizer, carbon absorption, a concentrator/oxidizer, or a condenser. ACHD has determined that RACT for the Hydrogenation Unit's Vent Tank is continued compliance with the terms of the Consent Decree.

D. RACT for VOC - Dresinate TX Production Line: Double Drum Dryer

RACT: Page 21 of 23

The Dresinate TX Production Line's Double Drum Dryer drys liquid crude tall oil and tall oil rosin prior to grinding and packaging. Emissions from the Dresinate TX Production Line: Double Drum Dryer are not controlled. VOC emissions from the Dresinate TX Production Line are limited in Installation Permit 0058-I012, issued on September 13, 2006, and amended in Installation Permit 0058-I012a, issued October 30, 2008, as shown in Table 11.

Table 11. Emission Limits for Dresinate TX Production Line

Emission Unit	Emission Limit (lb/hr)	Emission Limit (ton/yr)
Dresinate TX Production Line	1.25	5.5

Step 1 - Identify Control Options

According to information available in EPA's Control Techniques for Volatile Compound Emissions from Stationary Sources⁷ and Control of Volatile Organic Compound Emissions from Reactor Processes and Distillation Operations Processes in the Synthetic Organic Chemical Manufacturing Industry⁸, VOC emissions from the Dresinate TX Production Line: Double Drum Dryer could be controlled using any number of controls including:

- (a) Thermal Oxidation
- (b) Catalytic Oxidation
- (c) Carbon Adsorption
- (d) Concentrator/Oxidation
- (e) Condensation
- (f) Absorption (scrubbing)

A description of each of these control technologies is provided in RACT Section A.

Step 2 – Eliminate Technically Infeasible Control Options

It was determined that thermal oxidation, catalytic oxidation, carbon adsorption, concentrator/oxidation, and condensation are technically feasible control options for controlling VOC emissions from the Dresinate TX Production Line: Double Drum Dryer. Absorption is not technically feasible for controlling organic emission streams with a wide range of constituents. Therefore, absorption is determined to be not technically feasible for controlling VOC from this source.

Step 3 - Evaluate Control Options

Emissions and Emission Reductions

The Dresinate TX Production Line: Double Drum Dryer has a potential to emit VOC as shown in Table 11 above. These potential emissions are based on limits in the installation permit. The technically feasible control options with their estimated control efficiency are as shown Table 12.

⁷ US EPA, EPA 453/R-92-018.

⁸ US EPA, EPA-450/4-91-031.

Eastman Chemical Resins, Inc.

RACT: Page 22 of 23

West Elizabeth, PA

#0058

West Elizabeth, PA Reviewer: ERG/ST

Table 12. Technically Feasible Control Options for the Dresinate TX Production Line: Double Drum Dryer

Control Technology	Туре	Control Efficiency
Thermal Oxidation	Destruction	98%
Catalytic Oxidation	Destruction	98%
Carbon Adsorption	Removal/recovery	98%
Concentrator/Oxidation	Destruction	98%
Condensation	Removal/recovery	90%

These estimated efficiencies are based on information provided in the references cited in Step 1.

Economic Analysis

A thorough economic analysis of the technically feasible control options to control the combined VOC emissions from the Dresinate TX Production Line: Double Drum Dryer was conducted. See Appendix E for more information. The analysis estimates the total costs associated with the VOC control equipment, including the total capital investment of the various components intrinsic to the complete system, the estimated annual operating costs, and indirect annual costs. All costs, except for capital costs, were calculated using the methodology described in Section 6, Chapter 1 of the "EPA Air Pollution Control Cost Manual, Sixth Edition" (document # EPA 452-02-001). Capital costs are based on cost spreadsheets using the costing algorithms contained in the Cost Manual and EPA spreadsheets that were previously available from EPA. Information on exhaust stream physical properties (e.g. flowrate, temperature, density, heat content, etc) used in estimating the capital and annual costs of control came from stack test reports or, when not available, values used for performing the Neville Chemical RACT analyses were used, since Neville Chemical has a similar operation to Eastman's. Annualized costs are based on an interest rate of 7% and an equipment life of 15 years. The ductwork costs estimate only the capital cost for straight ductwork, and does not include costs for any structural supports, fire propagation prevention measures, exhaust mixing controls, engineering design, and other items.

The basis of cost effectiveness, used to evaluate the control option, is the ratio of the annualized cost to the amount of VOC (tons) removed per year. A summary of the cost figures determined in the analysis is provided in Table 13.

Table 13. Cost Analysis Summary for Dresinate TX Production Line: Double Drum Dryer

Control Option	Total Capital Investment (\$)	Total Annualized Cost (\$/yr)	Potential Additional VOC Removal from Add-on Control (ton/yr)	Cost Effectiveness (\$/ton VOC Removed)
Thermal Oxidation	338,000	534,000	5.4	99,000
Catalytic Oxidation	305,000	338,000	5.4	62,700
Carbon Adsorption	805,000	344,000	5.4	63,900
Concentrator/Oxidation	480,000	252,000	5.4	46,800
Condensation	2,410,000	1,100,000	4.95	221,000

Step 4 - Select RACT

Based on the economic analysis summarized in Table 13, it is not cost effective to control the Dresinate TX Production Line: Double Drum Dryer using either a thermal oxidizer, catalytic oxidizer, carbon absorption, a concentrator/oxidizer, or a condenser. ACHD has determined that RACT for the Dresinate TX Production Line: Double Drum Dryer is continued compliance with the terms of Installation Permit 0058-I012a and the Consent Decree.

RACT: Page 23 of 23

#0058

VOC RACT2 Analysis Eastman Chemical Resins, Inc. – Jefferson Site

Introduction

The Eastman Chemical Resins (Eastman) facility located in West Elizabeth, Pennsylvania, is classified as a major stationary source of both nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions. As such, the facility is subject to the Reasonably Available Control Technology (RACT) rules enacted in Pennsylvania on April 23, 2016, outlined in 25 Pa. Code §§129.96 – 129.100, Additional RACT Requirements for Major Sources of NOx and VOCs, referred to as RACT2. The RACT2 rule requires all existing major facilities of NOx and VOC emissions to assess the need to install new or additional emission controls, or implement work practice measures to reduce emissions of those two pollutants.

An initial RACT2 assessment of the Eastman facility was conducted by the Allegheny County Health Department (ACHD) in 2015. The results of that assessment were never incorporated into Allegheny County's portion of the Pennsylvania State Implementation Plan (SIP). In late 2019, ACHD requested that Eastman prepare and submit a re-evaluation of NO_X and VOC RACT2 for the current operations at the facility. The remainder of this document contains Eastman's RACT2 evaluation of VOC-emitting sources.

VOC Potential to Emit (PTE) and RACT2 Applicability Table

Attachment 1 contains a table listing all VOC-emitting sources at the Eastman facility and includes the source PTE, exhaust flow rate (where known), determination of applicability to RACT2, and explanatory comments. The source of the PTE values is indicated in the comments.

VOC sources with a PTE less than 1 ton/year are exempt from RACT2 requirements. Refer to the table in Attachment 1 to see which sources were determined to be exempt.

Any VOC sources with a PTE above 1 ton/year, but less than 2.7 tons/year, are subject to presumptive RACT2, pursuant §129.97(c)(2). This presumptive RACT requirement is: "The facility shall install, maintain, and operate the source in accordance with manufacturer's specifications and with good operating practices." Eastman interprets this to mean maintaining compliance with all pertinent requirements of the particular source's Installation and/or Operating Permit. The sources in Table 1 below are subject to this presumptive requirement:

Table 1: Presumptive RACT2 Sources

Source	Process	Stack ID
#4 Vacuum System	LTC	S124
North & South Reactors	WW Poly	S017
Tanks 68, 69 & 74	WW Poly	S024
Tank 35	WW Poly	S075
Resin Kettle #10	C5 Process	n/a
Reactor	MP Poly	S029
Tanks 301, 302 & 303	MP Poly	n/a
Neutralizer and Reactor	Pilot Plant	S155
Resin Kettles and Blend Tanks	Emulsion	S162

Any VOC source with PTE of 2.7 tons/year or greater is subject to a case-by-case technical and economic analysis to determine if additional emission control is feasible and reasonable. The sources in Table 2 below are subject to the case-by-case analysis requirement:

Table 2: Sources subject to Case-by-case Analysis

Source	Process	Stack ID
#1 Vacuum System	LTC	S109
#2 Vacuum System	LTC	S110
#1 & #2 Pastillator Belts	LTC	S114
Feed Dryers and Regeneration	WW Poly	S013 & S013a
Filtrate Receiver	WW Poly	S020
Solvent Wash Receiver	WW Poly	S023
Tanks 73, 75, 76 & 77	WW Poly	S025
East Filtrate Receiver	WW Poly	S027
Tanks 50, 52, 53, 54, 55 & 500	C5 Process	Fugitive
#1 & #2 Pastillator Belts	C5 Process	S055
Various MP Poly sources	MP Poly	S034
Pretreated Tanks 702A, 702B & 702C	WWTP	Fugitive
Bio Aeration Tank	WWTP	Fugitive
Various process and storage tanks	Hydro	S004 & S001
Autoclaves and Vent Tank	Hydro	S007
Product Tanks 102, 105 & 106	Hydro	S012
Double Drum Dryer and tanks	Dresinate	S085

Technical Feasibility of Capture and Control Technologies

Except for the sources noted below, in all instances where it was determined that Case-by-case (Alternative) RACT analysis was required, it was assumed that additional capture and control of VOC emissions was technically feasible. It is quite possible that further, in-depth analysis would show that to not be the case for some of the sources.

It has been determined that it is <u>not</u> technically feasible to capture and control the following sources that are subject to case-by-case analysis:

- C5 Operation Raw Material Tanks 50, 52, 53, 54, 55, and 500: all of these tanks are internal floating roof tanks. There is no reasonable method to capture emissions from floating roof tanks.
- Wastewater Treatment Plant Tanks 702A, 702B and 702C: all of these tanks are open-top tanks used for pre-treatment prior to the biological treatment operations. There is no reasonable method to capture emissions from these open-top tanks.
- Wastewater Treatment Plant Bio-Aeration Tank: this biological treatment tank is open to the atmosphere. There is no reasonable method to capture the emissions from this operation.

Economic Analysis Procedures

For sources where it was determined that an economic analysis is required, it was assumed, for the sake of simplicity, that each of the following control technologies was technically feasible. In actuality, that won't always be the case (depending on exhaust flow rates and types of chemicals being controlled).

- Thermal oxidation
- Catalytic oxidation
- Rotary concentrator with oxidation
- Carbon adsorption, with and without on-site regeneration

Note that any combined source exhausts are based mainly on proximity to each other. Full scale engineering studies would be needed to determine the actual technical feasibility from an operational standpoint.

For the sake of simplicity and in the interest of time, also note that the control cost analyses do <u>not</u> take into account any equipment and installation costs associated with capturing and routing source exhausts to add-on control devices. Auxiliary equipment, such as accumulators to gather emissions from batch source vents, is also not included in this study. Some of these non-included costs can be significant and would serve to increase the resulting costs/ton demonstrated in this analysis.

All control cost analyses were conducted pursuant to procedures provided in USEPA's OAQPS Control Cost Manual, 7th Edition (the most recent edition).

Economic Analysis Results

The economic analysis tables are provided in Attachment 2. A summary of the results is provided in Table 3 below.

Table 3: Summary of Economic Analyses

		Control Costs (\$/ton of VOC removed)							
Carrea	Dunner	Thermal	Catalytic	Rotary Conc	DTO	Refrig.	Carbon (fixed	Carbon	
Source	Process	Ox.	Ох	Oxidizer	RTO	Condenser	bed)	(drum)	
#1 Vacuum System	LTC	40,237	37,705	51,616	59,746	39,342	52,426	46,386	
#2 Vacuum System	LTC	19,443	17,814	24,249	27,956	18,758	24,343	25,799	
#1 & #2 Pastillator	LTC	118,251	96,581	83,218	102,474	507,565	74,706	96,052	
Belts									
Feed Dryers and	WW Poly	34,162	30,228	40,408	46,758	33,761	34,797	94,151	
Regeneration									
Filtrate Receiver	WW Poly	38,176	32,174	38,986	45,473	47,011	33,654	66,130	
Solvent Wash Receiver	WW Poly	24,798	21,022	26,345	30,563	27,567	22,852	56,657	
Tanks 73, 75, 76 & 77	WW Poly	30,178	26,843	36,022	41,653	29,538	31,458	70,147	
East Filtrate Receiver	WW Poly	33,925	28,770	35,955	41,791	38,352	30,920	74,948	
#1 & #2 Pastillator Belts	C5 Process	75,176	58,940	40,804	53,683	430,223	32,251	46,868	
Various MP Poly sources	MP Poly	18,288	15,452	19,216	22,260	20,557	17,807	35,325	
Various process and storage tanks	Hydro	12,356	10,688	13,878	15,950	12,426	13,169	32,192	
Autoclaves and Vent Tank	Hydro	12,335	10,454	13,209	15,218	13,300	12,458	34,939	

		Control Costs (\$/ton of VOC removed)										
Source	Process	Thermal Ox.	Catalytic Ox	Rotary Conc Oxidizer	RTO	Refrig. Condenser	Carbon (fixed bed)	Carbon (drum)				
Product Tanks 102, 105 & 106	Hydro	24,692	22,816	31,136	35,956	23,931	33,197	74,607				
Double Drum Dryer and tanks	Dresinate	66,816	54,193	44,317	55,288	299,894	39,200	70,716				

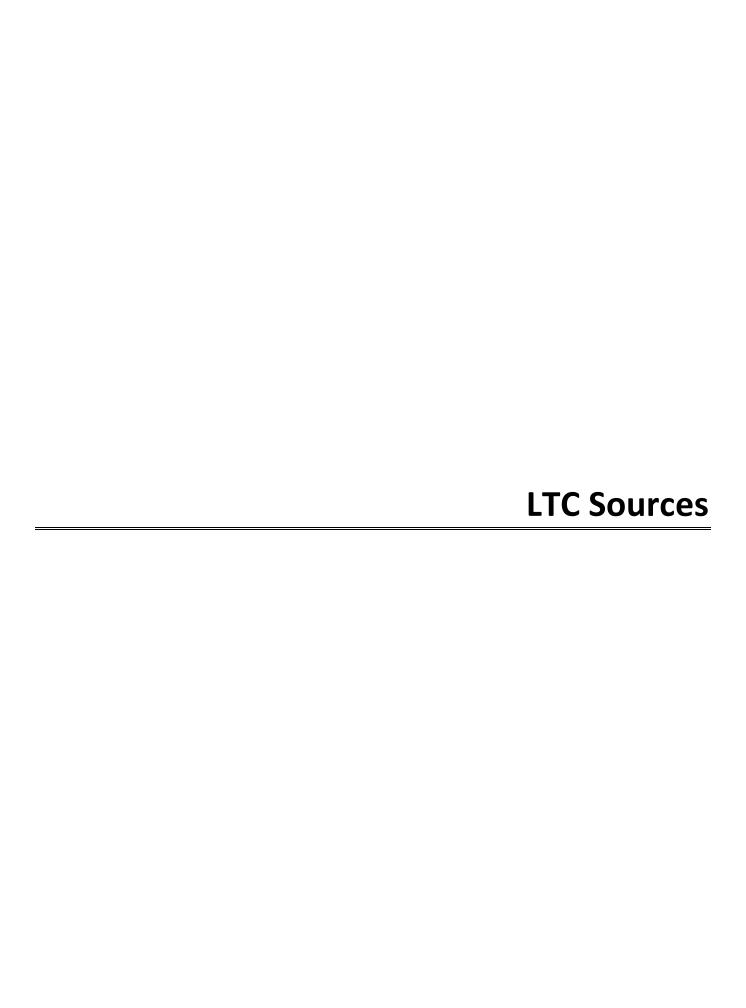
Proposed RACT2

As shown in Table 3 above, there is not one single control option that is less than \$10,000 per ton of VOC removed. It is Eastman's contention that it is not economically feasible to install additional controls on any of these sources.

Eastman's proposed RACT2 requirements for <u>all</u> non-exempt sources are:

- 1. The facility shall install, maintain, and operate the sources in accordance with manufacturer's specifications and with good operating practices.
- 2. Attain and maintain compliance with all pertinent requirements of the particular source's current Installation and/or Operating Permit.
- 3. The potential VOC emissions from the Hydro operations are based on the results of the stack test conducted in December 2019 and a throughput restriction of 22,500,000 lbs/year. In addition to items 1 and 2 above, Eastman proposes that RACT2 for Hydro is a throughput limit of 22,500,000 lbs/year. The upcoming Installation Permit application for this process will be based on that limit.

	Existing VOC		Flow	VOC PTE		
VOC Process & Source Names	Controls	Stack ID	(acfm)	(tpy)	RACT2 Applicability	PTE Basis/Other Notes
LTC						PTE values from IP-16a TSD from ACHD
#1 Vacuum System	condenser	S109	0.8	3.80	Case-by-case Analysis req'd	
#2 Vacuum System	condenser	S110	3.3	8.09	Case-by-case Analysis req'd	
#4 Vacuum System	condenser	S124	2.2	1.46	Presumptive RACT; no cost analysis	
Reclaim Solution Tank	condenser	S108	1.1	0.58	exempt due to VOC < 1 tpy	_
Resin Kettle 5	condenser	S111	14.4	0.32	exempt due to VOC < 1 tpy	- - No
Resin Kettle 6	condenser	S112	14.4	0.24	exempt due to VUC < 1 tbV	None of the exhaust points can reasonably be combined and routed to a common control device, due either to the possibility of cross-
Resin Kettle 7	condenser	S113	3.7	0.68	evenut due to $VOC < 1$ thy	- contamination or to too great a distance between them. Therefore,
#1/#2 LTC Pastillator Belt	venturi scrubber	S114	3100	2.80	Case-by-case Analysis req'd	-RACT applicability is based on the PTE of each individual source.
Berndorf Belt	venturi scrubber	S165	2500	0.53	exempt due to VOC < 1 tpy	
Truck Loading	none	N/A	1123	0.37	exempt due to VOC < 1 tpy	_
Drumming	none	N/A	400	0.18	exempt due to VOC < 1 tpy	•
LTC2 Barometric Tank	carbon bed	S110A	100	0.01	exempt due to VOC < 1 tpy	-
LTC4 Oil/Water Separator	carbon bed	S125	100	0.01	exempt due to VOC < 1 tpy	


WW Poly						PTE from IP-23 permit and ACHD TSD
Feed Dryers	condenser	S013	15	4.85	Case-by-case Analysis reg'd	Combine S013 & S013a for cost analysis; contaminants prevent
Feed Dryer Regeneration	none	S013a	6	0.01	Case-by-case Allalysis req u	combining with any other vents
East Pre-Blend Tank	condenser	S014	6	0.57	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
North Pre-Blend Tank	condenser	S015	6	0.57	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Slurry Tank	none	S016	4.6	0.02	exempt due to VOC < 1 tpy	PM in exhaust could contaminate polymerizate
North & South Reactors	condenser	S017		1.78	Presumptive RACT; no cost analysis	Can't combine with other vents due to presence of BF3
North Neutralizer	condenser	S018	45	0.31	exempt due to VOC < 1 tpy	PM in exhaust could contaminate polymerizate
Funda Filter Steam Out/Flushing	condenser	S019	4.8	0.01	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Funda Condensate Tank	carbon bed	S019a	1.3	0.00	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Filtrate Receiver	condenser	S020	260	5.11	Case-by-case Analysis req'd	Cross-contamination prevents combining with other vents
South Neutralizer	condenser	S021	45	0.31	exempt due to VOC < 1 tpy	PM in exhaust could contaminate polymerizate
Reclaim Pot	condenser	S022	4.6	0.13	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Solvent Wash Receiver	condenser	S023	167	7.52	Case-by-case Analysis req'd	Cross-contamination prevents combining with other vents
Storage Tanks 68/69/74	condenser	S024	1.8	1.37	Presumptive RACT; no cost analysis	Vents need to be separate to prevent RHS/HVD contamination
Storage Tanks 73/75/76/77	condenser	S025	3.6	5.45	Case-by-case Analysis req'd	Vents need to be separate to prevent RHS/HVD contamination
Storage Tank 67	condenser	S026	0.4	0.20	exempt due to VOC < 1 tpy	Vents need to be separate to prevent RHS/HVD contamination
East Filtrate Receiver	condenser	S027	167	5.51	Case-by-case Analysis req'd	Cross-contamination prevents combining with other vents
T-66	none	S228	4.4	0.30	exempt due to VOC < 1 tpy	Vents need to be separate to prevent RHS/HVD contamination
T-10	none	S195	2	0.29	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-22	none	S206		0.03	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-24	none	S208		0.03	exempt due to voc < 1 tpy	cross-contamination prevents combining with other vents
T-23	none	S207		0.03	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-25	none	S209		0.03	exempt due to voc < 1 tpy	Cross-contamination prevents combining with other vents
T-27	none	S211	7.4	0.04	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-26	none	S210	34			
T-28	none	S212	34	0.42	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-29	none	S213	34			
T-34	none	S074	2	0.27	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Tank 35	none	S075	5	1	Presumptive RACT; no cost analysis	PTE from Misc Equipment IP Application of 12/2019
T-71	none	S230		0.29	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-72	none	S231		0.42	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
	-			_	-	

	Existing VOC		Flow	VOC PTE		
VOC Process & Source Names	Controls	Stack ID	(acfm)	(tpy)	RACT2 Applicability	PTE Basis/Other Notes
T-200	none	S239	2			
T-201	none	S240	2	0.18	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
T-202	none	S241	2			
Tanks 204/205/206/207	carbon bed	S300	18.8	0.04	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
C5						PTE from IP-11d
C5 Poly Operations & 500 Series Tanks	thermal oxidizer	S044	20	0.26	exempt due to VOC < 1 tpy	Tanks include 501, 502, 503, 505 & 506 (all controlled by T.O.)
Resin Kettle #8	none	S052	0.22	0.38	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Resin Kettle #9	none	n/a	3.3	0.74	exempt due to VOC < 1 tpy	Cross-contamination prevents combining with other vents
Resin Kettle #10	none	n/a	3.3	1.07	Presumptive RACT; no cost analysis	Cross-contamination prevents combining with other vents
Sparkler Filter	condenser	S312		0.05	exempt due to VOC < 1 tpy	Distance makes combining impractical.
Sparkler Precoat	none	n/a		0.01	exempt due to VOC < 1 tpy	Only emissions are fugitive when changing filters. Not feasible to capture.
Raw Material Tanks (50, 52, 53, 54, 55 and 500)	floating roof tank	ıs n/a	20	7.81	Case-by-case Analysis req'd	No reasonable way to capture and control floating roof tanks
Resin Storage Tanks (121, 123, 124, 161, 366, 367, 504, 601 & 602)	none	n/a	36	3.78	exempt due to VOC < 1 tpy	Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy.
#1 & #2 Pastillating Belts & Drumming from Kettle 8	UHF Filter	S055	9000	7.44	Case-by-case Analysis reg'd	
Truck/Railcar Loading from Kettles 9 & 10	none	n/a		0.80	exempt due to VOC < 1 tpy	Cross-contamination and distance prevents combining with other vents
MP Poly						
IVIF FUIY						PTE from IP-22 TSD from ACHD
Reactor	scrubber	S029	NA		Presumptive RACT; no cost analysis	Can't combine with other vents due to presence of BF3
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk	none	S033	28 to 200	0.51	exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter	none condenser	S033 S034	28 to 200 113 to 200	0.51 10.33	exempt due to VOC < 1 tpy Case-by-case Analysis req'd	Can't combine with other vents due to presence of BF3
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer	none	S033	28 to 200 113 to 200 5	0.51 10.33 0.99	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter	none condenser	S033 S034	28 to 200 113 to 200	0.51 10.33 0.99	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer	none condenser condenser	S033 S034	28 to 200 113 to 200 5	0.51 10.33 0.99	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer	none condenser condenser	S033 S034	28 to 200 113 to 200 5	0.51 10.33 0.99	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer Tanks 301/302/303 WWTP	none condenser condenser	S033 S034	28 to 200 113 to 200 5	0.51 10.33 0.99	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy.
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer Tanks 301/302/303 WWTP Tanks T-701A & T-701B and Back Porch Sumps	none condenser condenser none	\$033 \$034 \$035	28 to 200 113 to 200 5 15	0.51 10.33 0.99 1.37	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy Presumptive RACT; no cost analysis	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy. PTE values from WWTP IP application, Jan 2020
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer Tanks 301/302/303 WWTP Tanks T-701A & T-701B and Back Porch Sumps	none condenser condenser none carbon bed	\$033 \$034 \$035 \$147	28 to 200 113 to 200 5 15	0.51 10.33 0.99 1.37	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy Presumptive RACT; no cost analysis exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy. PTE values from WWTP IP application, Jan 2020 Can't combine with any other WWTP source (all fugitive)
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer Tanks 301/302/303 WWTP Tanks T-701A & T-701B and Back Porch Sumps Tanks T-702A, T-702B, T-702C	none condenser condenser none carbon bed none	\$033 \$034 \$035 \$035 \$147 \$033, F034, F035	28 to 200 113 to 200 5 15	0.51 10.33 0.99 1.37	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy Presumptive RACT; no cost analysis exempt due to VOC < 1 tpy Case-by-case Analysis req'd	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy. PTE values from WWTP IP application, Jan 2020 Can't combine with any other WWTP source (all fugitive) Open top tanks - not feasible to capture emissions
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer Tanks 301/302/303 WWTP Tanks T-701A & T-701B and Back Porch Sumps Tanks T-702A , T-702B, T-702C Bio Aeration Tank	none condenser condenser none carbon bed none none	\$033 \$034 \$035 \$035 \$147 \$134, F033, F034, F035 F027	28 to 200 113 to 200 5 15	0.51 10.33 0.99 1.37 0.48 8.84 15.25	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy Presumptive RACT; no cost analysis exempt due to VOC < 1 tpy Case-by-case Analysis req'd Case-by-case Analysis req'd	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy. PTE values from WWTP IP application, Jan 2020 Can't combine with any other WWTP source (all fugitive) Open top tanks - not feasible to capture emissions Open top tanks - not feasible to capture emissions
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer Tanks 301/302/303 WWTP Tanks T-701A & T-701B and Back Porch Sumps Tanks T-702A, T-702B, T-702C Bio Aeration Tank Bio Clarifier	none condenser condenser none carbon bed none none	\$033 \$034 \$035 \$147 \$147 \$133, F034, F035 \$F027 \$F028	28 to 200 113 to 200 5 15	0.51 10.33 0.99 1.37 0.48 8.84 15.25 0.11	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy Presumptive RACT; no cost analysis exempt due to VOC < 1 tpy Case-by-case Analysis req'd Case-by-case Analysis req'd exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy. PTE values from WWTP IP application, Jan 2020 Can't combine with any other WWTP source (all fugitive) Open top tanks - not feasible to capture emissions Open top tanks - not feasible to capture emissions
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer Tanks 301/302/303 WWTP Tanks T-701A & T-701B and Back Porch Sumps Tanks T-702A , T-702B, T-702C Bio Aeration Tank Bio Clarifier Sludge Batch Tank	none condenser condenser none carbon bed none none none	\$033 \$034 \$035 \$147 \$147 \$6033, \$6034, \$6035 \$6027 \$6028 \$6036	28 to 200 113 to 200 5 15	0.51 10.33 0.99 1.37 0.48 8.84 15.25 0.11	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy Presumptive RACT; no cost analysis exempt due to VOC < 1 tpy Case-by-case Analysis req'd Case-by-case Analysis req'd exempt due to VOC < 1 tpy exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy. PTE values from WWTP IP application, Jan 2020 Can't combine with any other WWTP source (all fugitive) Open top tanks - not feasible to capture emissions Open top tanks - not feasible to capture emissions Open top tanks - not feasible to capture emissions Open top tanks - not feasible to capture emissions
Reactor Precoat Tk/Mole Sieve Drain Tk/ Contaminated Dryer Solv. Tk Neutralizer/Heel Tank/Solvent Wash Tank/Filt.Rec./Funda Filter Pre-Blend Tank/CaCl2 Dryer/Alumina Dryer Tanks 301/302/303 WWTP Tanks T-701A & T-701B and Back Porch Sumps Tanks T-702A , T-702B, T-702C Bio Aeration Tank Bio Clarifier Sludge Batch Tank Sludge Solids Handling	none condenser condenser none carbon bed none none none	\$033 \$034 \$035 \$147 \$147 \$6033, \$6034, \$6035 \$6027 \$6028 \$6036	28 to 200 113 to 200 5 15 15	0.51 10.33 0.99 1.37 0.48 8.84 15.25 0.11	exempt due to VOC < 1 tpy Case-by-case Analysis req'd exempt due to VOC < 1 tpy Presumptive RACT; no cost analysis exempt due to VOC < 1 tpy Case-by-case Analysis req'd Case-by-case Analysis req'd exempt due to VOC < 1 tpy exempt due to VOC < 1 tpy	Can't combine with other vents due to presence of BF3 Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination prevents combining with other vents Cross-contamination and distance prevents combining with other vents. Each tank is less than 1 tpy. PTE values from WWTP IP application, Jan 2020 Can't combine with any other WWTP source (all fugitive) Open top tanks - not feasible to capture emissions Open top tanks - not feasible to capture emissions Open top tanks - not feasible to capture emissions Open top tanks - not feasible to capture emissions

VOC Process & Source Names	Existing VOC Controls	Stack ID	Flow (acfm)	VOC PTE (tpy)	RACT2 Applicability	PTE Basis/Other Notes
Hydro						Preliminary PTE based on Dec 2019 testing, per Janice Kane email of 1/15/2020
Metering Tank/Tanks 103&104/Catalyst Catch Tank/Mott Filter/Heel Tank	condenser	S004	78	13	Case-by-case Analysis req'd	For purposes of RACT applicability and cost analyses, assume vents
Storage Tanks 100/101	condenser	S001	1	1.2	· · · ·	S004 amd S001 can be combined.
Storage Tanks 102/105/106	condenser	S012	2	6.3	Case-by-case Analysis req'd	Can't combine S012 with other vents due to contamination risk (102 and 105 are finished product tanks).
Vent Tank/Autoclave #1/Autoclave #2	condenser	S007	169	15	Case-by-case Analysis req'd	Can't combine with other vents due to presence of hydrogen (flammability and pressure issues)
Emulsion				0.67		PTE based on stack testing in 2007
RK1 RK2		unknown		0.67		Assume all vents can be combined
Blend Tanks 1, 2, 3, and 4		unknown S162		1.21 0.28		Assume all years can be combined
DIEHU TAHKS 1, 2, 5, AHU 4		Totals:			Presumptive RACT; no cost analysi	Assume all vents can be combined s VOC > 1 tpy, but < 2.7 tpy
Dresinate TX						
Double Drum Dryer	fume scrubber	S085	4000	5.48		Limit in IP-12a
Tank R-1-A	none	S187		0.01		
Tank 782	none	S290 Totals:		0.01 5.50	Case-by-case Analysis reg'd	VOC > 2.7 tpy
		i otais.		3.30	case-by-case Analysis req u	νος > 2.7 τμγ
Other Storage Tanks						
4	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
78	none	S232	5	<1	exempt due to VOC < 1 tpy	PTE from Misc Equipment IP Application of 12/2019
80	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
151	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
<u>208</u> <u>252</u>	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
252 261	none none			< 1 < 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
262				<1	exempt due to VOC < 1 tpy exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
263	none none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored Eastman judgement, based on material stored
264	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
265	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
365	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
511	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
761	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
764	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
766	none			<1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
775	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
783	none			< 1	exempt due to VOC < 1 tpy	Eastman judgement, based on material stored
Combustion Sources						PTE_Combustion_Sources_draft_20191127.xlsx
Unilux Boiler 1	none	S141		0.45	exempt due to VOC < 1 tpy	
Unilux Boiler 2	none	S141		0.45	exempt due to VOC < 1 tpy	

	Existing VOC		Flow	VOC PTE		
VOC Process & Source Names	Controls	Stack ID	(acfm)	(tpy)	RACT2 Applicability	PTE Basis/Other Notes
Unilux Boiler 3	none	S143		0.45	exempt due to VOC < 1 tpy	
Unilux Boiler 4	none	S143		0.45	exempt due to VOC < 1 tpy	
Trane Boiler	none	S144		0.92	exempt due to VOC < 1 tpy	
LTC 2 Heater	none	S107		0.16	exempt due to VOC < 1 tpy	
LTC 4 Heater	none	S119		0.24	exempt due to VOC < 1 tpy	
C5 Hot Oil Heater	none	S056		0.25	exempt due to VOC < 1 tpy	
C5 Oxidizer	none	S044	•	0.26	exempt due to VOC < 1 tpy	
Hydro Heater	none			0.48	exempt due to VOC < 1 tpy	

ATTACHMENT 2 Economic Analysis Tables

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	3.7	3.6
2.	Catalytic Oxidation	98.0	98.0	96.0	3.7	3.6
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	3.7	3.6
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	3.7	3.6
5.	Refrigerated Condenser	95.0	98.0	93.1	3.7	3.5
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	3.7	3.5
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	3.7	3.5
					*VOC Baseline =	3.8 tpy

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	4,410	425	119	134,852	37,705
2.	Refrigerated Condenser	14,851	1,431	413	136,399	39,342
3.	Thermal Oxidation	66,296	6,387	1,786	143,908	40,237
4.	Carbon Adsorption (Canister)	16,831	2,180	629	160,824	46,386
5.	Rotary Concentrator/Oxidizer	344,383	33,179	9,277	184,606	51,616
6.	Carbon Adsorption (Fixed Bed)	258,296	33,450	9,648	181,762	52,426
7.	Regenerative Thermal Oxidizer	548,250	52,820	14,768	213,682	59,746

^{*} PTE based on ACHD's TSD for IP-16a.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	0.8		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	92662.0	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	392.6	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	5312.1		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	0.0		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	1		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	2	
			Electricity	1	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	3,315	
Incinerator:			Capital recovery	6,387	=CRF x TCI
@ 0 % heat recovery:	0	Equation 2.29			
@ 35 % heat recovery:	0	Equation 2.30	Total Annual Cost	143,908	
@ 50 % heat recovery:	16,136	Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :	-				
Total Equipment Costbase:	16,136	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	35,559	=Base cost x inflation factor			
Purchased Equipment Cost (B):	41,959	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	66,296	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016			
Current Date:		1/15/2020			
Years since Cost Base Date:		4	Į.		
Average inflation rate/year, %:		2.5			
Inflation adjustment factor:		1.10			
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		1		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		392.57	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):		5312.1		Natural gas price (\$/mscf):	4.00
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050
Combustion temperature (oF):		1,400		Control system life (years):	15
Temperature leaving heat exchanger, Tw_o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.041	methane		
Pressure drop (in. w.c.):		19.0	Table 2.13		
				ANNUAL COSTS	
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)
Auxiliary Fuel Requirement:	(lb/min):	-0.015	Equation 2.21	Operating labor	26,280
	(scfm):	-0.36		Supervisory labor	3,942 Table 2.12
	(mcf/yr):	(188.6)		Maintenance labor	26,828
Total Maximum Exhaust Gas Flowrate:	(scfm):	0		Maintenance materials	26,828 Table 2.12
				Natural gas	(754)
CALCULATED CAPITAL COSTS				Electricity	1 Section 2.5.2.1
Oxidizer Equipment Cost (EC):				Overhead	50,326 Table 2.12
@ 85% heat recovery:		266,406	Equation 2.33	Taxes, insurance, administrative	27,413
@ 95% heat recovery:		0	Equation 2.33	Capital recovery	52,820 =CRF x TCI
Auxiliary equipment :		0		Total Annual Cost	213,682
Total Equipment Costbase:		266,406	=EC + Auxiliary costs		•
Total Equipment Costescalated (A):		•	=Base cost x inflation factor		
Purchased Equipment Cost (B):		· ·	=1.18A (Table 2.10)		
Total Capital Investment (TCI):		•	=1.58B (Table 2.10)		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	3			
Current Date:	1/15/2020)			
Years since Cost Base Date:	32	!			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	1		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Waste gas heat content (BTU/scf):	392.57	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):	5312.12		Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	0.0408	Methane	Capital recovery factor (system):	0.0963	
			Capital recovery factor (catalyst):	0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21			
(scfm):	0.0				
Total Gas Flowrate (scfm):	1		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	0.0		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942	Table 2.12
			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828	Table 2.12
Equipment Costs (\$):			Natural gas	1	
Incinerator:			Electricity	1	Section 2.
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	1	
@ 35 % heat recovery:	0	Equation 2.35	Overhead	50,326	Table 2.12
@ 50 % heat recovery:	1,073	Equation 2.36	Taxes, insurance, administrative	221	
@ 70 % heat recovery:	0	Equation 2.37	Capital recovery	425	=CRF x TC
Other equipment :	_		Total Annual Cost	134,852	
Total Equipment Costbase:	1,073	=EC + Auxiliary costs		•	
Total Equipment Costescalated (A):	· ·	=Base cost x inflation factor			
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	•	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	1	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	3.7	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	92,661.96 based on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.0 Section 2.5.2.1		
Fuel usage (Btu/hr)	120 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	97,120	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	175,663 inflation adjustment	Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	279,036 sty-cost.wk3	Natural gas	4
Total Capital Investment (TCI), (\$)	344,383 sty-cost.wk3	Electricity	1
		Overhead	50,326 Table 2.12

Total Annual Cost 184,606

17,219

33,179 = CRF x TCI

Taxes, insurance, administrative

Capital recovery

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020)			
Years since Cost Base Date:		5			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16	i e			
•					
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	1		Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	5,547	Equation 2.26
VOC to be condensed:	Toluene	!	Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
VOC inlet volume fraction:	0.092662		Multistage refrigeration unit:	0	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	6,934	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	8,041	inflation adjusted
A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	8,685	Equation 2.30
B:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	14,851	Table 2.3
C:	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	7.6830	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	35.8	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0113	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.001	Equation 2.10			
VOC condensed (lb-moles/hr):	0.010	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	0.9	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	16,763	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	234	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	7	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	127	Equation 2.17	Electricity	23	
Condenser heat load (BTU/hr):	368	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	743	
Log-mean temperature difference (oF):	59.7	Equation 2.19	Capital recovery	1,431	
Condenser surface area (ft2):	0.3	Equation 2.18			_
Coolant flowrate (lb/hr):	23	Equation 2.22	Total Annual Cost (without credits)	136,399	
Refrigeration capacity (tons):	0.03	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration)	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	136,399	
			·		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020)			
Years since Cost Base Date:	21	L			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68	3			
INPUT PARAMETERS:	_		ANNUAL COST INPUTS:	0750	
Inlet stream flowrate (acfm):	1		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	0.85		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	9.27E-02		Steam price (\$/1000 lb):		Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	92662.0		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	1.3618		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	3.72		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	<u> </u>	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):	0.570	Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):		50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:		Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):	54	Equation 1.14	Electricity	,	Section 1.8.1.3
Carbon requirement per vessel (lb):	18	4	Steam		Equation 1.28
Gas flowrate per adsorbing vessel (acfm):		Vertical vessel, flow under 9000 cfm	Cooling water		Equation 1.29
Adsorber vessel diameter (ft):		Equation 1.18 or 1.21	Carbon replacement		Equation 1.38
Adsorber vessel length or height (ft):		Equation 1.19 or 1.23	Overhead	50,326	
Adsorber vessel surface area (ft2):		Equation 1.24	Taxes, insurance, administrative	12,915	
Carbon bed depth (ft):		Equation 1.31	Capital recovery	33,450	
Carbon bed pressure drop (in. w.c.):		Equation 1.30		30,.50	_
ca. 20.1. 20a p. 233a. 2 a. 3p (1101).	0,013.12	24000011200	Total Annual Cost (without credits)	181,762	
CAPITAL COSTS:			Recovery credits	,	Recovered solvent not re-sold
Adsorber vessels	15,004	Equation 1.25	Total Annual Cost (with credits)	181,762	
Carbon	67	Equation 1.16			
Auxiliary equipment (ductwork, etc.)	0				
Total equipment cost (\$)base:	90,356	Equation 1.27			
Total equipment cost (\$)escalated:	151,760	apply inflation factor			
Purchased Equipment Cost (\$):	174,524	Table 1.4 (less sales taxes)			
Total Capital Investment (\$):	258,296	· · · · · · · · · · · · · · · · · · ·			

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	1		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	0.85		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	9.27E-02		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	92662.0		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	1.3618		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	3.72		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	500 Op	perating hours between carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	O Reg	egenerated off-site	Capital recovery factor (carbon):	0.5378	
Number of canisters:	2 On	nly one online at a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0 def	efault, page 1-35			
Carbon price (\$/lb):	1.25 rea	activated, page 1-6			
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.570 Equ	quation 1.1 and Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.285 509	0% of equilibrium capacity	Operating labor	26,280	
Number of desorbing vessels:	0 Reg	egenerated off-site	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	1,492 Equ	uation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	18		Electricity	707	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	26,848 Lbs	s per replacement times number of replacements	Carbon replacement	22,893	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	842	
Adsorber vessels (includes cost of carbon)	1,570 Tab	ables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	2,180	
Auxiliary equipment (ductwork, etc.)	0				_
Total equipment cost (\$)base:	9,413 Equ	quation 1.27	Total Annual Cost (without credits)	160,824	
Total equipment cost (\$)escalated:	9,889 app	pply inflation factor	Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	11,373 Tal	able 1.4 (less sales taxes)	Total Annual Cost (with credits)	160,824	
Total Capital Investment (\$):	16,831 Tab	able 1.4			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	7.9	7.6
2.	Catalytic Oxidation	98.0	98.0	96.0	7.9	7.6
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	7.9	7.6
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	7.9	7.6
5.	Refrigerated Condenser	95.0	98.0	93.1	7.9	7.4
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	7.9	7.4
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	7.9	7.4
					*VOC Baseline =	8.1 tpy

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	9,717	936	123	135,637	17,814
2.	Refrigerated Condenser	28,589	2,754	373	138,457	18,758
3.	Thermal Oxidation	94,508	9,105	1,196	148,047	19,443
4.	Rotary Concentrator/Oxidizer	344,461	33,186	4,358	184,634	24,249
5.	Carbon Adsorption (Fixed Bed)	242,352	31,386	4,252	179,679	24,343
6.	Carbon Adsorption (Canister)	12,786	1,656	224	190,426	25,799
7.	Regenerative Thermal Oxidizer	548,311	52,826	6,938	212,866	27,956

^{*} PTE based on ACHD's TSD for IP-16a.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	3		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):		includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):		includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):		Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	47823.6	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	202.6	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	2741.6		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	0.0		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	3		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	10	
			Electricity	4	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	4,725	
Incinerator:			Capital recovery	9,105	=CRF x TCI
@ 0 % heat recovery:		Equation 2.29			
@ 35 % heat recovery:		Equation 2.30	Total Annual Cost	148,047	
@ 50 % heat recovery:		Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :	_				
Total Equipment Costbase:	23 002	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)			
Total Capital Investment (TCI):		=1.58B (Table 2.10)			
	5 .,500				

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Average inflation rate/year, %:		2.5				
Inflation adjustment factor:		1.10				
INPUT PARAMETERS				ANNUAL COST INPUTS		
Exhaust Gas flowrate (scfm):		3		Operating factor (hr/yr):	8,760	
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00	
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12	
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12	
Waste gas heat content, annual avg. (BTU/scf):		202.61	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):		2741.6		Natural gas price (\$/mscf):	4.00	
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050	
Combustion temperature (oF):		1,400		Control system life (years):	15	
Temperature leaving heat exchanger, Two (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963	
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05	
Fuel density (lb/ft3):		0.041	methane			
Pressure drop (in. w.c.):		19.0	Table 2.13			
				ANNUAL COSTS		
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)	
Auxiliary Fuel Requirement:	(lb/min):		Equation 2.21	Operating labor	26,280	
	(scfm):	-0.75		Supervisory labor	3,942 Table 2.12	
Tabel Marker of Edward Confloration	(mcf/yr):	(395.8)		Maintenance labor	26,828	
Total Maximum Exhaust Gas Flowrate:	(scfm):	3		Maintenance materials	26,828 Table 2.12	
				Natural gas	(1,583)	
				=1		
CALCULATED CAPITAL COSTS				Electricity	5 Section 2.5.2.1	
Oxidizer Equipment Cost (EC):		266 426	Fauntian 2.22	Overhead	50,326 Table 2.12	
Oxidizer Equipment Cost (EC): @ 85% heat recovery:			Equation 2.33	Overhead Taxes, insurance, administrative	50,326 Table 2.12 27,416	
Oxidizer Equipment Cost (EC):			Equation 2.33 Equation 2.33	Overhead	50,326 Table 2.12	
Oxidizer Equipment Cost (EC): @ 85% heat recovery:				Overhead Taxes, insurance, administrative	50,326 Table 2.12 27,416	
Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery:		0		Overhead Taxes, insurance, administrative Capital recovery	50,326 Table 2.12 27,416 52,826 = CRF x TCI	
Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment :		0 0 266,436	Equation 2.33	Overhead Taxes, insurance, administrative Capital recovery	50,326 Table 2.12 27,416 52,826 = CRF x TCI	
Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment: Total Equipment Cost—base:		0 266,436 294,095	Equation 2.33 =EC + Auxiliary costs	Overhead Taxes, insurance, administrative Capital recovery	50,326 Table 2.12 27,416 52,826 = CRF x TCI	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	1/13/2020				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
imation adjustment factor.	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	3		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5 Table	e 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5 Table	e 2.12
Waste gas heat content (BTU/scf):	202.61	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):	2741.63	·	Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	0.0408	Methane	Capital recovery factor (system):	0.0963	
, , ,			Capital recovery factor (catalyst):	0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21			
(scfm):	0.0	•			
Total Gas Flowrate (scfm):	3		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	0.0		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942 Table	e 2.12
. , ,			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828 Table	e 2.12
Equipment Costs (\$):			Natural gas	6	
Incinerator:			Electricity	4 Secti	ion 2.5.2.
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	2	
@ 35 % heat recovery:		Equation 2.35	Overhead	50,326 Table	e 2.12
@ 50 % heat recovery:		Equation 2.36	Taxes, insurance, administrative	486	
@ 70 % heat recovery:	•	Equation 2.37	Capital recovery	936 =CRF	x TCI
Other equipment			Total Annual Cost	125 627	
Other equipment:	2.205	EC . A	Total Annual Cost	135,637	
Total Equipment Costbase:	·	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	9,717	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	3	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	7.9	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	47,823.62 based on Toluen	e Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (cataly	rtic) Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.0 Section 2.5.2.1		
Fuel usage (Btu/hr)	495 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	97,141	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	175,701 inflation adjustm	ent Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	279,101 sty-cost.wk3	Natural gas	17
Total Capital Investment (TCI), (\$)	344,461 sty-cost.wk3	Electricity	4
		Overhead	50,326 Table 2.12

Total Annual Cost 184,634

17,223

33,186 = CRF x TCI

Taxes, insurance, administrative

Capital recovery

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser		
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA		

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:		i			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	3		Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	10,679	Equation 2.26
VOC to be condensed:	Toluene		Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
VOC inlet volume fraction:	0.047824		Multistage refrigeration unit:	0	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	13,348	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	15,480	inflation adjusted
A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	16,718	Equation 2.30
B:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	28,589	Table 2.3
C:	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	3.7981	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	16.6	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0242	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.002	Equation 2.10			
VOC condensed (lb-moles/hr):	0.022	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	2.0	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	16,975	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	519	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	17	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	613	Equation 2.17	Electricity	71	
Condenser heat load (BTU/hr):	1,148	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	1,429	
Log-mean temperature difference (oF):	64.7	Equation 2.19	Capital recovery	2,754	_
Condenser surface area (ft2):	0.9	Equation 2.18			
Coolant flowrate (lb/hr):	71	Equation 2.22	Total Annual Cost (without credits)	138,457	
Refrigeration capacity (tons):	0.10	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration)	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	138,457	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999	9			
Current Date:	1/15/2020)			
Years since Cost Base Date:	21	I.			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68	3			
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	3		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.81		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	4.78E-02		Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	47823.6		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.7028		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	7.93		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5		Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):		reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:		stainless steel 316, Table 1.3	,,		
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):	0.530	Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):	0.265	50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:	1	Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):	123	Equation 1.14	Electricity	930	Section 1.8.1.3
Carbon requirement per vessel (lb):	41		Steam	277	Equation 1.28
Gas flowrate per adsorbing vessel (acfm):	2	Vertical vessel, flow under 9000 cfm	Cooling water	676	Equation 1.29
Adsorber vessel diameter (ft):	0.17	Equation 1.18 or 1.21	Carbon replacement	89	Equation 1.38
Adsorber vessel length or height (ft):	67.09	Equation 1.19 or 1.23	Overhead	50,326	
Adsorber vessel surface area (ft2):	35.32	Equation 1.24	Taxes, insurance, administrative	12,118	
Carbon bed depth (ft):		Equation 1.31	Capital recovery	31,386	
Carbon bed pressure drop (in. w.c.):		Equation 1.30	- '	<u> </u>	_
		4	Total Annual Cost (without credits)	179,679	
CAPITAL COSTS:			Recovery credits \	•	Recovered solvent not re-sold
Adsorber vessels	16,920	Equation 1.25	Total Annual Cost (with credits)	179,679	
Carbon	154	Equation 1.16			
Auxiliary equipment (ductwork, etc.)	0				
Total equipment cost (\$)base:	84,778	Equation 1.27			
Total equipment cost (\$)escalated:	142,392	apply inflation factor			
Purchased Equipment Cost (\$):	163,751	Table 1.4 (less sales taxes)			
Total Capital Investment (\$):	242,352	· · · · · · · · · · · · · · · · · · ·			
1 111	,				

Total Capital Investment (\$):

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	3		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.81		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	4.78E-02		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	47823.6		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.7028		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	7.93		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	350 Operating hours be	etween carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	0 Regenerated off-si	ite	Capital recovery factor (carbon):	0.5378	
Number of canisters:	2 Only one online at	a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0 default, page 1-35				
Carbon price (\$/lb):	1.25 reactivated, page 1	1-6			
, ,,,,					
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.530 Equation 1.1 and T	Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.265 50% of equilibrium	n capacity	Operating labor	26,280	
Number of desorbing vessels:	O Regenerated off-si	ite	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	2,391 Equation 1.14 (at 3	350 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	26		Electricity	930	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	62,154 Lbs per replaceme	ent times number of replacements	Carbon replacement	52,998	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	639	
Adsorber vessels (includes cost of carbon)	1,440 Tables 1.5 & 1.6 (b	pased on carbon requirement)	Capital recovery	1,656	
Auxiliary equipment (ductwork, etc.)	0				_
Total equipment cost (\$)base:	7,150 Equation 1.27		Total Annual Cost (without credits)	190,426	
Total equipment cost (\$)escalated:	7,512 apply inflation fact	tor	Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	8,639 Table 1.4 (less sale	es taxes)	Total Annual Cost (with credits)	190,426	

12,786 Table 1.4

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	2.7	2.6
2.	Catalytic Oxidation	98.0	98.0	96.0	2.7	2.6
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	2.7	2.6
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	2.7	2.6
5.	Refrigerated Condenser	95.0	98.0	93.1	2.7	2.6
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	2.7	2.4
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	2.7	2.4
					*VOC Baseline =	2.8 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Carbon Adsorption (Fixed Bed)	255,487	33,087	13,671	180,804	74,706
2.	Rotary Concentrator/Oxidizer	442,303	42,612	16,170	219,307	83,218
3.	Carbon Adsorption (Canister)	304,382	39,419	16,287	232,465	96,052
4.	Catalytic Oxidation	443,144	42,284	16,045	254,524	96,581
5.	Regenerative Thermal Oxidizer	637,930	61,460	23,321	270,055	102,474
6.	Thermal Oxidation	525,682	50,645	19,218	311,632	118,251
7.	Refrigerated Condenser	3,997,791	385,156	150,766	1,296,659	507,565

^{*} PTE based on sum of #1 and #2 LTC Belts; taken from ACHD's TSD for IP-16a.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	3,100		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	17.6	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	1.0	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	13.5		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	1.881	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	46.1		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	3,146		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	96,952	
			Electricity	-,-	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	,	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	26,284	
Incinerator:			Capital recovery	50,645	=CRF x TCI
@ 0 % heat recovery:		Equation 2.29			
@ 35 % heat recovery:		Equation 2.30	Total Annual Cost	311,632	
@ 50 % heat recovery:	•	Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :	-				
Total Equipment Costbase:	127,944	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	281,958	=Base cost x inflation factor			
Purchased Equipment Cost (B):	332,710	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	525,682	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST DEFEDENCE DATE*.		2016			
COST REFERENCE DATE*:					
Current Date:		1/15/2020			
Years since Cost Base Date:		4			
Average inflation rate/year, %:		2.5			
Inflation adjustment factor:		1.10			
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		3,100		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		1.00	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):		13.5		Natural gas price (\$/mscf):	4.00
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050
Combustion temperature (oF):		1,400		Control system life (years):	15
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.041	methane		
Pressure drop (in. w.c.):		19.0	Table 2.13		
				ANNUAL COSTS	
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)
Auxiliary Fuel Requirement:	(lb/min):	0.717	Equation 2.21	Operating labor	26,280
	(scfm):	17.57		Supervisory labor	3,942 Table 2.12
	(mcf/yr):	9,232.6		Maintenance labor	26,828
Total Maximum Exhaust Gas Flowrate:	(scfm):	3,118		Maintenance materials	26,828 Table 2.12
				Natural gas	36,930
CALCULATED CAPITAL COSTS				Electricity	5,565 Section 2.5.2.1
Oxidizer Equipment Cost (EC):				Overhead	50,326 Table 2.12
Oxidizer Equipment Cost (EC): @ 85% heat recovery	:	309,984	Equation 2.33	Overhead Taxes, insurance, administrative	50,326 Table 2.12 31,897
		· ·	Equation 2.33 Equation 2.33		•
@ 85% heat recovery		· ·	·	Taxes, insurance, administrative	31,897 61,460 = CRF x TCI
@ 85% heat recovery @ 95% heat recovery Auxiliary equipment :		0	Equation 2.33	Taxes, insurance, administrative Capital recovery	31,897
@ 85% heat recovery @ 95% heat recovery Auxiliary equipment: Total Equipment Costbase:		0 0 309,984	Equation 2.33 =EC + Auxiliary costs	Taxes, insurance, administrative Capital recovery	31,897 61,460 = CRF x TCI
@ 85% heat recovery @ 95% heat recovery Auxiliary equipment: Total Equipment Costbase: Total Equipment Costescalated (A):		0 309,984 342,164	Equation 2.33 =EC + Auxiliary costs =Base cost x inflation factor	Taxes, insurance, administrative Capital recovery	31,897 61,460 = CRF x TCI
@ 85% heat recovery @ 95% heat recovery Auxiliary equipment: Total Equipment Cost—base:		0 309,984 342,164 403,753	Equation 2.33 =EC + Auxiliary costs	Taxes, insurance, administrative Capital recovery	31,897 61,460 = CRF x TCI

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	3			
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20)			
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	3,100		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Waste gas heat content (BTU/scf):	1.00	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):	13.53		Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/Ib-oF):	0.26	air	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	0.0408	Methane	Capital recovery factor (system):	0.0963	
			Capital recovery factor (catalyst):	0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.960	Equation 2.21			
(scfm):	23.5				
Total Gas Flowrate (scfm):	3,124		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	6.0		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942	Table 2.12
			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828	Table 2.12
Equipment Costs (\$):			Natural gas	49,487	
Incinerator:			Electricity	4,108	Section 2.5.2.1
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	2,284	
@ 35 % heat recovery:	0	Equation 2.35	Overhead	50,326	Table 2.12
@ 50 % heat recovery:	107,855	Equation 2.36	Taxes, insurance, administrative	22,157	
@ 70 % heat recovery:	0	Equation 2.37	Capital recovery	42,284	=CRF x TCI
					_
Other equipment :	-		Total Annual Cost	254,524	
Total Equipment Costbase:	•	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Purchased Equipment Cost (B):	280,471	=1.18A (Table 2.10)			

443,144 =1.58B (Table 2.10)

Total Capital Investment (TCI):

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996			
Current Date:	1/15/2020			
Years since Cost Base Date:	24			
Average inflation rate/year, %:	2.5			
Inflation adjustment factor:	1.81			
PARAMETERS			ANNUAL COST INPUTS	
Flowrate (cfm)	3,100		Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	2.7		Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	17.62 ba	ased on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760		Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400		Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00		Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055		Natural gas price (\$/mscf):	4.00
			Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS			Control system life (years):	15
Heat recovery (%)	50		Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Ta	able 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	8.5 Se	ection 2.5.2.1		
Fuel usage (Btu/hr)	465,154 E	quation 2.21		
			ANNUAL OPERATING COSTS	
CAPITAL COSTS			Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	123,101		Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	222,657 in	nflation adjustment	Maintenance labor	26,828
Other equipment:	0		Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	359,475 st	ty-cost.wk3	Natural gas	16,299
Total Capital Investment (TCI), (\$)	442,303 st	ty-cost.wk3	Electricity	4,077
			Overhead	50,326 Table 2.12
			Taxes, insurance, administrative	22,115
			Capital recovery	42,612 =CRF x TCI

Total Annual Cost 219,307

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:	1/13/2020				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
imation adjustment factor.	1.10)			
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	3,100)	Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	0	Equation 2.26
VOC to be condensed:	Toluene	!	Refrigeration unit/single-stage (> 10 tons):	630,817	Equation 2.27
VOC inlet volume fraction:	0.000018		Multistage refrigeration unit:	1,493,300	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	1,866,625	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	2,164,712	inflation adjusted
A	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	2,337,889	Equation 2.30
B	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	3,997,791	Table 2.3
C	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	0.0013	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	-116.8	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0084	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.001	Equation 2.10			
VOC condensed (lb-moles/hr):	0.008	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	0.7	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	18,346	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	227	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	10	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	1,044,559	Equation 2.17	Electricity	577,410	
Condenser heat load (BTU/hr):	1,044,796	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	199,890	
Log-mean temperature difference (oF):	96.7	Equation 2.19	Capital recovery	385,156	_
Condenser surface area (ft2):	540.4	Equation 2.18			
Coolant flowrate (lb/hr):	64,295	Equation 2.22	Total Annual Cost (without credits)	1,296,659	
Refrigeration capacity (tons):	87.07	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration) 11.7	Table 2.5 (see below)	Total Annual Cost (with credits)	1,296,659	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020				
Years since Cost Base Date:	21	L			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68	3			
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	3,100		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	0.63		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	1.76E-05		Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	17.6		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0003		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	2.74		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	Regenerated off-site	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN DADAMETERS			444444 COSTS		
DESIGN PARAMETERS:	0.000		ANNUAL COSTS:	26.222	
Carbon adsorptivity (lb Toluene/lb carbon):		Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):		50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:		Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):		Equation 1.14	Electricity		Section 1.8.1.3
Carbon requirement per vessel (lb):	34		Steam		Equation 1.28
Gas flowrate per adsorbing vessel (acfm):	1,550	Vertical vessel, flow under 9000 cfm	Cooling water		Equation 1.29
Adsorber vessel diameter (ft):		Equation 1.18 or 1.21	Carbon replacement		Equation 1.38
Adsorber vessel length or height (ft):		Equation 1.19 or 1.23	Overhead	50,326	
Adsorber vessel surface area (ft2):	122.79	Equation 1.24	Taxes, insurance, administrative	12,774	
Carbon bed depth (ft):	0.055	Equation 1.31	Capital recovery	33,087	<u>_</u>
Carbon bed pressure drop (in. w.c.):	1.184	Equation 1.30			
CAPITAL COSTS:			Total Annual Cost (without credits) Recovery credits	180,804	Recovered solvent not re-sold
Adsorber vessels	44.607	Equation 1.25	Total Annual Cost (with credits)	180,804	
Carbon		Equation 1.16			
Auxiliary equipment (ductwork, etc.)	0	•			
Total equipment cost (\$)base:		Equation 1.27			
Total equipment cost (\$):-base. Total equipment cost (\$):-escalated:		apply inflation factor			
Purchased Equipment Cost (\$):		Table 1.4 (less sales taxes)			
		· · · · · · · · · · · · · · · · · · ·			
Total Capital Investment (\$):	255,487	Table 1.4			

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018		
Current Date:	1/15/2020		
Years since Cost Base Date:	2		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.05		
INPUT PARAMETERS:		ANNUAL COST INPUTS:	
Inlet stream flowrate (acfm):	3,100	Operating factor (hr/yr):	8760
Inlet stream temperature (oF):	200	Operating labor rate (\$/hr):	48.00
Inlet stream pressure (atm):	1	Maintenance labor rate (\$/hr):	49.00
VOC to be condensed:	Toluene	Operating labor factor (hr/sh):	0.5
Inlet VOC flowrate (avg. lb/hr):	0.63	Maintenance labor factor (hr/sh):	0.5
VOC molecular weight (lb/lb-mole):	92	Electricity price (\$/kWhr):	0.055
VOC inlet volume fraction:	1.76E-05	Recovered VOC value (\$/lb):	
VOC inlet concentration (ppmv):	17.6	Overhead rate (fraction):	0.6
VOC inlet partial pressure (psia):	0.0003	Annual interest rate (fraction):	0.05
Required VOC removal (fraction):	0.90	Control system life (years):	10.0
Annual VOC inlet (tons):	2.74	Capital recovery factor (system):	0.1295
Total Adsorption time per canister (hr):	1,000 Operating hours between carbon replacement	Carbon life (years):	2.0
Desorption time (hr):	0 Regenerated off-site	Capital recovery factor (carbon):	0.5378
Number of canisters:	2 Only one online at a time	Taxes, insurance, admin. factor:	0.050
Superficial carbon bed velocity (ft/min):	75.0 default, page 1-35		
Carbon price (\$/lb):	1.25 reactivated, page 1-6		
DESIGN PARAMETERS:			
Carbon adsorptivity (lb Toluene/lb carbon):	0.222 Equation 1.1 and Table 1.2	ANNUAL COSTS:	
Carbon working capacity (lb VOC/lb carbon):	0.111 50% of equilibrium capacity	Operating labor	26,280
Number of desorbing vessels:	O Regenerated off-site	Supervisory labor	3,942
Total number of vessels:	2	Maintenance labor	26,828
Total Carbon needed per replacement cycle (lb):	5,641 Equation 1.14 (at 1000 adsorption hrs/cycle)	Maintenance materials	26,828
Number of carbon replacements per year:	9	Electricity	336 Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	50,767 Lbs per replacement times number of replaceme	nts Carbon replacement	43,288 Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326
CAPITAL COSTS:		Taxes, insurance, administrative	15,219
Adsorber vessels (includes cost of carbon)	85,200 Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	39,419
Auxiliary equipment (ductwork, etc.)	0		
Total equipment cost (\$)base:	170,220 Equation 1.27	Total Annual Cost (without credits)	232,465
Total equipment cost (\$)escalated:	178,838 apply inflation factor	Recovery credits	Recovered solvent not re-sold
Purchased Equipment Cost (\$):	205,663 Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	232,465
Total Capital Investment (\$):	304,382 Table 1.4		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

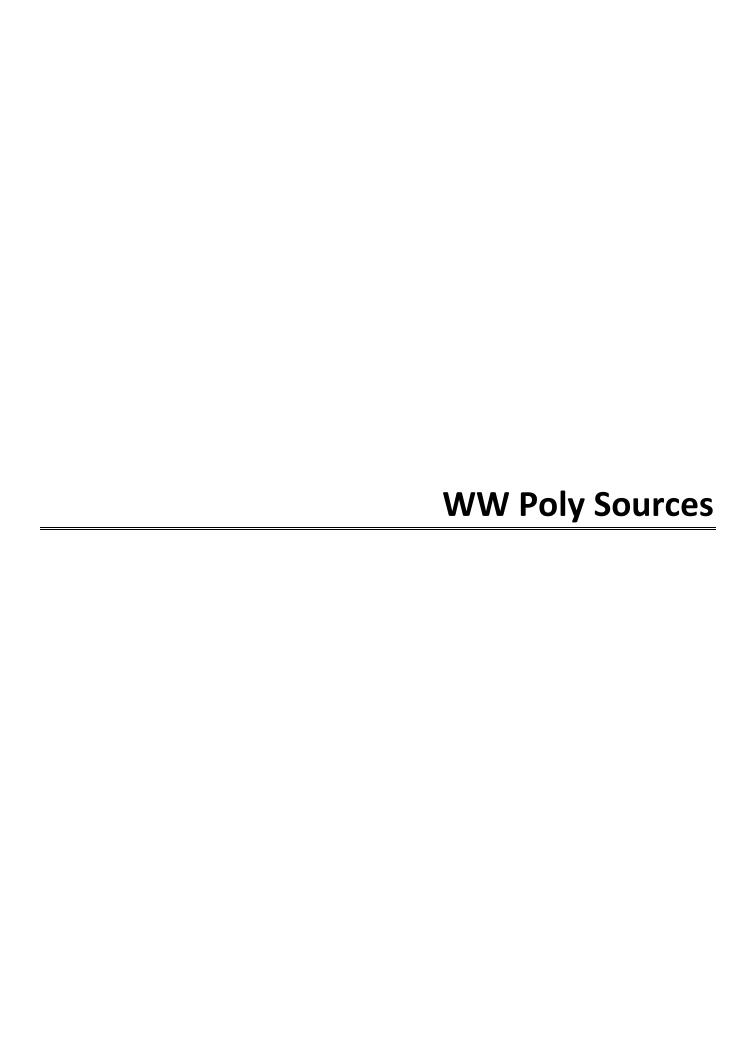


Table 1. VOC Control Technology Cost Analysis, WW Poly, Feed Dryers and Regeneration Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Stack ID: S013 & S013a

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	4.8	4.6
2.	Catalytic Oxidation	98.0	98.0	96.0	4.8	4.6
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	4.8	4.6
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	4.8	4.6
5.	Refrigerated Condenser	95.0	98.0	93.1	4.8	4.4
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	4.8	4.4
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	4.8	4.4
					*VOC Baseline =	4.9 tpy

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	27,266	2,624	574	138,270	30,228
2.	Refrigerated Condenser	103,560	9,977	2,250	149,704	33,761
3.	Thermal Oxidation	150,160	14,467	3,163	156,264	34,162
4.	Carbon Adsorption (Fixed Bed)	107,591	13,933	3,142	154,297	34,797
5.	Rotary Concentrator/Oxidizer	345,018	33,240	7,267	184,832	40,408
6.	Regenerative Thermal Oxidizer	548,832	52,876	11,560	213,879	46,758
7.	Carbon Adsorption (Canister)	1,312,009	169,911	38,319	417,479	94,151

^{*} PTE based on ACHD's TSD for IP-23.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	21.0		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):		includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):		includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):		Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):		Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):		Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	4514.7	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	19.1	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	258.8		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.001	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	0.0		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	21		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	63	
			Electricity	24	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	7,508	
Incinerator:			Capital recovery	14,467	=CRF x TCI
@ 0 % heat recovery:	0	Equation 2.29			_
@ 35 % heat recovery:	0	Equation 2.30	Total Annual Cost	156,264	
@ 50 % heat recovery:	36,547	Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :	-				
Total Equipment Costbase:	•	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Purchased Equipment Cost (B):		=1.18A (Table 2.10)			
Total Capital Investment (TCI):	150,160	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016			
Current Date:		1/15/2020			
Years since Cost Base Date:		1/15/2020			
Average inflation rate/year, %:		2.5			
Inflation adjustment factor:		1.10			
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		21		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		19.13	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):		258.8		Natural gas price (\$/mscf):	4.00
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050
Combustion temperature (oF):		1,400		Control system life (years):	15
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.041	methane		
Pressure drop (in. w.c.):					
Pressure drop (in. w.c.):		19.0	Table 2.13		
Pressure drop (in. w.c.).		19.0	Table 2.13	ANNUAL COSTS	
CALCULATED UTILITY USAGES		19.0	Table 2.13	ANNUAL COSTS	Cost (\$/yr)
	(lb/min):		Table 2.13 Equation 2.21		Cost (\$/yr) 26,280
CALCULATED UTILITY USAGES	(lb/min): (scfm):			Item	
CALCULATED UTILITY USAGES	,	-0.013	Equation 2.21	Item Operating labor	26,280
CALCULATED UTILITY USAGES	(scfm):	-0.013 -0.32	Equation 2.21	Item Operating labor Supervisory labor	26,280 3,942 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement:	(scfm): (mcf/yr):	-0.013 -0.32 (169.5)	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor	26,280 3,942 Table 2.12 26,828
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement:	(scfm): (mcf/yr):	-0.013 -0.32 (169.5)	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate:	(scfm): (mcf/yr):	-0.013 -0.32 (169.5)	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 (678)
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS	(scfm): (mcf/yr): (scfm):	-0.013 -0.32 (169.5) 21	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 (678) 37 Section 2.5.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC):	(scfm): (mcf/yr): (scfm):	-0.013 -0.32 (169.5) 21	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 (678) 37 Section 2.5.2.1 50,326 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery:	(scfm): (mcf/yr): (scfm):	-0.013 -0.32 (169.5) 21 266,689 0	Equation 2.21 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 (678) 37 Section 2.5.2.1 50,326 Table 2.12 27,442 52,876 = CRF x TCI
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment:	(scfm): (mcf/yr): (scfm):	-0.013 -0.32 (169.5) 21 266,689 0	Equation 2.21 Equation 2.33 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 (678) 37 Section 2.5.2.1 50,326 Table 2.12 27,442
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment: Total Equipment Cost—base:	(scfm): (mcf/yr): (scfm):	-0.013 -0.32 (169.5) 21 266,689 0	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 (678) 37 Section 2.5.2.1 50,326 Table 2.12 27,442 52,876 = CRF x TCI
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment : Total Equipment Costbase: Total Equipment Costescalated (A):	(scfm): (mcf/yr): (scfm):	-0.013 -0.32 (169.5) 21 266,689 0 266,689 294,375	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs =Base cost x inflation factor	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 (678) 37 Section 2.5.2.1 50,326 Table 2.12 27,442 52,876 = CRF x TCI
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment: Total Equipment Cost—base:	(scfm): (mcf/yr): (scfm):	-0.013 -0.32 (169.5) 21 266,689 0 266,689 294,375 347,362	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 (678) 37 Section 2.5.2.1 50,326 Table 2.12 27,442 52,876 = CRF x TCI

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	2		
Current Date:	1/15/2020			
Years since Cost Base Date:	1/15/2020			
Average inflation rate/year, %:	2.5			
Inflation adjustment factor:	2.20			
illiation adjustifient factor.	2.20	,		
INPUT PARAMETERS			ANNUAL COST INPUTS	
Gas flowrate (scfm):	21		Operating factor (hr/yr):	8760
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content (BTU/scf):	19.13	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):	258.82		Catalyst price (\$/ft3):	650
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2
Fuel density (lb/ft3):		Methane	Capital recovery factor (system):	0.0963
			Capital recovery factor (catalyst):	0.5378
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05
Auxiliary Fuel Needed (lb/min):	0.001	Equation 2.21		
(scfm):	0.0			
Total Gas Flowrate (scfm):	21		CALCULATED ANNUAL COSTS	
Catalyst Volume (ft3):	0.0		Operating labor	26,280
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942 Table 2.12
			Maintenance labor	26,828
CALCULATED CAPITAL COSTS			Maintenance materials	26,828 Table 2.12
Equipment Costs (\$):			Natural gas	37
Incinerator:			Electricity	28 Section 2.5.2
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	15
@ 35 % heat recovery:		Equation 2.35	, Overhead	50,326 Table 2.12
@ 50 % heat recovery:	6,636	Equation 2.36	Taxes, insurance, administrative	1,363
@ 70 % heat recovery:	•	Equation 2.37	Capital recovery	2,624 =CRF x TCI
Other equipment :	_		Total Annual Cost	138,270
Total Equipment Costbase:	6 636	=EC + Auxiliary costs		-,
Total Equipment Costescalated (A):	•	=Base cost x inflation factor		
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)		
	•			
Total Capital Investment (TCI):	27,266	=1.58B (Table 2.10)		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	21	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	4.8	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	4,514.66 based on	Toluene Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.1	3 (catalytic) Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.1 Section 2	.5.2.1	
Fuel usage (Btu/hr)	3,151 Equation	2.21	
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	97,288	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	175,968 inflation	adjustment Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	279,558 sty-cost.v	vk3 Natural gas	110
Total Capital Investment (TCI), (\$)	345,018 sty-cost.	vk3 Electricity	28
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	17,251
		Capital recovery	33,240 =CRF x TCI
		'	,

Total Annual Cost 184,832

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6. Total Annual Cost Spreadsheet - Packaged Condenser

Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:	1/13/2020				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
imation adjustment factor.	1.10	,			
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	21	L	Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	38,683	Equation 2.26
VOC to be condensed:	Toluene		Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
VOC inlet volume fraction:	0.004515		Multistage refrigeration unit:	27,030	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	48,353	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	56,075	inflation adjusted
A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	60,561	Equation 2.30
В:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	103,560	Table 2.3
C:	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	0.3445	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	-36.7	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0145	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.001	Equation 2.10			
VOC condensed (lb-moles/hr):	0.013	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	1.2	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	17,544	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	345	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	13	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	5,264	Equation 2.17	Electricity	345	
Condenser heat load (BTU/hr):	5,622	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	5,178	
Log-mean temperature difference (oF):	78.0	Equation 2.19	Capital recovery	9,977	_
Condenser surface area (ft2):	3.6	Equation 2.18			_
Coolant flowrate (lb/hr):	346	Equation 2.22	Total Annual Cost (without credits)	149,704	
Refrigeration capacity (tons):	0.47	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	149,704	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999)			
Current Date:	1/15/2020)			
Years since Cost Base Date:	21	I.			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68	3			
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	21		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.09		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	4.51E-03		Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	4514.7		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0663		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	4.76		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5		Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):		reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:		stainless steel 316, Table 1.3	, ,		
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):	0.409	Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):	0.204	50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:	1	Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):	96	Equation 1.14	Electricity	138	Section 1.8.1.3
Carbon requirement per vessel (lb):	32		Steam	167	Equation 1.28
Gas flowrate per adsorbing vessel (acfm):	11	Vertical vessel, flow under 9000 cfm	Cooling water	406	Equation 1.29
Adsorber vessel diameter (ft):	0.42	Equation 1.18 or 1.21	Carbon replacement	70	Equation 1.38
Adsorber vessel length or height (ft):	12.60	Equation 1.19 or 1.23	Overhead	50,326	·
Adsorber vessel surface area (ft2):	16.99	Equation 1.24	Taxes, insurance, administrative	5,380	
Carbon bed depth (ft):		Equation 1.31	Capital recovery	13,933	
Carbon bed pressure drop (in. w.c.):		Equation 1.30		-,	_
			Total Annual Cost (without credits)	154,297	
CAPITAL COSTS:			Recovery credits	- , -	Recovered solvent not re-sold
Adsorber vessels	9,575	Equation 1.25	Total Annual Cost (with credits)	154,297	
Carbon	120	Equation 1.16			
Auxiliary equipment (ductwork, etc.)	0				
Total equipment cost (\$)base:	37,637	Equation 1.27			
Total equipment cost (\$)escalated:		apply inflation factor			
Purchased Equipment Cost (\$):	•	Table 1.4 (less sales taxes)			
Total Capital Investment (\$):	107,591	· · · · · · · · · · · · · · · · · · ·			
: F :: : : : A(F)	,				

Total Capital Investment (\$):

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018		
Current Date:	1/15/2020		
Years since Cost Base Date:	2		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.05		
INPUT PARAMETERS:		ANNUAL COST INPUTS:	
Inlet stream flowrate (acfm):	21	Operating factor (hr/yr):	8760
Inlet stream temperature (oF):	200	Operating labor rate (\$/hr):	48.00
Inlet stream pressure (atm):	1	Maintenance labor rate (\$/hr):	49.00
VOC to be condensed:	Toluene	Operating labor factor (hr/sh):	0.5
Inlet VOC flowrate (avg. lb/hr):	1.09	Maintenance labor factor (hr/sh):	0.5
VOC molecular weight (lb/lb-mole):	92	Electricity price (\$/kWhr):	0.055
VOC inlet volume fraction:	4.51E-03	Recovered VOC value (\$/lb):	-
VOC inlet concentration (ppmv):	4514.7	Overhead rate (fraction):	0.6
VOC inlet partial pressure (psia):	0.0663	Annual interest rate (fraction):	0.05
Required VOC removal (fraction):	0.90	Control system life (years):	10.0
Annual VOC inlet (tons):	4.76	Capital recovery factor (system):	0.1295
Total Adsorption time per canister (hr):	1,750 Operating hours between carbon replacemen	nt Carbon life (years):	2.0
Desorption time (hr):	0 Regenerated off-site	Capital recovery factor (carbon):	0.5378
Number of canisters:	2 Only one online at a time	Taxes, insurance, admin. factor:	0.050
Superficial carbon bed velocity (ft/min):	75.0 default, page 1-35		
Carbon price (\$/lb):	1.25 reactivated, page 1-6		
DESIGN PARAMETERS:			
Carbon adsorptivity (lb Toluene/lb carbon):	0.409 Equation 1.1 and Table 1.2	ANNUAL COSTS:	
Carbon working capacity (lb VOC/lb carbon):	0.204 50% of equilibrium capacity	Operating labor	26,280
Number of desorbing vessels:	O Regenerated off-site	Supervisory labor	3,942
Total number of vessels:	2	Maintenance labor	26,828
Total Carbon needed per replacement cycle (lb):	9,309 Equation 1.14 (at 1750 adsorption hrs/cycle)	Maintenance materials	26,828
Number of carbon replacements per year:	6	Electricity	138 Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	55,854 Lbs per replacement times number of replace	ements Carbon replacement	47,626 Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326
CAPITAL COSTS:		Taxes, insurance, administrative	65,600
Adsorber vessels (includes cost of carbon)	189,000 Tables 1.5 & 1.6 (based on carbon requireme	cnt) Capital recovery	169,911
Auxiliary equipment (ductwork, etc.)	0		
Total equipment cost (\$)base:	733,719 Equation 1.27	Total Annual Cost (without credits)	417,479
Total equipment cost (\$)escalated:	770,863 apply inflation factor	Recovery credits	Recovered solvent not re-sold
Purchased Equipment Cost (\$):	886,493 Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	417,479
T . 10			

1,312,009 Table 1.4

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	5.0	4.8
2.	Catalytic Oxidation	98.0	98.0	96.0	5.0	4.8
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	5.0	4.8
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	5.0	4.8
5.	Refrigerated Condenser	95.0	98.0	93.1	5.0	4.7
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	5.0	4.7
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	5.0	4.7
					*VOC Baseline =	5.1 tpy

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	111,246	10,683	2,221	154,741	32,174
2.	Carbon Adsorption (Fixed Bed)	121,953	15,793	3,388	156,903	33,654
3.	Thermal Oxidation	282,705	27,236	5,663	183,607	38,176
4.	Rotary Concentrator/Oxidizer	352,537	33,964	7,062	187,503	38,986
5.	Regenerative Thermal Oxidizer	555,755	53,543	11,133	218,702	45,473
6.	Refrigerated Condenser	548,251	52,820	11,329	219,179	47,011
7.	Carbon Adsorption (Canister)	655,711	84,918	18,214	308,314	66,130

^{*} PTE based on ACHD's TSD for IP-23.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	260.0		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):		includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	383.4	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	1.6	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	22.0		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.150	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	3.7		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	264		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	7,735	
			Electricity	297	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	14,135	
Incinerator:			Capital recovery	27,236	=CRF x TCI
@ 0 % heat recovery:	0	Equation 2.29			
@ 35 % heat recovery:		Equation 2.30	Total Annual Cost	183,607	
@ 50 % heat recovery:		Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :					
Total Equipment Costbase:	68 807	=EC + Auxiliary costs			
Total Equipment Costescalated (A):		=Base cost x inflation factor			
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)			
Total Capital Investment (TCI):		=1.58B (Table 2.10)			
	,,03				

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016			
Current Date:		1/15/2020			
Years since Cost Base Date:		1/15/2020			
Average inflation rate/year, %:		2.5			
Inflation adjustment factor:		1.10			
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		260		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		1.62	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):		22.0		Natural gas price (\$/mscf):	4.00
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050
Combustion temperature (oF):		1,400		Control system life (years):	15
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.041	methane		
Pressure drop (in. w.c.):		19.0	Table 2.13		
				ANNUAL COSTS	
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)
Auxiliary Fuel Requirement:	(lb/min):	0.052	Equation 2.21	Operating labor	26,280
	(scfm):	1.28		Supervisory labor	3,942 Table 2.12
	(mcf/yr):	675.4		Maintenance labor	26,828
Total Maximum Exhaust Gas Flowrate:	(scfm):	261		Maintenance materials	26,828 Table 2.12
				Natural gas	2,702
CALCULATED CAPITAL COSTS				Electricity	466 Section 2.5.2.1
Oxidizer Equipment Cost (EC):				Overhead	50,326 Table 2.12
@ 85% heat recovery	' :	270,053	Equation 2.33	Taxes, insurance, administrative	27,788
@ 95% heat recovery		0	Equation 2.33	Capital recovery	53,543 =CRF x TCI
- ,		0	Equation 2.33	Capital recovery Total Annual Cost	
Auxiliary equipment :		0	•	· · · · · · · · · · · · · · · · · · ·	53,543 = CRF x TCI 218,702
Auxiliary equipment : Total Equipment Costbase:		0 270,053	=EC + Auxiliary costs	· · · · · · · · · · · · · · · · · · ·	
Auxiliary equipment : Total Equipment Costbase: Total Equipment Costescalated (A):		0 270,053 298,088	=EC + Auxiliary costs =Base cost x inflation factor	· · · · · · · · · · · · · · · · · · ·	· · ·
Auxiliary equipment : Total Equipment Costbase:		0 270,053 298,088 351,744	=EC + Auxiliary costs	· · · · · · · · · · · · · · · · · · ·	· · ·

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	260		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739 aii	ir	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Waste gas heat content (BTU/scf):	1.62 Eq	quation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):	21.98		Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/lb-oF):	0.26 air	ir	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525 Eq	quation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):	21,502 M	Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	0.0408 M	1ethane	Capital recovery factor (system):	0.0963	
			Capital recovery factor (catalyst):	0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.073 Eq	quation 2.21			
(scfm):	1.8				
Total Gas Flowrate (scfm):	262		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	0.5		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0 Ta	able 2.13	Supervisory labor	3,942	Table 2.12
			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828	Table 2.12
Equipment Costs (\$):			Natural gas	3,757	
Incinerator:			Electricity	344	Section 2.5.2.1
@ 0 % heat recovery:	0 Ec	quation 2.34	Catalyst replacement	191	
@ 35 % heat recovery:	0 Ec	quation 2.35	Overhead	50,326	Table 2.12
@ 50 % heat recovery:	27,076 Ed	quation 2.36	Taxes, insurance, administrative	5,562	
@ 70 % heat recovery:	0 Ec	guation 2.37	Capital recovery	10,683	=CRF x TCI
- ,		•	· · ·	,	_
Other equipment :	-		Total Annual Cost	154,741	
Total Equipment Costbase:	27,076 =E	EC + Auxiliary costs			
Total Equipment Costescalated (A):	59,669 =E	Base cost x inflation factor			
Purchased Equipment Cost (B):	70,409 =1	1.18A (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Capital Investment (TCI):

111,246 =1.58B (Table 2.10)

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	260	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	5.0	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	383.40 based on Toluen	e Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catal	ytic) Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.7 Section 2.5.2.1		
Fuel usage (Btu/hr)	39,013 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	99,283	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	179,575 inflation adjustm	nent Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	285,735 sty-cost.wk3	Natural gas	1,367
Total Capital Investment (TCI), (\$)	352,537 sty-cost.wk3	Electricity	342
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	17,627
		Capital recovery	33,964 =CRF x TCI
		i 1	,

Total Annual Cost 187,503

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:	1/13/2020				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
imation adjustment factor.	1.10	,			
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	260)	Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	167,923	Equation 2.26
VOC to be condensed:	Toluene	<u>}</u>	Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
VOC inlet volume fraction:	0.000383		Multistage refrigeration unit:	204,789	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	255,986	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	296,865	inflation adjusted
A	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	320,615	Equation 2.30
B	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	548,251	Table 2.3
C	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	0.0291	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	-77.9	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0153	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.002	Equation 2.10			
VOC condensed (lb-moles/hr):	0.014	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	1.3	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	17,964	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	390	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	16	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	76,846	Equation 2.17	Electricity	4,744	
Condenser heat load (BTU/hr):	77,252	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	27,413	
Log-mean temperature difference (oF):	87.7	Equation 2.19	Capital recovery	52,820	_
Condenser surface area (ft2):	44.0	Equation 2.18			
Coolant flowrate (lb/hr):	4,754	Equation 2.22	Total Annual Cost (without credits)	219,179	
Refrigeration capacity (tons):		Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration) 1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	219,179	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020				
Years since Cost Base Date:	21				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	260		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.14		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	3.83E-04		Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	383.4		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0056		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	5.01		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	Regenerated off-site	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):		Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon):	0.156	50% of equilibrium capacity	Operating labor Supervisory labor	3,942	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels:	0.156 1	· ·	Operating labor Supervisory labor Maintenance labor	3,942 26,828	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels:	0.156 1 3	50% of equilibrium capacity Regenerated off-site	Operating labor Supervisory labor Maintenance labor Maintenance materials	3,942 26,828 26,828	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb):	0.156 1 3 132	50% of equilibrium capacity	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity	3,942 26,828 26,828 110	Section 1.8.1.3
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb):	0.156 1 3 132 44	50% of equilibrium capacity Regenerated off-site Equation 1.14	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam	3,942 26,828 26,828 110 175	Equation 1.28
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm):	0.156 1 3 132 44 130	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water	3,942 26,828 26,828 110 175 427	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft):	0.156 1 3 132 44 130 1.49	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement	3,942 26,828 26,828 110 175 427	Equation 1.28
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft):	0.156 1 3 132 44 130 1.49 5.85	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead	3,942 26,828 26,828 110 175 427 96 50,326	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2):	0.156 1 3 132 44 130 1.49 5.85 30.75	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative	3,942 26,828 26,828 110 175 427 96 50,326 6,098	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft):	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead	3,942 26,828 26,828 110 175 427 96 50,326	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2):	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft):	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846 3.860	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits)	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846 3.860	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846 3.860	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846 3.860 15,192 165 0	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.)	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846 3.860 15,192 165 0 42,661	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated:	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846 3.860 15,192 165 0 42,661 71,653	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16 Equation 1.27	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base:	0.156 1 3 132 44 130 1.49 5.85 30.75 0.846 3.860 15,192 165 0 42,661 71,653	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16 Equation 1.27 apply inflation factor Table 1.4 (less sales taxes)	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 110 175 427 96 50,326 6,098 15,793	Equation 1.28 Equation 1.29 Equation 1.38

Total Capital Investment (\$):

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	260		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.14		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	3.83E-04		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	383.4		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.0056		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	5.01		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	1,000 0	Operating hours between carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	0 R	Regenerated off-site	Capital recovery factor (carbon):	0.5378	
Number of canisters:	2 0	Only one online at a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0 d	default, page 1-35			
Carbon price (\$/lb):	1.25 r	reactivated, page 1-6			
, , , ,					
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.312 E	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.156 5	50% of equilibrium capacity	Operating labor	26,280	
Number of desorbing vessels:	0 R	Regenerated off-site	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	7,336 E	Equation 1.14 (at 1000 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	9		Electricity	110	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	66,024 L	Lbs per replacement times number of replacements	Carbon replacement	56,297	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	32,786	
Adsorber vessels (includes cost of carbon)	132,000 T	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	84,918	
Auxiliary equipment (ductwork, etc.)	0				_
Total equipment cost (\$)base:	366,695 E	Equation 1.27	Total Annual Cost (without credits)	308,314	
Total equipment cost (\$)escalated:	385,259 a	apply inflation factor	Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	443,048 т	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	308,314	
			·		

655,711 Table 1.4

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	7.4	7.1
2.	Catalytic Oxidation	98.0	98.0	96.0	7.4	7.1
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	7.4	7.1
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	7.4	7.1
5.	Refrigerated Condenser	95.0	98.0	93.1	7.4	6.9
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	7.4	6.9
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	7.4	6.9
					*VOC Baseline =	7.5 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	86,800	8,341	1,178	148,790	21,022
2.	Carbon Adsorption (Fixed Bed)	119,334	15,454	2,252	156,790	22,852
3.	Thermal Oxidation	252,912	24,366	3,443	175,518	24,798
4.	Rotary Concentrator/Oxidizer	349,610	33,682	4,759	186,464	26,345
5.	Refrigerated Condenser	355,406	34,241	4,991	189,142	27,567
6.	Regenerative Thermal Oxidizer	553,054	53,283	7,528	216,318	30,563
7.	Carbon Adsorption (Canister)	995,797	128,960	18,796	388,732	56,657

^{*} PTE based on ACHD's TSD for IP-23.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	167.0		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	878.4	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	3.7	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	50.4		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.080	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	2.0		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	169		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	4,112	
			Electricity	190	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	12,646	
Incinerator:			Capital recovery	24,366	=CRF x TCI
@ 0 % heat recovery:	0	Equation 2.29			
@ 35 % heat recovery:	0	Equation 2.30	Total Annual Cost	175,518	
@ 50 % heat recovery:	61,555	Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :	-				
Total Equipment Costbase:	61,555	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	135,653	=Base cost x inflation factor			
Purchased Equipment Cost (B):	160,071	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	252,912	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016				
Current Date:		1/15/2020				
Years since Cost Base Date:		4				
Average inflation rate/year, %:		2.5				
Inflation adjustment factor:		1.10				
INPUT PARAMETERS				ANNUAL COST INPUTS		
Exhaust Gas flowrate (scfm):		167		Operating factor (hr/yr):	8,760	
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00	
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		3.72	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):		50.4		Natural gas price (\$/mscf):	4.00	
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050	
Combustion temperature (oF):		1,400		Control system life (years):	15	
Temperature leaving heat exchanger, Tw_o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963	
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05	
Fuel density (lb/ft3):		0.041	methane			
Pressure drop (in. w.c.):		19.0	Table 2.13			
Pressure drop (in. w.c.):		19.0	Table 2.13	ANNUAL COSTS		
Pressure drop (in. w.c.): CALCULATED UTILITY USAGES		19.0	Table 2.13	ANNUAL COSTS	Cost (\$/yr)	
	(lb/min):		Table 2.13 Equation 2.21		Cost (\$/yr) 26,280	
CALCULATED UTILITY USAGES	(lb/min): (scfm):			Item	26,280	Table 2.12
CALCULATED UTILITY USAGES		0.017		Item Operating labor	26,280	Table 2.12
CALCULATED UTILITY USAGES	(scfm):	0.017 0.42		Operating labor Supervisory labor	26,280 3,942 26,828	Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement:	(scfm): (mcf/yr):	0.017 0.42 220.3		Operating labor Supervisory labor Maintenance labor	26,280 3,942 26,828	
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement:	(scfm): (mcf/yr):	0.017 0.42 220.3		Item Operating labor Supervisory labor Maintenance labor Maintenance materials	26,280 3,942 26,828 26,828 881	
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate:	(scfm): (mcf/yr):	0.017 0.42 220.3 167	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas	26,280 3,942 26,828 26,828 881 299	Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS	(scfm): (mcf/yr): (scfm):	0.017 0.42 220.3 167		Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity	26,280 3,942 26,828 26,828 881 299	Table 2.12 Section 2.5.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC):	(scfm): (mcf/yr): (scfm):	0.017 0.42 220.3 167	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead	26,280 3,942 26,828 26,828 881 299 50,326 27,653	Table 2.12 Section 2.5.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery:	(scfm): (mcf/yr): (scfm):	0.017 0.42 220.3 167 268,741 0	Equation 2.21 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 26,828 26,828 881 299 50,326 27,653 53,283	Table 2.12 Section 2.5.2.1 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment:	(scfm): (mcf/yr): (scfm):	0.017 0.42 220.3 167 268,741 0	Equation 2.21 Equation 2.33 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative	26,280 3,942 26,828 26,828 881 299 50,326 27,653	Table 2.12 Section 2.5.2.1 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment : Total Equipment Cost—base:	(scfm): (mcf/yr): (scfm):	0.017 0.42 220.3 167 268,741 0	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 26,828 26,828 881 299 50,326 27,653 53,283	Table 2.12 Section 2.5.2.1 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment : Total Equipment Costbase: Total Equipment Costescalated (A):	(scfm): (mcf/yr): (scfm):	0.017 0.42 220.3 167 268,741 0 268,741 296,639	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs =Base cost x inflation factor	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 26,828 26,828 881 299 50,326 27,653 53,283	Table 2.12 Section 2.5.2.1 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment : Total Equipment Cost—base:	(scfm): (mcf/yr): (scfm):	0.017 0.42 220.3 167 268,741 0 268,741 296,639 350,034	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 26,828 26,828 881 299 50,326 27,653 53,283	Table 2.12 Section 2.5.2.1 Table 2.12

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. **Total Annual Cost Spreadsheet - Catalytic Incinerator** Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Current Date: 1/15/2020 32 Average inflation rate/year, %: 2.5 Inflation adjustment factor: 2.20	COST REFERENCE DATE*:	1988				
Average inflation rate/year, %:	Current Date:	1/15/2020				
Inflation adjustment factor:	Years since Cost Base Date:	32				
InPUT PARAMETERS 167	Average inflation rate/year, %:	2.5				
Sas flowrate (scfm):	Inflation adjustment factor:	2.20				
Sas flowrate (scfm):	INPUT PARAMETERS			ANNUAL COST INPUTS		
Reference temperature (oF):		167			8760	
Inlet gas temperature (oF):	,					
Inlet gas density (lb/scf):	. , ,			,		
Primary heat recovery (fraction):	• • • • • • • • • • • • • • • • • • • •			*** *		Table 2.12
Waste gas heat content (BTU/scf): 3.72 Equation 2.16 Electricity price (\$/kwh): 0.055 Waste gas heat content (BTU/lb): 50.36 Catalyst price (\$/ft3): 650 Gas heat capacity (BTU/lb-oF): 0.26 air Natural gas price (\$/ft3): 4.00 Combustion temperature (oF): 850 Annual interest rate (fraction): 0.05 Preheat temperature (oF): 525 Equation 2.18 Control system life (years): 15 Fuel heat of combustion (BTU/lb): 21,502 Methane Catalyst life (years): 0.0963 Fuel density (lb/ft3): 0.0408 Methane Capital recovery factor (system): 0.0963 Call collar recovery factor (system): 0.05 Capital recovery factor (system): 0.05 CALCULATED PARAMETERS Taxes, insurance, admin. factor: 0.05 Auxiliary Fuel Needed (lb/min): 0.03 Equation 2.21 (scfm): 0.7 Catalyst legal recovery factor (system): 0.05 Catalyst Puel Needed (lb/min): 0.07 Catalyst legal recovery: 0.05 (asfm): 168 CALCULATED ANNUAL COSTS Catalyst legal recovery: 0.06		0.50		· · · · · · · · · · · · · · · · · · ·	0.5	Table 2.12
Waste gas heat content (BTU/lb): 50.36 Catalyst price (\$/ft3): 650 Gas heat capacity (BTU/lb-oF): 0.26 air Natural gas price (\$/mscf): 4.00 Combustion temperature (oF): 850 Annual interest rate (fraction): 0.05 Preheat temperature (oF): 525 Equation 2.18 Control system life (years): 15 Fuel heat of combustion (BTU/lb): 21,502 Methane Catalyst life (years): 0.0963 Fuel density (lb/ft3): 0.0408 Methane Capital recovery factor (system): 0.0963 Fuel density (lb/ft3): 0.0408 Methane Capital recovery factor (catalyst): 0.5378 CALCULATED PARAMETERS 0.0408 Methane Capital recovery factor (catalyst): 0.5378 Auxiliary Fuel Needed (lb/min): 0.030 Equation 2.21 Feast (sfm): 0.537 (scfm): 0.7 CALCULATED CASTS Catalyst volume (ft3): 26,280 Pressure drop (in. w.c.): 14.0 Table 2.13 Supervisory labor 3,942 Table 2.12 Catalyst volume (ft3): Natural gas 1,563 1,563		3.72 Equa	ation 2.16	, , ,	0.055	
Recombustion temperature (oF):	, , ,				650	
Preheat temperature (oF): 525	, , ,	0.26 air			4.00	
Fuel heat of combustion (BTU/lb): 21,502 Methane Catalyst life (years): 2	Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Fuel density (lb/ft3):	Preheat temperature (oF):	525 Equa	ation 2.18	Control system life (years):	15	
Capital recovery factor (catalyst): 0.5378 CALCULATED PARAMETERS Taxes, insurance, admin. factor: 0.05 Auxiliary Fuel Needed (lb/min): (scfm): 0.7 0.030 Equation 2.21 Total Gas Flowrate (scfm): 168 CALCULATED ANNUAL COSTS Catalyst Volume (ft3): 0.3 Operating labor 26,828 26,280 Pressure drop (in. w.c.): 14.0 Table 2.13 Supervisory labor Maintenance labor 26,828 3,942 Table 2.12 CALCULATED CAPITAL COSTS Maintenance materials 26,828 Table 2.12 Equipment Costs (\$): Natural gas 1,563 1,563 Electricity 21 Section 2.5.2.1 @ 0 % heat recovery: 0 Equation 2.34 Catalyst replacement 123 Catalyst replacement 123 50,326 Table 2.12 @ 50 % heat recovery: 0 Equation 2.35 Overhead 50,326 Taxes, insurance, administrative 4,340 (a) For the parameter of the par	Fuel heat of combustion (BTU/lb):	21,502 Met	thane	Catalyst life (years):	2	
CALCULATED PARAMETERS Taxes, insurance, admin. factor: 0.05 Auxiliary Fuel Needed (lb/min): 0.030 Equation 2.21 (scfm): 0.7 CALCULATED ANNUAL COSTS Total Gas Flowrate (scfm): 168 CALCULATED ANNUAL COSTS Catalyst Volume (ft3): 0.3 Operating labor 26,280 Pressure drop (in. w.c.): 14.0 Table 2.13 Supervisory labor 3,942 Table 2.12 Maintenance labor 26,828 Table 2.12 Maintenance materials 26,828 Table 2.12 Equipment Costs (\$): Natural gas 1,563 Incinerator: Electricity 221 Section 2.5.2.1 @ 0 % heat recovery: 0 Equation 2.34 Catalyst replacement 123 Able 2.12 @ 50 % heat recovery: 0 Equation 2.35 Overhead 50,326 Table 2.12 @ 70 % heat recovery: 0 Equation 2.36 Taxes, insurance, administrative 4,340 @ 70 % heat recovery: 0 Equation 2.37 Capital recovery 8,341 =CRF x TCI Other equipment Cost-base: 21,126 =EC+ Auxiliary costs Total Equi	Fuel density (lb/ft3):	0.0408 Met	thane	Capital recovery factor (system):	0.0963	
Auxiliary Fuel Needed (lb/min):				Capital recovery factor (catalyst):	0.5378	
Catalyst Volume (ft3):	CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Total Gas Flowrate (scfm): Catalyst Volume (ft3): Operating labor Opera	Auxiliary Fuel Needed (lb/min):	0.030 Equa	ation 2.21			
Catalyst Volume (ft3): 0.3 Operating labor 26,280 Pressure drop (in. w.c.): 14.0 Table 2.13 Supervisory labor 3,942 Table 2.12 CALCULATED CAPITAL COSTS Maintenance labor 26,828 Table 2.12 Equipment Costs (\$): Natural gas 1,563 Incinerator: Electricity 221 Section 2.5.2.1 @ 0 % heat recovery: 0 Equation 2.34 Catalyst replacement 123 @ 35 % heat recovery: 0 Equation 2.35 Overhead 50,326 Table 2.12 @ 50 % heat recovery: 21,126 Equation 2.36 Taxes, insurance, administrative 4,340 @ 70 % heat recovery: 0 Equation 2.37 Capital recovery 8,341 =CRF x TCI Other equipment: Total Annual Cost 148,790 Total Equipment Cost—base: 21,126 =EC + Auxiliary costs Total Equipment Cost—escalated (A): 46,556 =Base cost x inflation factor Purchased Equipment Cost—Base: 1,126 1,126 1,126 1,126 1,126 1,126 1,126 1,126	(scfm):	0.7				
Pressure drop (in. w.c.): 14.0 Table 2.13 Supervisory labor Maintenance labor 26,828 CALCULATED CAPITAL COSTS Equipment Costs (\$): Incinerator: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery: 21,126 Equation 2.36 @ 70 % heat recovery: 0 Equation 2.37 Capital recovery 4,340 @ 70 % heat recovery: 0 Equation 2.37 Capital recovery 8,341 = CRF x TCI Other equipment Costbase: Total Equipment Costescalated (A): Purchased Equipment Cost (B): 14.0 Table 2.13 Supervisory labor A jet 2.12 Supervisor A jet 2.12 Supervisor A jet 2.12 Supervisor A jet 2.12 Supervisor A jet 2.1	Total Gas Flowrate (scfm):	168		CALCULATED ANNUAL COSTS		
CALCULATED CAPITAL COSTS Equipment Costs (\$): Incinerator: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery: @ 70 % heat recovery: & 1,126 Equation 2.36 & 2,328 Catalyst replacement Taxes, insurance, administrative 4,340 2 Total Annual Cost 148,790 Total Equipment Cost—base: Total Equipment Cost—escalated (A): Purchased Equipment Cost (B): Admintenance labor Admintenance labelea 1,563 Antural gas Feletricity Catalyst replacement Adalyst replacement Admintenance labelea 1,563 Antural gas Feletricity Catalyst replacement Adalyst replacemen	Catalyst Volume (ft3):	0.3		Operating labor	26,280	
CALCULATED CAPITAL COSTS Equipment Costs (\$): Incinerator: @ 0 % heat recovery: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery: & 1,126 Equation 2.36 & 2,328 Table 2.12 Other equipment: Other equipment: Total Equipment Costbase: Total Equipment Costbase: Total Equipment Costescalated (A): Purchased Equipment Cost (B): A 36,828 Table 2.12 Natural gas Electricity Catalyst replacement 123 Catalyst replacement 123 Coverhead Toverhead Toverhead Taxes, insurance, administrative 4,340 Capital recovery 8,341 = CRF x TCI Total Annual Cost 148,790	Pressure drop (in. w.c.):	14.0 Tabl	ole 2.13	Supervisory labor	3,942	Table 2.12
Equipment Costs (\$): Incinerator: @ 0 % heat recovery: @ 0 % heat recovery: @ 35 % heat recovery: @ 50 % heat recovery: @ 70 % heat recovery: & 1,126 Equation 2.36 Equation 2.36 Taxes, insurance, administrative @ 70 % heat recovery: & 1,126 Equation 2.37 Capital recovery Other equipment: Total Equipment Costbase: Total Equipment Costescalated (A): Purchased Equipment Cost (B): Auxiliary costs Total Costbase: 1,563 Electricity 221 Section 2.5.2.1 Catalyst replacement 123 Coverhead 50,326 Table 2.12 4,340 Capital recovery 8,341 = CRF x TCI Total Annual Cost 148,790				Maintenance labor	26,828	
Incinerator: @ 0 % heat recovery:	CALCULATED CAPITAL COSTS			Maintenance materials	26,828	Table 2.12
@ 0 % heat recovery:	Equipment Costs (\$):			Natural gas	1,563	
@ 35 % heat recovery:	Incinerator:			Electricity	221	Section 2.5.2.1
@ 50 % heat recovery:	@ 0 % heat recovery:	O Equa	ation 2.34	Catalyst replacement	123	
@ 70 % heat recovery: 0 Equation 2.37 Capital recovery 8,341 = CRF x TCI Other equipment: Total Equipment Costbase: 21,126 = EC + Auxiliary costs Total Equipment Costescalated (A): 46,556 = Base cost x inflation factor Purchased Equipment Cost (B): 54,937 = 1.18A (Table 2.10)	@ 35 % heat recovery:	O Equa	ation 2.35		50,326	Table 2.12
Other equipment: Total Equipment Costbase: Total Equipment Costescalated (A): Purchased Equipment Cost (B): Total Equipment Cost (B): Total Equipment Cost (B): Total Annual Cost 148,790 Total Annual Cost 148,790 148,790 148,790 148,790	@ 50 % heat recovery:	21,126 Equa	ation 2.36	Taxes, insurance, administrative	4,340	
Total Equipment Costbase: Total Equipment Costescalated (A): Purchased Equipment Cost (B): 21,126 = EC + Auxiliary costs = Base cost x inflation factor 54,937 = 1.18A (Table 2.10)	@ 70 % heat recovery:	O Equa	uation 2.37	Capital recovery	8,341	=CRF x TCI
Total Equipment Costbase: Total Equipment Costescalated (A): Purchased Equipment Cost (B): 21,126 = EC + Auxiliary costs = Base cost x inflation factor 54,937 = 1.18A (Table 2.10)	Other equipment :	-		Total Annual Cost	148,790	
Total Equipment Costescalated (A): 46,556 = Base cost x inflation factor Purchased Equipment Cost (B): 54,937 = 1.18A (Table 2.10)		21,126 =EC	C + Auxiliary costs		,	
Purchased Equipment Cost (B): 54,937 =1.18A (Table 2.10)		•	•			
		54,937 =1.1	18A (Table 2.10)			
		·				

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	167	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	7.4	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	878.43 based on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.5 Section 2.5.2.1		
Fuel usage (Btu/hr)	25,058 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	98,506	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	178,171 inflation adjustment	Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	283,331 sty-cost.wk3	Natural gas	878
Total Capital Investment (TCI), (\$)	349,610 sty-cost.wk3	Electricity	220
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	17,481
		Capital recovery	33,682 =CRF x TCI

Total Annual Cost 186,464

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser		
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA		

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:		i			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	167		Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	119,406	Equation 2.26
VOC to be condensed:	Toluene		Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
VOC inlet volume fraction:	0.000878		Multistage refrigeration unit:	132,755	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	165,944	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	192,444	inflation adjusted
A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	207,840	Equation 2.30
B:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	355,406	Table 2.3
C:	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	0.0668	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	-65.3	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0225	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.002	Equation 2.10			
VOC condensed (lb-moles/hr):	0.020	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	1.9	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	17,837	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	562	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	22	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	47,092	Equation 2.17	Electricity	2,928	
Condenser heat load (BTU/hr):	47,676	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	17,770	
Log-mean temperature difference (oF):	84.8	Equation 2.19	Capital recovery	34,241	
Condenser surface area (ft2):	28.1	Equation 2.18			_
Coolant flowrate (lb/hr):	2,934	Equation 2.22	Total Annual Cost (without credits)	189,142	
Refrigeration capacity (tons):	3.97	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration)	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	189,142	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999	3			
Current Date:	1/15/2020				
Years since Cost Base Date:	21				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68				
•					
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	167	•	Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.68		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	8.78E-04		Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	878.4		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0129		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	7.37		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	Regenerated off-site	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:	0.244		ANNUAL COSTS:	26 200	
Carbon adsorptivity (lb Toluene/lb carbon):		Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):		50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:		Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):		Equation 1.14	Electricity		Section 1.8.1.3
Carbon requirement per vessel (lb):	59		Steam		Equation 1.28
Gas flowrate per adsorbing vessel (acfm):		Vertical vessel, flow under 9000 cfm	Cooling water		Equation 1.29
Adsorber vessel diameter (ft):		Equation 1.18 or 1.21	Carbon replacement		Equation 1.38
Adsorber vessel length or height (ft):		Equation 1.19 or 1.23	Overhead	50,326	
Adsorber vessel surface area (ft2):		Equation 1.24	Taxes, insurance, administrative	5,967	
Carbon bed depth (ft):		Equation 1.31	Capital recovery	15,454	_
Carbon bed pressure drop (in. w.c.):	6.981	Equation 1.30	Table Associated Control (19th and associated)	456 700	
CAPITAL COSTS:			Total Annual Cost (without credits) Recovery credits	156,790	Recovered solvent not re-sold
Adsorber vessels	13.946	Equation 1.25	Total Annual Cost (with credits)	156,790	
Carbon	•	Equation 1.16	,	,	
Auxiliary equipment (ductwork, etc.)	0	4			
Total equipment cost (\$)base:		Equation 1.27			
Total equipment cost (\$)escalated:	•	apply inflation factor			
Purchased Equipment Cost (\$):		Table 1.4 (less sales taxes)			
Total Capital Investment (\$):	119,334				
	,				

Total Capital Investment (\$):

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	167		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.68		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	8.78E-04		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	878.4		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.0129		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	7.37		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	1,000 Operating	hours between carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	0 Regenerat	ted off-site	Capital recovery factor (carbon):	0.5378	
Number of canisters:	2 Only one	online at a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0 default, pa	age 1-35			
Carbon price (\$/lb):	1.25 reactivate	ed, page 1-6			
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.341 Equation :	1.1 and Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.171 50% of eq	uilibrium capacity	Operating labor	26,280	
Number of desorbing vessels:	0 Regenerat	ted off-site	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	9,855 Equation :	1.14 (at 1000 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	9		Electricity	151	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	88,693 Lbs per re	placement times number of replacements	Carbon replacement	75,628	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	49,790	
Adsorber vessels (includes cost of carbon)	189,000 Tables 1.5	& 1.6 (based on carbon requirement)	Capital recovery	128,960	
Auxiliary equipment (ductwork, etc.)	0				_
Total equipment cost (\$)base:	556,882 Equation :	1.27	Total Annual Cost (without credits)	388,732	
Total equipment cost (\$)escalated:	585,075 apply infla	ation factor	Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	672,836 Table 1.4	(less sales taxes)	Total Annual Cost (with credits)	388,732	

995,797 Table 1.4

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	5.3	5.1
2.	Catalytic Oxidation	98.0	98.0	96.0	5.3	5.1
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	5.3	5.1
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	5.3	5.1
5.	Refrigerated Condenser	95.0	98.0	93.1	5.3	5.0
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	5.3	5.0
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	5.3	5.0
					*VOC Baseline =	5.5 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	23,430	2,255	440	137,691	26,843
2.	Refrigerated Condenser	84,796	8,169	1,643	146,875	29,538
3.	Thermal Oxidation	140,283	13,515	2,635	154,798	30,178
4.	Carbon Adsorption (Fixed Bed)	118,761	15,380	3,093	156,423	31,458
5.	Rotary Concentrator/Oxidizer	344,861	33,225	6,477	184,776	36,022
6.	Regenerative Thermal Oxidizer	548,686	52,862	10,305	213,658	41,653
7.	Carbon Adsorption (Canister)	950,071	123,039	24,744	348,802	70,147

^{*} PTE based on ACHD's TSD for IP-23.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5 2.20				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	16.0		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	6644.8	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	28.2	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	380.9		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.001	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	0.0		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	16		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	48	
			Electricity	18	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	7,014	
Incinerator:			Capital recovery	13,515	=CRF x TCI
@ 0 % heat recovery:	0	Equation 2.29			_
@ 35 % heat recovery	0	Equation 2.30	Total Annual Cost	154,798	
@ 50 % heat recovery	34,143	Equation 2.31			
@ 70 % heat recovery	0	Equation 2.32			
Auxiliary equipment :	-				
Total Equipment Costbase:		=EC + Auxiliary costs			
Total Equipment Costescalated (A):	,	=Base cost x inflation factor			
Purchased Equipment Cost (B):	88,787	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	140,283	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery:	(scfm):		Equation 2.33 Equation 2.33	Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	(869) 28 50,326 27,434	Table 2.12 Section 2.5.2.1 Table 2.12 =CRF x TCI
CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC):	(scim):			Natural gas Electricity Overhead	(869) 28 50,326	Section 2.5.2.1
CALCULATED CAPITAL COSTS	(scrm):	16		Natural gas Electricity	(869) 28	Section 2.5.2.1
	(SCIM):	16		Natural gas	(869)	
Total Maximum Exhaust Gus Howrate.	(SCTM):	16			•	Table 2.12
		1.0		Maintenance materials	20.020	T. I.I. 2.42
Total Maximum Exhaust Gas Flowrate:	(mcf/yr):	(217.2)		Maintenance labor	26,828	
	(scfm):	-0.41		Supervisory labor	•	Table 2.12
Auxiliary Fuel Requirement:	(lb/min):		Equation 2.21	Operating labor	26,280	
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)	
				ANNUAL COSTS		
Pressure drop (in. w.c.):		19.0	Table 2.13			
Fuel density (lb/ft3):			methane			
Fuel heat of combustion (BTU/lb):		•	methane	Taxes, insurance, admin. factor:	0.05	
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963	
Combustion temperature (oF):		1,400		Control system life (years):	15	
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050	
Waste gas heat content (BTU/lb):		380.9		Natural gas price (\$/mscf):	4.00	
Waste gas heat content, annual avg. (BTU/scf):			Equation 2.16	Electricity price (\$/kwh):	0.055	
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00	
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00	
Exhaust Gas flowrate (scfm):		16		Operating factor (hr/yr):	8,760	
INPUT PARAMETERS				ANNUAL COST INPUTS		
Inflation adjustment factor:		1.10				
Average inflation rate/year, %:		1.10				
Years since Cost Base Date:		2.5				
Current Date:		1/15/2020				
COST REFERENCE DATE*:		2016				

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988			
Current Date:	1/15/2020			
Years since Cost Base Date:	1/15/2020			
Average inflation rate/year, %:	2.5			
Inflation adjustment factor:	2.20			
illiation adjustment factor.	2.20	•		
INPUT PARAMETERS			ANNUAL COST INPUTS	
Gas flowrate (scfm):	16		Operating factor (hr/yr):	8760
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content (BTU/scf):	28.15	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):	380.93		Catalyst price (\$/ft3):	650
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15
Fuel heat of combustion (BTU/lb):	21.502	Methane	Catalyst life (years):	2
Fuel density (lb/ft3):	•	Methane	Capital recovery factor (system):	0.0963
			Capital recovery factor (catalyst):	0.5378
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05
Auxiliary Fuel Needed (lb/min):	0.001	Equation 2.21		
(scfm):	0.0			
Total Gas Flowrate (scfm):	16		CALCULATED ANNUAL COSTS	
Catalyst Volume (ft3):	0.0		Operating labor	26,280
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942 Table 2.12
			Maintenance labor	26,828
CALCULATED CAPITAL COSTS			Maintenance materials	26,828 Table 2.12
Equipment Costs (\$):			Natural gas	28
Incinerator:			Electricity	21 Section 2.
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	12
@ 35 % heat recovery:		Equation 2.35	Overhead	50,326 Table 2.12
@ 50 % heat recovery:		Equation 2.36	Taxes, insurance, administrative	1,172
@ 70 % heat recovery:		Equation 2.37	Capital recovery	2,255 =CRF x TCI
Other equipment :	_		Total Annual Cost	137,691
Total Equipment Costbase:	5 703	=EC + Auxiliary costs		
Total Equipment Costbase. Total Equipment Costescalated (A):	•	=Base cost x inflation factor		
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)		
	•			
Total Capital Investment (TCI):	23,430	=1.58B (Table 2.10)		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	16	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	5.3	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	6,644.84 based on Tolue	ne Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (cata	llytic) Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.0 Section 2.5.2.1		
Fuel usage (Btu/hr)	2,401 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	97,246	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	175,892 inflation adjust	ment Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	279,429 sty-cost.wk3	Natural gas	84
Total Capital Investment (TCI), (\$)	344,861 sty-cost.wk3	Electricity	21
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	17,243
		Capital recovery	33,225 =CRF x TCI

Total Annual Cost 184,776

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser		
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA		

Vears since Cost Sace Date: 1/15/2020	COST REFERENCE DATE*:	2014				
Variage inflation rate/year, %: 2.5						
Average inflation rate/year, %:						
Inflation adjustment factor:						
Injust Stream flowrate (scfm);						
Inlet stream flowrate (scfm):	imation adjustment factor.	1.10	,			
Inlet stream temperature (oF):	INPUT PARAMETERS:			CAPITAL COSTS:		
VOC in let volume fraction: Toluene Refrigeration unit/single-stage (> 10 tons): 0 Equation 2.27 VOC in let volume fraction: 0.006645 Multistage refrigeration unit: 21,012 Equation 2.28 Required VOC removal (fraction): 0.90 Total equipment cost (5)base: 39,592 Equation 2.29 Antoine equation constants for VOC: A: 6.955 Table a below, for Toluene Total equipment cost (5)base: 45,915 inflation adjusted VOC heat of condensation (BTU/lb-mole): 14,290.0 Table below, for Toluene Total Capital Investment (5): 84,796 Table 2.3 VOC cheat capacity (BTU/lb-mole-oF): 14,290.0 Table below, for Toluene ANNUAL COST INPUTS: 86,00 VOC bolling point (oF): 31.0 Table A below, for Toluene ANNUAL COST INPUTS: 8760 VOC condensate density (Ib/lb-mole): 92.1 Table A below, for Toluene Maintenance labor rate (5/hr): 48.00 VOC condensate density (Ib/lgal): 7.20 Table A below, for Toluene Maintenance labor rate (5/hr): 0.5 Table 2.4 VOC condensate of the point (F): 6.95 Default value Maintenance labor rate (5/hr): 0.5 Table 2.4 VOC con	Inlet stream flowrate (scfm):	16	5	Equipment Costs (\$):		
VOC inlet volume fraction:	Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	31,674	Equation 2.26
Required VOC removal (fraction): Antoine equation constants for VOC: Antoine equation constants for VOC: A: 6.955 Table a below, for Toluene B: 1344,800 Table a below, for Toluene C: 219,480 Table b below, for Toluene VOC heat of condensation (BTU/lb-mole): 14,290 Table b below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 37.5 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 37.5 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 23.10 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 23.10 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 23.10 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 23.10 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 23.10 Table A below, for Toluene VOC condinated density (Ib/lb-mole): 29.21 Table A below, for Toluene VOC condinated density (Ib/lb-mole-oF): 99.21 Table A below, for Toluene VOC condensated ensity (Ib/lb-mole-oF): 6.95 Default value	VOC to be condensed:	Toluene	2	Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
Artoine equation constants for VOC: A: 6.955 Table B below, for Toluene B: 3144.800 Table B below, for Toluene C: 219.480 Table B below, for Toluene B: 3144.800 Table B below, for Toluene C: 219.480 Table B below, for Toluene C: 219.480 Table B below, for Toluene C: 219.480 Table B below, for Toluene Total Capital Investment (\$): 84,796 Table 2.3 VOC heat of condensation (BTU/lb-mole): 14,290.0 Table A below, for Toluene VOC heat of capacity (BTU/lb-mole-oF): 3.75 Table A below, for Toluene VOC beat of point (oF): 3.75 Table A below, for Toluene VOC critical temperature (oR): 0.650 Default value Operating factor (hr/yr): 8760 VOC boiling point (oF): 23.10 Table A below, for Toluene VOC critical temperature (oR): 1.065.0 Table A below, for Toluene VOC critical temperature (oR): 92.1 Table A below, for Toluene VOC condensate density (lb/gal): 7.20 Table A below, for Toluene VOC condensate density (lb/gal): 7.20 Table A below, for Toluene VOC condensate density (lb/gal): 6.95 Default value Operating labor rate (s/hr): 49.00 DESIGN PARAMETERS: Maintenance labor (hr/sh): 0.5 Table 2.4 VOC Condensation temperature, Tc (oF): 6.95 Default value Electricity price (s/kwthr): 0.05 DESIGN PARAMETERS: Condensation (lb-moles/hr): 0.006 Quitet VOC partial pressure (mm Hg): 0.5080 Equation 2.6 Control system life (years): 15 Condensation temperature, Tc (oF): -29.1 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0163 iniet- outlet ANNUAL COSTS: VOC condensed (lb-moles/hr): 0.015 iniet- outlet ANNUAL COSTS: VOC condensed (lb-moles/hr): 0.015 iniet- outlet ANNUAL COSTS: VOC heat of condensation @ Tc (BTU/lb-mole): 17,465 Equation 2.14 Supervisory labor 3.942 Enthalpy change, uncondensed VOC (BTU/hr): 382 Equation 2.14 Supervisory labor 3.942 Enthalpy change, uncondensed VOC (BTU/hr): 3,874 Equation 2.16 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 3,874 Equation 2.16 Maintenance materials 26,828 Enthalpy change, in (BTU/hr): 4,270 sum of enthalpy changes Overhea	VOC inlet volume fraction:	0.006645		Multistage refrigeration unit:	21,012	Equation 2.28
A: 6.955 Table B below, for Toluene B: 1344.800 Table B below, for Toluene C: 219.480 Table B below, for Toluene VOC heat of condensation (BTU/lb-mole-oF): 14,290.0 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 0.650 Default value VOC colant specific heat (BTU/lb-F): VOC colant specific heat (BTU/lb-F): VOC colant specific heat (BTU/lb-F): VOC coling point (oF): VOC critical temperature (oR): VOC critical temperature, Tc (oF): VOC flowrate in (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC flowrate out (Ib-moles/hr): VOC flowrate	Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	39,592	Equation 2.29
B: 1344.800 Table B below, for Toluene C: 219.480 Table B below, for Toluene C: 237.5 Table A below, for Toluene C: 231.0	Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	45,915	inflation adjusted
C: 219.480 Table 8 below, for Toluene VOC heat of condensation (BTU/lb-mole): 14,290.0 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 37.5 Table A below, for Toluene Operating factor (hr/yr): 8760	A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	49,588	Equation 2.30
VOC heat of condensation (BTU/lb-mole): 14,290.0 Table A below, for Toluene ANNUAL COST INPUTS: VOC heat capacity (BTU/lb-mole-oF): 37.5 Table A below, for Toluene Operating factor (hr/yr): 8760 Coolant specific heat (BTU/lb-F): 0.650 Default value Operating factor (hr/yr): 48.00 VOC boiling point (oF): 231.0 Table A below, for Toluene Operating labor rate (\$/hr): 48.00 VOC cordical temperature (oR): 1,065.0 Table A below, for Toluene Operating labor factor (hr/sh): 49.00 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Operating labor factor (hr/sh): 0.5 Table 2.4 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.055 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.055 DESIGN PARAMETERS: Annual interest rate (fraction): 0.05 Outlet VOC partial pressure (mm Hg): 0.5080 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0163 Equation 2.9 Taxes, insurance, admin. factor: 0.05 VOC condensed (lb-moles/hr): 0.015 Iniet-outlet ANNUAL COSTS: <td>B:</td> <td>1344.800</td> <td>Table B below, for Toluene</td> <td>Total Capital Investment (\$):</td> <td>84,796</td> <td>Table 2.3</td>	B:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	84,796	Table 2.3
VOC heat capacity (BTU/lb-mole-oF): 37.5 Table A below, for Toluene ANNUAL COST INPUTS: Coolant specific heat (BTU/lb-oF): 0.650 Default value Operating factor (hr/yr): 87.60 VOC bolling point (oF): 231.0 Table A below, for Toluene Operating labor rate (5/hr): 48.00 VOC critical temperature (oR): 1,065.0 Table A below, for Toluene Maintenance labor rate (5/hr): 49.00 VOC molecular weight (lb/lb-mole): 92.1 Table A below, for Toluene Operating labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Maintenance labor factor (hr/sh): 0.5 Table 2.4 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (5/kWhr): 0.05 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Celevation (hr/sh): 0.05 DESIGN PARAMETERS: Annual interest rate (fraction): 0.05 Outlet VOC partial pressure (mm Hg): 0.5080 Equation 2.6 Control system life (years): 15 Condensation temperature, Tc (oF): -29.1 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0163 Equation 2.10 ANNUAL COSTS:	C:	219.480	Table B below, for Toluene			
Coolant specific heat (BTU/lb-oF):	VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC boiling point (oF): 231.0 Table A below, for Toluene VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC condecular weight (lb/lb-mole): 92.1 Table A below, for Toluene VOC condensate density (lb/lb-mole): 7.20 Table A below, for Toluene Alari heat capacity (BTU/lb-mole-oF): Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Belectricity price (\$/kWhr): Outlet VOC partial plabor factor (hr/sh): 0.05 Recovered VOC value (\$/lb): Annual interest rate (fraction): Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): 2-9.1 Equation 2.8 Copital recovery factor: Outlet VOC partial pressure (lb-moles/hr): (lb/hr): 13 Ib-moles x molecular weight Operating labor actor (hr/sh): Annual interest rate (fraction): Outlet (S/kWhr):	VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC molecular weight (lb/lb-mole): 92.1 Table A below, for Toluene VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): O.055 Recovered VOC value (\$/lb): O.00 DESIGN PARAMETERS: Outlet VOC partial pressure (mm Hg): O.5080 Equation 2.6 Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC condensed (lb-moles/hr): VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): 3,874 Equation 2.16 Condenser heat load (BTU/hr): 4,270 sum of enthalpy change, air (BTU/hr): Uog-mean temperature (oR): VOC ondenser user (ficient) VOE partial pressure (mm Hg): VOC heat of condensed VOC (BTU/hr): 13,874 Equation 2.16 Maintenance labor rate (\$/hr): VOC condensed (BU-moles/hr): VOC heat of condensed VOC (BTU/hr): 3,874 Equation 2.16 Maintenance labor rate (\$/hr): VOE heat of condensed VOC (BTU/hr): 3,874 Equation 2.16 Maintenance labor factor (hr/sh): VOE heat of condensed VOC (BTU/hr): 3,874 Equation 2.16 Maintenance labor factor (hr/sh): VOE heat of condensed VOC (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes VOE flowrate out (lb-moles/hr): VOE heat of condensed VOE (BTU/hr): 4,270 sum of enthalpy changes VOE flowrate out (lb-moles/hr): VOE flowrate out (lb-hr): VOE flowrate out (lb-hr	Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC molecular weight (Ib/Ib-mole): VOC condensate density (Ib/gal): Air heat capacity (BTU/Ib-mole-oF): Annual interest rate (fraction): Annual inter	VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC condensate density (lib/gal): Air heat capacity (BTU/lb-mole-oF):	VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
Air heat capacity (BTU/lb-mole-oF): Coulet VOC partial pressure (mm Hg): 0.5080 Equation 2.6 Control system life (years): 15	VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
DESIGN PARAMETERS: Outlet VOC partial pressure (mm Hg): O.5080 Equation 2.6 Control system life (years): 15 Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): O.0163 Equation 2.9 VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): O.002 Equation 2.0 (lb/hr): 1.3 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): 17,465 Equation 2.12 Enthalpy change, condensed VOC (BTU/hr): 18 Equation 2.12 Enthalpy change, air (BTU/hr): 19 Condenser dug, air (BTU/hr): 19 Condenser dug (BTU/hr): 20 Default value 20 Default value 20 Condenser surface area (ft2): 20 Condenser surface area (ft2): 20 Condenser surface area (ft2): 20 Equation 2.18 20 Condenser surface area (ft2): 21 Condenser surface area (ft2): 22 Equation 2.23 23 Equation 2.23 24 Recovery credits 25 Control system life (years): 26 Control system life (years	VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
DESIGN PARAMETERS: Outlet VOC partial pressure (mm Hg): O.5080 Equation 2.6 Control system life (years): Condensation temperature, Tc (oF): O.0163 Equation 2.9 Taxes, insurance, admin. factor: O.05 VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): O.015 inlet - outlet ANNUAL COSTS: (lb/hr): I.3 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): I.4 Equation 2.17 Enthalpy change, air (BTU/hr): O.02 Equation 2.17 Electricity Condenser heat load (BTU/hr): ANNUAL COSTS: Maintenance labor Joe Parting labor Joe	Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): -29.1 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): 0.015 inlet - outlet ANNUAL COSTS: (lb/hr): 1.3 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): 3.874 Equation 2.17 Electricity Condenser heat load (BTU/hr): 4.270 sum of enthalpy changes Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): 76.1 Equation 2.18 Condenser surface area (ft2): Coolant flowrate (lb/hr): 26.3 Equation 2.23 Recovery credits Control system life (years): Capital recovery factor: 0.0963 Capital recovery labor: ANNUAL COSTS: ANNUAL COSTS: ANNUAL COSTS: ANNUAL COSTS: ANNUAL COSTS: Operating labor 26,280 Supervisory labor 3,942 Equation 2.14 Supervisory labor 3,942 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 14 Equation 2.17 Electricity 26,828 Enthalpy change, air (BTU/hr): 26,828 Enthalpy change, air (BTU/hr): 4,270 Copried Taxes, insurance, administrative 4,240 Log-mean temperature difference (oF): 76.1 Equation 2.19 Capital recovery 8,169 Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0				Recovered VOC value (\$/lb):	0.00	
Condensation temperature, Tc (oF): -29.1 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.002 Equation 2.10 VOC condensed (lb-moles/hr): 0.015 inlet - outlet ANNUAL COSTS: (lb/hr): 1.3 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): 17,465 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 382 Equation 2.12 Maintenance labor 26,828 Enthalpy change, air (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): 76.1 Equation 2.18 Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0.0963 Capital recovery factor: 0.0963 Taxes, insurance, admin. factor: 0.0963 ANNUAL COSTS: VOC condenser surface area (ft2): 2.8 Equation 2.19 Capital recovery 8,169 Condenser surface area (ft2): Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons):	DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
VOC flowrate in (lb-moles/hr):0.0163Equation 2.9Taxes, insurance, admin. factor:0.05VOC flowrate out (lb-moles/hr):0.002Equation 2.10VOC condensed (lb-moles/hr):0.015inlet - outletANNUAL COSTS:(lb/hr):1.3lb-moles x molecular weightOperating labor26,280VOC heat of condensation @ Tc (BTU/lb-mole):17,465Equation 2.14Supervisory labor3,942Enthalpy change, condensed VOC (BTU/hr):382Equation 2.12Maintenance labor26,828Enthalpy change, uncondensed VOC (BTU/hr):14Equation 2.16Maintenance materials26,828Enthalpy change, air (BTU/hr):3,874Equation 2.17Electricity262Condenser heat load (BTU/hr):4,270sum of enthalpy changesOverhead50,326Heat transfer coefficient, U (BTU/hr-ft2-oF):20.0Default valueTaxes, insurance, administrative4,240Log-mean temperature difference (oF):76.1Equation 2.19Capital recovery8,169Condenser surface area (ft2):2.8Equation 2.22Total Annual Cost (without credits)146,875Refrigeration capacity (tons):0.36Equation 2.23Recovery credits0	Outlet VOC partial pressure (mm Hg):	0.5080	Equation 2.6	Control system life (years):	15	
VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): (lb/hr): 1.3 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): 1382 Equation 2.14 Supervisory labor 3,942 Enthalpy change, uncondensed VOC (BTU/hr): 14 Equation 2.16 Maintenance labor 26,828 Enthalpy change, air (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): 76.1 Equation 2.18 Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0.001 6 Equation 2.23 Recovery credits	Condensation temperature, Tc (oF):	-29.1	Equation 2.8	Capital recovery factor:	0.0963	
VOC condensed (lb-moles/hr): (lb/hr): 1.3 lb-moles x molecular weight Operating labor 26,280 VOC heat of condensation @ Tc (BTU/lb-mole): 17,465 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 382 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 14 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 4,240 Log-mean temperature difference (oF): 76.1 Equation 2.19 Condenser surface area (ft2): Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0.36 Equation 2.23 Recovery credits	VOC flowrate in (lb-moles/hr):	0.0163	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
(lb/hr): 1.3 lb-moles x molecular weight Operating labor 26,280 VOC heat of condensation @ Tc (BTU/lb-mole): 17,465 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 382 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 14 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 4,240 Log-mean temperature difference (oF): 76.1 Equation 2.19 Capital recovery 8,169 Condenser surface area (ft2): 2.8 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0.36 Equation 2.23 Recovery credits 0	VOC flowrate out (lb-moles/hr):	0.002	Equation 2.10			
VOC heat of condensation @ Tc (BTU/lb-mole): 17,465 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 382 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 14 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 4,240 Log-mean temperature difference (oF): 76.1 Equation 2.19 Capital recovery 8,169 Condenser surface area (ft2): 2.8 Equation 2.18 Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0.36 Equation 2.23 Recovery credits 0	VOC condensed (lb-moles/hr):	0.015	inlet - outlet	ANNUAL COSTS:		
Enthalpy change, condensed VOC (BTU/hr): 14 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 14 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): 76.1 Equation 2.19 Condenser surface area (ft2): Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0 diameter and provided the foundation of the provided support of	(lb/hr):	1.3	lb-moles x molecular weight	Operating labor	26,280	
Enthalpy change, uncondensed VOC (BTU/hr): 14 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 4,240 Log-mean temperature difference (oF): 76.1 Equation 2.19 Capital recovery 8,169 Condenser surface area (ft2): Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0 36 Equation 2.23 Recovery credits 0	VOC heat of condensation @ Tc (BTU/lb-mole):	17,465	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, air (BTU/hr): 3,874 Equation 2.17 Electricity 262 Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 4,240 Log-mean temperature difference (oF): 76.1 Equation 2.19 Capital recovery 8,169 Condenser surface area (ft2): 2.8 Equation 2.18 Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0.36 Equation 2.23 Recovery credits 0	Enthalpy change, condensed VOC (BTU/hr):	382	Equation 2.12	Maintenance labor	26,828	
Condenser heat load (BTU/hr): 4,270 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 befault value Taxes, insurance, administrative 4,240 Log-mean temperature difference (oF): 76.1 Equation 2.19 Capital recovery 8,169 Condenser surface area (ft2): 2.8 Equation 2.18 Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0.36 Equation 2.23 Recovery credits 0	Enthalpy change, uncondensed VOC (BTU/hr):	14	Equation 2.16	Maintenance materials	26,828	
Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): 20.0 Default value Equation 2.19 Equation 2.19 Equation 2.18 Equation 2.22 Total Annual Cost (without credits) Recovery credits 0	Enthalpy change, air (BTU/hr):	3,874	Equation 2.17	Electricity	262	
Log-mean temperature difference (oF): 76.1 Equation 2.19 Capital recovery 8,169 Condenser surface area (ft2): 2.8 Equation 2.18 Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0.36 Equation 2.23 Recovery credits 0	Condenser heat load (BTU/hr):	4,270	sum of enthalpy changes	Overhead	50,326	
Condenser surface area (ft2): Coolant flowrate (lb/hr): 2.8 Equation 2.18 Coolant flowrate (lb/hr): 263 Equation 2.22 Total Annual Cost (without credits) 146,875 Refrigeration capacity (tons): 0 36 Equation 2.23 Recovery credits 0	Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	4,240	
Coolant flowrate (lb/hr):263Equation 2.22Total Annual Cost (without credits)146,875Refrigeration capacity (tons):0.36Equation 2.23Recovery credits0	Log-mean temperature difference (oF):	76.1	Equation 2.19	Capital recovery	8,169	
Refrigeration capacity (tons): 0.36 Equation 2.23 Recovery credits 0	Condenser surface area (ft2):	2.8	Equation 2.18			
,	Coolant flowrate (lb/hr):	263	Equation 2.22	Total Annual Cost (without credits)	146,875	
Electricity requirement (kW/ton of refrigeration) 1.3 Table 2.5 (see below) Total Annual Cost (with credits) 146,875	Refrigeration capacity (tons):	0.36	Equation 2.23	Recovery credits	0	
	Electricity requirement (kW/ton of refrigeration)	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	146,875	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020				
Years since Cost Base Date:	21				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	16	i de la companya de	Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.22		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	6.64E-03		Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	6644.8		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0977		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	5.34		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	Regenerated off-site	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):		Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon):	0.213	50% of equilibrium capacity	Operating labor Supervisory labor	3,942	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels:	0.213 1	· ·	Operating labor Supervisory labor Maintenance labor	3,942 26,828	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels:	0.213 1 3	50% of equilibrium capacity Regenerated off-site	Operating labor Supervisory labor Maintenance labor Maintenance materials	3,942 26,828 26,828	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb):	0.213 1 3 103	50% of equilibrium capacity	Operating labor Supervisory labor Maintenance labor	3,942 26,828 26,828 184	Section 1.8.1.3
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb):	0.213 1 3 103 34	50% of equilibrium capacity Regenerated off-site Equation 1.14	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam	3,942 26,828 26,828 184 187	Equation 1.28
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm):	0.213 1 3 103 34 8	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water	3,942 26,828 26,828 184 187 455	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft):	0.213 1 3 103 34 8 0.37	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement	3,942 26,828 26,828 184 187 455	Equation 1.28
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft):	0.213 1 3 103 34 8 0.37	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead	3,942 26,828 26,828 184 187 455 75 50,326	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft):	0.213 1 3 103 34 8 0.37 15.72	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative	3,942 26,828 26,828 184 187 455 75 50,326 5,938	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft):	0.213 1 3 103 34 8 0.37 15.72	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead	3,942 26,828 26,828 184 187 455 75 50,326	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2):	0.213 1 3 103 34 8 0.37 15.72 18.41	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft):	0.213 1 3 103 34 8 0.37 15.72 18.41	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):	0.213 1 3 103 34 8 0.37 15.72 18.41 10.708 37.215	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits)	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):	0.213 1 3 103 34 8 0.37 15.72 18.41 10.708 37.215	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels	0.213 1 3 103 34 8 0.37 15.72 18.41 10.708 37.215	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon	0.213 1 3 103 34 8 0.37 15.72 18.41 10.708 37.215 10,193 129 0	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.)	0.213 1 3 103 34 8 0.37 15.72 18.41 10.708 37.215 10,193 129 0 41,544	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated:	0.213 1 3 103 34 8 0.37 15.72 18.41 10.708 37.215 10,193 129 0 41,544 69,777	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16 Equation 1.27	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29 Equation 1.38
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base:	0.213 1 3 103 34 8 0.37 15.72 18.41 10.708 37.215 10,193 129 0 41,544 69,777	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16 Equation 1.27 apply inflation factor Table 1.4 (less sales taxes)	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 184 187 455 75 50,326 5,938 15,380	Equation 1.28 Equation 1.29 Equation 1.38

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	16		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.22		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	6.64E-03		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	6644.8		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.0977		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	5.34		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	1,500 0	Operating hours between carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	0 R	Regenerated off-site	Capital recovery factor (carbon):	0.5378	
Number of canisters:	2 0	Only one online at a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0 d	default, page 1-35			
Carbon price (\$/lb):	1.25 r	reactivated, page 1-6			
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.427 E	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.213 5	50% of equilibrium capacity	Operating labor	26,280	
Number of desorbing vessels:	0 R	Regenerated off-site	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	8,575 E	Equation 1.14 (at 1500 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	6		Electricity	184	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	51,452 L	Lbs per replacement times number of replacements	Carbon replacement	43,873	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	47,504	
Adsorber vessels (includes cost of carbon)	132,000 T	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	123,039	
Auxiliary equipment (ductwork, etc.)	0			· · · · · · · · · · · · · · · · · · ·	_
Total equipment cost (\$)base:	531,311 E	Equation 1.27	Total Annual Cost (without credits)	348,802	
Total equipment cost (\$)escalated:	•	apply inflation factor	Recovery credits	•	Recovered solvent not re-sold
Purchased Equipment Cost (\$):	641,940 т	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	348,802	
Total Capital Investment (\$):	950,071 T		,	• • •	
• • • • • • • • • • • • • • • • • • • •	•				

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	5.4	5.2
2.	Catalytic Oxidation	98.0	98.0	96.0	5.4	5.2
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	5.4	5.2
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	5.4	5.2
5.	Refrigerated Condenser	95.0	98.0	93.1	5.4	5.0
6.	Carbon Adsorption (Fixed Bed)	95.0	98.0	93.1	5.4	5.0
7.	Carbon Adsorption (Canister)	95.0	98.0	93.1	5.4	5.0
					*VOC Baseline =	5.5 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	86,855	8,346	1,609	149,202	28,770
2.	Carbon Adsorption (Fixed Bed)	113,537	14,704	2,925	155,442	30,920
3.	Thermal Oxidation	252,984	24,373	4,700	175,934	33,925
4.	Rotary Concentrator/Oxidizer	349,610	33,682	6,495	186,464	35,955
5.	Refrigerated Condenser	380,118	36,621	7,285	192,802	38,352
6.	Regenerative Thermal Oxidizer	553,060	53,283	10,274	216,725	41,791
7.	Carbon Adsorption (Canister)	995,797	128,960	25,652	376,778	74,948

^{*} PTE based on ACHD's TSD for IP-23.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	167.0		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):		includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):		includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):		Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	643.6	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	2.7	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	36.9		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.088	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	2.1		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	169		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	4,518	
			Electricity		Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead		Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	12,649	
Incinerator:			Capital recovery	24,373	=CRF x TCI
@ 0 % heat recovery:		Equation 2.29			
@ 35 % heat recovery:		Equation 2.30	Total Annual Cost	175,934	
@ 50 % heat recovery:	,	Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :	-				
Total Equipment Costbase:	61,573	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	135,692	=Base cost x inflation factor			
Purchased Equipment Cost (B):	160,116	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	252,984	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST DEFEDENCE DATE*.		2016			
COST REFERENCE DATE*:					
Current Date:		1/15/2020			
Years since Cost Base Date:		4			
Average inflation rate/year, %:		2.5			
Inflation adjustment factor:		1.10			
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		167		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		2.73	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):		36.9		Natural gas price (\$/mscf):	4.00
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050
Combustion temperature (oF):		1,400		Control system life (years):	15
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.041	methane		
Pressure drop (in. w.c.):		19.0	Table 2.13		
				ANNUAL COSTS	
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)
Auxiliary Fuel Requirement:	(lb/min):	0.025	Equation 2.21	Operating labor	26,280
	(scfm):	0.61		Supervisory labor	3,942 Table 2.12
	(mcf/yr):	321.6		Maintenance labor	26,828
Total Maximum Exhaust Gas Flowrate:	(scfm):	168		Maintenance materials	26,828 Table 2.12
				Natural gas	1,286
				ivaturai gas	1,200
CALCULATED CAPITAL COSTS				Electricity	299 Section 2.5.2.1
CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC):				•	•
		268,743	Equation 2.33	Electricity	299 Section 2.5.2.1
Oxidizer Equipment Cost (EC):		•	Equation 2.33 Equation 2.33	Electricity Overhead	299 Section 2.5.2.1 50,326 Table 2.12
Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery:		•	•	Electricity Overhead Taxes, insurance, administrative	299 Section 2.5.2.1 50,326 Table 2.12 27,653 53,283 = CRF x TCI
Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment :		0	Equation 2.33	Electricity Overhead Taxes, insurance, administrative Capital recovery	299 Section 2.5.2.1 50,326 Table 2.12 27,653
Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment : Total Equipment Cost—base:		0 0 268,743	Equation 2.33 =EC + Auxiliary costs	Electricity Overhead Taxes, insurance, administrative Capital recovery	299 Section 2.5.2.1 50,326 Table 2.12 27,653 53,283 = CRF x TCI
Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment : Total Equipment Costbase: Total Equipment Costescalated (A):		0 0 268,743 296,642	Equation 2.33 =EC + Auxiliary costs =Base cost x inflation factor	Electricity Overhead Taxes, insurance, administrative Capital recovery	299 Section 2.5.2.1 50,326 Table 2.12 27,653 53,283 = CRF x TCI
Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment : Total Equipment Cost—base:		0 268,743 296,642 350,038	Equation 2.33 =EC + Auxiliary costs	Electricity Overhead Taxes, insurance, administrative Capital recovery	299 Section 2.5.2.1 50,326 Table 2.12 27,653 53,283 = CRF x TCI

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	3			
Current Date:	1/15/2020)			
Years since Cost Base Date:	32	2			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20)			
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	167		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Waste gas heat content (BTU/scf):	2.73	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):	36.90		Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/Ib-oF):	0.26	air	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	0.0408	Methane	Capital recovery factor (system): Capital recovery factor (catalyst):	0.0963 0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.038	Equation 2.21			
(scfm):	0.9	•			
Total Gas Flowrate (scfm):	168		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	0.3		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942	Table 2.12
			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828	Table 2.12
Equipment Costs (\$):			Natural gas	1,966	
Incinerator:			Electricity	221	Section 2.5.2.1
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	123	
@ 35 % heat recovery:	0	Equation 2.35	Overhead	50,326	Table 2.12
@ 50 % heat recovery:	21,139	Equation 2.36	Taxes, insurance, administrative	4,343	
@ 70 % heat recovery:	0	Equation 2.37	Capital recovery	8,346	=CRF x TCI
Other equipment :	-		Total Annual Cost	149,202	
Total Equipment Costbase:	21,139	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	46,586	=Base cost x inflation factor			
Purchased Equipment Cost (B):	54,972	=1.18A (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Capital Investment (TCI):

86,855 =1.58B (Table 2.10)

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

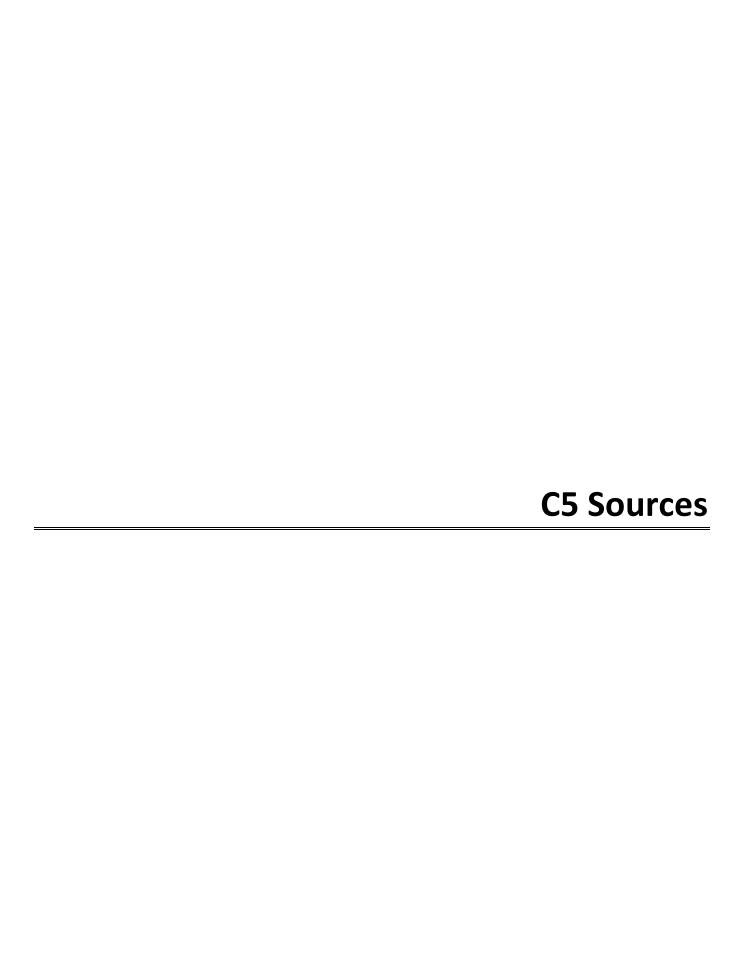
COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	167	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	5.4	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	643.64 based on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.5 Section 2.5.2.1		
Fuel usage (Btu/hr)	25,058 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	98,506	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	178,171 inflation adjustment	Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	283,331 sty-cost.wk3	Natural gas	878
Total Capital Investment (TCI), (\$)	349,610 sty-cost.wk3	Electricity	220
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	17,481
		Capital recovery	33,682 =CRF x TCI

Total Annual Cost 186,464

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser		
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA		

Vear since Cost Base Date:	COST REFERENCE DATE*:	2014				
Variable						
Average inflation rate/year, %: 1.16						
Inflation adjustment factor:						
Inlet stream flowrate (scfm):						
Inlet stream flowrate (scfm):	imation adjustment factor.	1.10	,			
Inlet stream temperature (oF):	INPUT PARAMETERS:			CAPITAL COSTS:		
VOC to be condensed:	Inlet stream flowrate (scfm):	167	,	Equipment Costs (\$):		
VOC Inlet volume fraction: 0.000644 Required VOC removal (fraction): 0.90 Total equipment cost (5)-escalated: 177,482 Equation 2.28	Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	128,486	Equation 2.26
Required VOC removal (fraction): Antoine equation constants for VOC: Total equiment cost (\$)base: 177,482 Equation 2.29 Antoine equation constants for VOC: A: 6.955 Table 8 below, for Toluene Purchase (equipment cost (\$)-escalated: 205,825 inflation adjusted A: 6.955 Table 8 below, for Toluene Purchase (equipment cost (\$)-escalated: 222,291 Equation 2.30 A: 219,480 Table 8 below, for Toluene VOC heat of condensation (\$IU/Ib-mole: 14,290 Table A below, for Toluene VOC heat capacity (\$IU/Ib-mole-oF): 3.7.5 Table A below, for Toluene VOC condition (\$IU/Ib-mole-oF): 3.7.5 Table A below, for Toluene VOC bealt specific heat (\$IU/Ib-oF): 0.650 Default value Operating factor (In/y/pr): 8.760 VOC corditate prevalure (oR): 1,065.0 Table A below, for Toluene Operating factor (In/y/pr): 48.00 VOC corditate weight (\$Ib/Ib-mole): 9.2.1 Table A below, for Toluene Operating fabor rate (\$/hr): 49.00 VOC conditionate density (\$Ib/Ba): 7.2.2 Table A below, for Toluene Operating fabor factor (In/y/sh): 0.5 Table 2.4 VOC conditionate density (\$Ib/Ba): 7.7.2 Table A below, for Toluene Operating fabor factor (In/y/sh): 0.5 Table 2.4 VOC conditionate density (\$Ib/Ba): 7.7.2 Table A below, for Toluene Operating fabor factor (In/y/sh): 0.5 Table 2.4 VOC conditionate density (\$Ib/Ba): 7.7.2 Table A below, for Toluene Operating fabor factor (In/y/sh): 0.5 Table 2.4 VOC conditionate density (\$Ib/Ba): 7.7.2 Equation 2.8 Capital recovery (\$Ib/Ba): 0.000 VOC flowrate in (Ib-moles/hr): 0.0165 Equation 2.9 Taxes, insurance, admin. factor: 0.05 VOC flowrate out (Ib-moles/hr): 0.015 inter-outed Operating fabor 0.05 VOC flowrate in (Ib-moles/hr): 0.015 inter-outed Operating fabor 0.05 Operating fabor 0.05 VOC heat of condensation @ Tc (\$IU/Ih/r: 0.015 inter-outed Operating fabor 0.05 Operating fabor 0.05 Operating fabor 0	VOC to be condensed:	Toluene	<u>}</u>	Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
Antoline equation constants for VOC: A: 6.955 Table 8 below, for Toluene B: 1344.800 Table 8 below, for Toluene C: 219.480 Table 8 below, for Toluene VOC heat of condensation (BTU/lb-mole): VOC heat of condensation (BTU/lb-mole): 14,290.0 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 3.75 Table A below, for Toluene VOC below (BTU/lb-mole-oF): 3.75 Table A below, for Toluene VOC below (BTU/lb-mole-oF): 23.10 Table A below, for Toluene VOC belowing point (oF): 23.10 Table A below, for Toluene VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC condensate density (lb/gal): 7.20 Table A below, for Toluene VOC critical temperature (oR): 6.95 Default value Post (or Toluene VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC critical temperature (oR): 1,055.0 Table 2.4 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene VOC critical temperature (oR): 1,055.0 Default value Post (or Toluene VOC condensate density (lb/gal): 1,055.0 Default value Post (or Toluene VOC condensate density (lb/gal): 1,055.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Toluene VOC value (s/flb): 1,005.0 Default value Post (or Tolue	VOC inlet volume fraction:	0.000644		Multistage refrigeration unit:	141,986	Equation 2.28
A: 6.955 Table B below, for Toluene B: 1344.800 Table B below, for Toluene C: 219.480 Table B below, for Toluene C: 219.480 Table B below, for Toluene VOC heat of condensation (BTU/lb-mole): VOC heat capacity (BTU/lb-mole-oF): VOC heat capacity (BTU/lb-mole-oF): VOC heat capacity (BTU/lb-mole-oF): VOC collant specific heat (BTU/lb-F): VOC boiling point (oF): VOC critical temperature (oR): VOC critical temperature (oR): VOC condensate density (lb/gal): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF): Air heat capacity (BTU/lb-mole-oF): Outet VOC partial pressure (mm Hg): Outer VOC crondensate density (lb/gar): VOC condensate of the moles/hr): Outer VOC partial pressure (mm Hg): Outer VOC condensation (B-moles/hr): Outer VOC partial pressure (mm Hg): Outer VOC flowrate in (lb-moles/hr): Outer VOC partial pressure (mm Hg): Outer Sequence (lb-moles/hr): Outer VOC partial pressure (mm Hg): Outer Sequence (lb-moles/hr): Outer Sequence (lb-moles/hr): Outer VOC partial pressure (mm Hg): Outer Sequence (lb-moles/hr): Outer Sequence (lb	Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	177,482	Equation 2.29
B: 1344.800 Table a below, for Toluene C: 219.480 Table a below, for Toluene C: 219.480 Table a below, for Toluene VOC heat of condensation (BTU/lb-mole): 14,290.0 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 37.5 Table A below, for Toluene VOC heat capacity (BTU/lb-mole-oF): 0.650 Default value Operating factor (hr/yr): 8760 VOC critical temperature (RT): 1.056.0 Table A below, for Toluene Maintenance labor rate (S/hr): 48.00 VOC critical temperature (RR): 1.056.0 Table A below, for Toluene Maintenance labor rate (S/hr): 49.00 VOC critical temperature (RR): 1.056.0 Table A below, for Toluene Maintenance labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Maintenance labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Maintenance labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (lb/gal): 6.95 Default value Electricity (BTU/lb-mole-oF): 8.95 Default value (BTU/lb-mole-oF): 8.95 Defaul	Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	205,825	inflation adjusted
C: 219.480 Table 8 below, for Toluene	A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	222,291	Equation 2.30
VOC heat of condensation (BTU/lb-moleo): 14,290.0 Table A below, for Toluene VOC heat capacity (BTU/lb-moleo-6): 37.5 Table A below, for Toluene ANNUAL COST INPUTS: Coolant specific heat (BTU/lb-oF): 0.650 Default value Operating factor (hr/yr): 8760 VOC boiling point (of): 231.0 Table A below, for Toluene Operating labor rate (\$/hr): 48.00 VOC critical temperature (oR): 1,065.0 Table A below, for Toluene Operating labor factor (hr/sh): 49.00 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Operating labor factor (hr/sh): 0.5 Table 2.4 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.05 DESIGN PARAMETERS: 6.95 Default value Electricity price (\$/kWhr): 0.05 Outlet VOC partial pressure (mm Hg): 0.0489 Equation 2.6 Control system life (years): 15 Condensation temperature, Tc (oF): 70.2 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate out (lb-moles/hr): 0.002 Equation 2.9 Taxes, insurance, admin. factor: 0.05 VOC condensed (lb-moles/hr): (lb/hr): 1.4 Ib-moles x molecular weight Operating labor<	B:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	380,118	Table 2.3
VOC heat capacity (BTU/lb-mole-oF): 37.5 Table A below, for Toluene ANNUAL COST INPUTS: Coolant specific heat (BTU/lb-oF): 0.650 Default value Operating factor (hr/yr): 8760 VOC boiling point (oF): 231.0 Table A below, for Toluene Operating factor (hr/yr): 48.00 VOC critical temperature (oR): 1,065.0 Table A below, for Toluene Maintenance labor rate (5/hr): 49.00 VOC condensate density (lb/b-mole): 92.1 Table A below, for Toluene Operating labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (BTU/lb-mole): 6.95 Default value Electricity price (5/kWhr): 0.05 Alr heat capacity (BTU/lb-mole-oF): 6.95 Default value Maintenance labor factor (hr/sh): 0.5 Table 2.4 Alr heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (5/kWhr): 0.05 DUSIGN PARAMETERS: 0.0489 Equation 2.6 Control system life (years): 15 Outlet VOC partial pressure (mm Hg): 0.0489 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): -70.2 Equation 2.18 Taxes, insurance, admin. factor: 0.05	C:	219.480	Table B below, for Toluene			
Coolant specific heat (BTU/lb-oF): 0.650 Default value Operating factor (hr/yr): 8760 VOC boiling point (oF): 23.1.0 Table A below, for Toluene Operating labor rate (\$/hr): 48.00 VOC critical temperature (oR): 1,065.0 Table A below, for Toluene Maintenance labor rate (\$/hr): 49.00 VOC molecular weight (lb/lb-mole): 92.1 Table A below, for Toluene Operating labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Maintenance labor factor (hr/sh): 0.5 Table 2.4 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.05 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.05 DESIGN PARAMETERS: -70.2 Equation 2.6 Control system life (years): 15 Outlet VOC partial pressure (mm Hg): 0.0489 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0165 Equation 2.18 Capital recovery factor: 0.0963 VOC flowrate out (lb-moles/hr): 0.002 Equation 2.10 ANNUAL COSTS: VOC nodensed (lb-moles/hr): 0.015 inlet - outlet ANNUAL	VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC bolling point (oF): VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC molecular weight (llb/lb-mole): VOC condensular weight (llb/lb-mole): VOC condensate density (lb/gal): Ali heat capacity (BTU/lb-mole-oF): Ali heat capacity (BTU/lb-mole-oF): DESIGN PARAMETERS: Outlet VOC partial pressure (mm Hg): Outlet VOC partial pressure (mb Hg): Outlet VOC partial partial pressure (mb Hg): Outlet VOC partial pressure (mb Hg): O	VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC molecular weight (lb/lb-mole): 92.1 Table A below, for Toluene VOC condensate density (lb/gal): 7.20 Table A below, for Toluene VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$f\kmhr): Recovered VOC value (\$f\lb): Annual interest rate (fraction): O.05 Outlet VOC partial pressure (mm Hg): O.0489 Equation 2.6 Condensation temperature, Tc (oF): -70.2 Equation 2.8 Capital recovery factor: O.05 VOC flowrate in (lb-moles/hr): VOC condensed (lb-moles/hr): O.0165 Equation 2.10 VOC condensed (lb-moles/hr): O.015 inlet - outlet ANNUAL COSTS: (lb/hr): 1.4 lb-moles x molecular weight VOC hat of condensation @ Tc (BTU/lb-mole): Enthalpy change, oundensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): AT Equation 2.16 Maintenance labor rate (\$f\nr): Annual interest rate (fraction): O.05 Control system life (years): 1.5 Capital recovery factor: O.0963 VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): O.015 inlet - outlet ANNUAL COSTS: (lb/hr): 1.4 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): 1.7,886 Equation 2.14 Supervisory labor 3,942 Enthalpy change, oundensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): 415 Equation 2.16 Maintenance labor Amintenance labor 26,828 Enthalpy change, air (BTU/hr): 47,967 Equation 2.17 Electricity 2,972 Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead Doverhead Doverh	Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF): Befault value Condensate density (BTU/lb-mole-oF): Befault value Electricity price (5/kWhr): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): Condensed (lb-moles/hr): (lb/hr): (lb/hr): (lb/hr): I.4 lb-moles x molecular weight VOC chaet of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Enthalpy change, air (BTU/hr): Condenser undensed word (BTU/hr): Ar,967 Equation 2.17 Condenser surface area (ftz): Condenser surface area (ftz): Condenser surface area (ftz): Condenser surface area (ftz): Condenser weight (lb/lb/hr): 7.20 Table 2.1 Table A below, for Toluene Maintenance labor factor (hr/sh): Blectricity price (5/kWhr): 0.05 Table 2.4 Maintenance labor factor (hr/sh): 0.05 Electricity price (5/kWhr): 0.005 Annual interest rate (fraction): 0.005 Control system life (years): 15 Control system life (years): 26 Capital recovery admin.factor: 26,280 Capital recovery 36	VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF): Default value Befault value Belectricity price (\$/kWhr): Recovered VOC value (\$/lb): Recovery redits Recovered VOC value (\$/lb]: Recovery redits Recovered VOC value (\$/lb]: Recovery redits	VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
Air heat capacity (BTU/lb-mole-oF): Condensed VOC value (\$/kbhr): 0.005	VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
DESIGN PARAMETERS: Outlet VOC partial pressure (mm Hg): O.0489 Equation 2.6 Control system life (years): Outlet VOC partial pressure (mm Hg): O.0489 Equation 2.8 Capital recovery factor: O.0963 VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): O.0165 Equation 2.9 Taxes, insurance, admin. factor: O.05 VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): O.015 inlet - outlet OC flowrate out (lb-moles/hr): O.016 Equation 2.10 VOC heat of condensation @ Tc (BTU/lb-mole): OC flowrate out (Bru/lb-moles): Inthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Inthalpy change, air (BTU/hr): Inthalpy change, air (BTU/hr): OC flowrate out (BTU/hr): AR,999 sum of enthalpy changes OVEN cheat of condensation of the con	VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
DESIGN PARAMETERS: Outlet VOC partial pressure (mm Hg): Outlet VOC flowrate in (lb-moles/hr): Outlet VOC flowrate in (lb-moles/hr): Outlet VOC flowrate out (lb-moles/hr): Outlet VOC condensed VOC (BTU/hr): In the Voc co	Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): -70.2 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lib-moles/hr): VOC flowrate out (lib-moles/hr): VOC condensed (lib-moles/hr): (lb/hr): 1.4 Ib-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): 47,967 Equation 2.17 Heat transfer coefficient, U (BTU/hr-ft2-oF): Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): 28.2 Equation 2.18 Condensed Noce (BTU/hr): 29.78 Equation 2.22 Refrigeration capacity (tons): Condensed (Ib-moles/hr): 15 Capital recovery factor: 0.0963 Capital recovery labor 26,280 ANNUAL COSTS: Operating labor 26,280 Supervisory labor 3,942 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 17 Equation 2.16 Maintenance materials 26,828 Electricity 2,972 Condenser heat load (BTU/hr-ft2-oF): 2,972 Condenser surface add (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 19,006 Capital recovery 36,621 Condenser surface area (ft2): Coolant flowrate (lb/hr): 2,978 Equation 2.22 Total Annual Cost (without credits) 192,802 Refrigeration capacity (tons):				Recovered VOC value (\$/lb):	0.00	
Condensation temperature, Tc (oF): -70.2 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0165 Equation 2.9 Taxes, insurance, admin. factor: 0.05 VOC flowrate out (lb-moles/hr): 0.002 Equation 2.10 VOC condensed (lb-moles/hr): 0.015 inlet - outlet ANNUAL COSTS: (lb/hr): 1.4 lb-moles x molecular weight Operating labor 26,280 VOC heat of condensation @ Tc (BTU/lb-mole): 17,886 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 415 Equation 2.12 Maintenance labor 26,828 Enthalpy change, air (BTU/hr): 47,967 Equation 2.17 Electricity 2,972 Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): 85.9 Equation 2.19 Capital recovery factor: 0.0963 ANNUAL COSTS: 0 Operating labor 26,280 Maintenance labor 26,828 Electricity 2,972 Condenser heat load (BTU/hr): 47,967 Equation 2.17 Electricity 2,972 Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 19,006 Log-mean temperature difference (oF): 85.9 Equation 2.19 Capital recovery 36,621 Condenser surface area (ft2): Coolant flowrate (lb/hr): 2,978 Equation 2.22 Total Annual Cost (without credits) 192,802 Refrigeration capacity (tons):	DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
VOC flowrate in (lb-moles/hr):0.0165Equation 2.9Taxes, insurance, admin. factor:0.05VOC flowrate out (lb-moles/hr):0.002Equation 2.10VOC condensed (lb-moles/hr):0.015inlet - outletANNUAL COSTS:VOC heat of condensation @ Tc (BTU/lb-mole):17,886Equation 2.14Supervisory labor3,942Enthalpy change, condensed VOC (BTU/hr):415Equation 2.12Maintenance labor26,828Enthalpy change, uncondensed VOC (BTU/hr):17Equation 2.16Maintenance materials26,828Enthalpy change, air (BTU/hr):47,967Equation 2.17Electricity2,972Condenser heat load (BTU/hr):48,399sum of enthalpy changesOverhead50,326Heat transfer coefficient, U (BTU/hr-ft2-oF):20.0Default valueTaxes, insurance, administrative19,006Log-mean temperature difference (oF):85.9Equation 2.19Capital recovery36,621Condenser surface area (ft2):28.2Equation 2.22Total Annual Cost (without credits)192,802Refrigeration capacity (tons):4.03Equation 2.23Recovery credits0	Outlet VOC partial pressure (mm Hg):	0.0489	Equation 2.6	Control system life (years):	15	
VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): (lb/hr): 1.4 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Enthalpy change, air (BTU/hr): Enthalpy change, air (BTU/hr): Enthalpy change, air (BTU/hr): Enthalpy change was often at load (BTU/hr): Electricity Elec	Condensation temperature, Tc (oF):	-70.2	Equation 2.8	Capital recovery factor:	0.0963	
VOC condensed (lb-moles/hr): (lb/hr): 1.4 lb-moles x molecular weight Operating labor 26,280 VOC heat of condensation @ Tc (BTU/lb-mole): 17,886 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 415 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 17 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 47,967 Equation 2.17 Electricity 2,972 Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): 85.9 Equation 2.19 Capital recovery 36,621 Condenser surface area (ft2): Coolant flowrate (lb/hr): 2,978 Equation 2.22 Total Annual Cost (without credits) 192,802 Refrigeration capacity (tons):	VOC flowrate in (lb-moles/hr):	0.0165	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
(lb/hr):1.4lb-moles x molecular weightOperating labor26,280VOC heat of condensation @ Tc (BTU/lb-mole):17,886Equation 2.14Supervisory labor3,942Enthalpy change, condensed VOC (BTU/hr):415Equation 2.12Maintenance labor26,828Enthalpy change, uncondensed VOC (BTU/hr):17Equation 2.16Maintenance materials26,828Enthalpy change, air (BTU/hr):47,967Equation 2.17Electricity2,972Condenser heat load (BTU/hr):48,399sum of enthalpy changesOverhead50,326Heat transfer coefficient, U (BTU/hr-ft2-oF):20.0Default valueTaxes, insurance, administrative19,006Log-mean temperature difference (oF):85.9Equation 2.19Capital recovery36,621Condenser surface area (ft2):28.2Equation 2.18Coolant flowrate (lb/hr):2,978Equation 2.22Total Annual Cost (without credits)192,802Refrigeration capacity (tons):4.03Equation 2.23Recovery credits0	VOC flowrate out (lb-moles/hr):	0.002	Equation 2.10			
VOC heat of condensation @ Tc (BTU/lb-mole): 17,886 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 415 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 17 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 47,967 Equation 2.17 Electricity 2,972 Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 19,006 Log-mean temperature difference (oF): 85.9 Equation 2.19 Capital recovery 36,621 Condenser surface area (ft2): 28.2 Equation 2.18 Coolant flowrate (lb/hr): 2,978 Equation 2.22 Total Annual Cost (without credits) 192,802 Refrigeration capacity (tons): 4.03 Equation 2.23 Recovery credits 0	VOC condensed (lb-moles/hr):	0.015	inlet - outlet	ANNUAL COSTS:		
Enthalpy change, condensed VOC (BTU/hr): 415 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 17 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 47,967 Equation 2.17 Electricity 2,972 Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): 85.9 Equation 2.19 Capital recovery 36,621 Condenser surface area (ft2): Coolant flowrate (lb/hr): 2,978 Equation 2.22 Total Annual Cost (without credits) 192,802 Refrigeration capacity (tons): 40.0 Equation 2.23 Recovery credits 0	(lb/hr):	1.4	lb-moles x molecular weight	Operating labor	26,280	
Enthalpy change, uncondensed VOC (BTU/hr): 17 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 47,967 Equation 2.17 Electricity 2,972 Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 19,006 Log-mean temperature difference (oF): 85.9 Equation 2.19 Capital recovery 36,621 Condenser surface area (ft2): 28.2 Equation 2.18 Equation 2.22 Total Annual Cost (without credits) 192,802 Refrigeration capacity (tons): 4.03 Equation 2.23 Recovery credits 0	VOC heat of condensation @ Tc (BTU/lb-mole):	17,886	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, air (BTU/hr): 47,967 Equation 2.17 Electricity 2,972 Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 19,006 Log-mean temperature difference (oF): 85.9 Equation 2.19 Capital recovery 36,621 Condenser surface area (ft2): 28.2 Equation 2.18 Coolant flowrate (lb/hr): 2,978 Equation 2.22 Total Annual Cost (without credits) 192,802 Refrigeration capacity (tons): 4.03 Equation 2.23 Recovery credits 0	Enthalpy change, condensed VOC (BTU/hr):	415	Equation 2.12	Maintenance labor	26,828	
Condenser heat load (BTU/hr): 48,399 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 19,006 Log-mean temperature difference (oF): 85.9 Equation 2.19 Capital recovery 36,621 Condenser surface area (ft2): 28.2 Equation 2.18 Coolant flowrate (lb/hr): 2,978 Equation 2.22 Total Annual Cost (without credits) 192,802 Refrigeration capacity (tons): 4.03 Equation 2.23 Recovery credits 0	Enthalpy change, uncondensed VOC (BTU/hr):	17	Equation 2.16	Maintenance materials	26,828	
Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): 2,978 Equation 2.22 Refrigeration capacity (tons): 20.0 Default value Taxes, insurance, administrative 19,006 Capital recovery 36,621 Capital recovery Total Annual Cost (without credits) 192,802 Recovery credits 0	Enthalpy change, air (BTU/hr):	47,967	Equation 2.17	Electricity	2,972	
Log-mean temperature difference (oF):85.9 Equation 2.19Capital recovery36,621Condenser surface area (ft2):28.2 Equation 2.18Coolant flowrate (lb/hr):2,978 Equation 2.22Total Annual Cost (without credits)192,802Refrigeration capacity (tons):4.03 Equation 2.23Recovery credits0	Condenser heat load (BTU/hr):	48,399	sum of enthalpy changes	Overhead	50,326	
Condenser surface area (ft2): Coolant flowrate (lb/hr): 2.978 Equation 2.22 Refrigeration capacity (tons): 28.2 Equation 2.18 Total Annual Cost (without credits) 192,802 Recovery credits 0	Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	19,006	
Coolant flowrate (lb/hr):2,978Equation 2.22Total Annual Cost (without credits)192,802Refrigeration capacity (tons):4.03Equation 2.23Recovery credits0	Log-mean temperature difference (oF):	85.9	Equation 2.19	Capital recovery	36,621	_
Refrigeration capacity (tons): 4.03 Equation 2.23 Recovery credits 0	Condenser surface area (ft2):	28.2	Equation 2.18			_
	Coolant flowrate (lb/hr):	2,978	Equation 2.22	Total Annual Cost (without credits)	192,802	
Electricity requirement (kW/ton of refrigeration) 1.3 Table 2.5 (see below) Total Annual Cost (with credits) 192,802	Refrigeration capacity (tons):	4.03	Equation 2.23	Recovery credits	0	
	Electricity requirement (kW/ton of refrigeration)	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	192,802	


^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020)			
Years since Cost Base Date:	21	L			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68	3			
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	167		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.23		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	6.44E-04		Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	643.6		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0095		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	5.40		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	Regenerated off-site	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
	0.220			26.200	
Carbon adsorptivity (lb Toluene/lb carbon):		Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):		50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:		Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):		Equation 1.14	Electricity		Section 1.8.1.3
Carbon requirement per vessel (lb):	45		Steam		Equation 1.28
Gas flowrate per adsorbing vessel (acfm):		Vertical vessel, flow under 9000 cfm	Cooling water		Equation 1.29
Adsorber vessel diameter (ft):		Equation 1.18 or 1.21	Carbon replacement		Equation 1.38
Adsorber vessel length or height (ft):		Equation 1.19 or 1.23	Overhead	50,326	
Adsorber vessel surface area (ft2):		Equation 1.24	Taxes, insurance, administrative	5,677	
Carbon bed depth (ft):		Equation 1.31	Capital recovery	14,704	_
Carbon bed pressure drop (in. w.c.):	5.535	Equation 1.30			
CAPITAL COSTS:			Total Annual Cost (without credits) Recovery credits	155,442	Recovered solvent not re-sold
Adsorber vessels	13 311	Equation 1.25	Total Annual Cost (with credits)	155,442	necovered sorrein motive sold
Carbon		Equation 1.16	rotar, amaar cost (with creats)	133,112	
Auxiliary equipment (ductwork, etc.)	0	Equation 1.10			
Total equipment cost (\$)base:		Equation 1.27			
Total equipment cost (\$)base. Total equipment cost (\$)escalated:		apply inflation factor			
Purchased Equipment Cost (\$):		Table 1.4 (less sales taxes)			
		· · · · · · · · · · · · · · · · · · ·			
Total Capital Investment (\$):	113,537	Table 1.4			

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018		
Current Date:	1/15/2020		
Years since Cost Base Date:	2		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.05		
INPUT PARAMETERS:		ANNUAL COST INPUTS:	
Inlet stream flowrate (acfm):	167	Operating factor (hr/yr):	8760
Inlet stream temperature (oF):	200	Operating labor rate (\$/hr):	48.00
Inlet stream pressure (atm):	1	Maintenance labor rate (\$/hr):	49.00
VOC to be condensed:	Toluene	Operating labor factor (hr/sh):	0.5
Inlet VOC flowrate (avg. lb/hr):	1.23	Maintenance labor factor (hr/sh):	0.5
VOC molecular weight (lb/lb-mole):	92	Electricity price (\$/kWhr):	0.055
VOC inlet volume fraction:	6.44E-04	Recovered VOC value (\$/lb):	-
VOC inlet concentration (ppmv):	643.6	Overhead rate (fraction):	0.6
VOC inlet partial pressure (psia):	0.0095	Annual interest rate (fraction):	0.05
Required VOC removal (fraction):	0.90	Control system life (years):	10.0
Annual VOC inlet (tons):	5.40	Capital recovery factor (system):	0.1295
Total Adsorption time per canister (hr):	1,250 Operating hours between car	bon replacement Carbon life (years):	2.0
Desorption time (hr):	0 Regenerated off-site	Capital recovery factor (carbon):	0.5378
Number of canisters:	2 Only one online at a time	Taxes, insurance, admin. factor:	0.050
Superficial carbon bed velocity (ft/min):	75.0 default, page 1-35		
Carbon price (\$/lb):	1.25 reactivated, page 1-6		
DESIGN PARAMETERS:			
Carbon adsorptivity (lb Toluene/lb carbon):	0.330 Equation 1.1 and Table 1.2	ANNUAL COSTS:	
Carbon working capacity (lb VOC/lb carbon):	0.165 50% of equilibrium capacity	Operating labor	26,280
Number of desorbing vessels:	O Regenerated off-site	Supervisory labor	3,942
Total number of vessels:	2	Maintenance labor	26,828
Total Carbon needed per replacement cycle (lb):	9,340 Equation 1.14 (at 1250 adsorp	otion hrs/cycle) Maintenance materials	26,828
Number of carbon replacements per year:	8	Electricity	111 Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	74,720 Lbs per replacement times nu	umber of replacements Carbon replacement	63,713 Labor + Material (Eqs. 1.37 & 1.38)
		Overhead	50,326
CAPITAL COSTS:		Taxes, insurance, administrative	49,790
Adsorber vessels (includes cost of carbon)	189,000 Tables 1.5 & 1.6 (based on cal	rbon requirement) Capital recovery	128,960
Auxiliary equipment (ductwork, etc.)	0		
Total equipment cost (\$)base:	556,882 Equation 1.27	Total Annual Cost (without credits)	376,778
Total equipment cost (\$)escalated:	585,075 apply inflation factor	Recovery credits	Recovered solvent not re-sold
Purchased Equipment Cost (\$):	672,836 Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	376,778
Total Capital Investment (\$):	995,797 Table 1.4		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	7.3	7.0
2.	Catalytic Oxidation	98.0	98.0	96.0	7.3	7.0
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	7.3	7.0
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	7.3	7.0
5.	Refrigerated Condenser	95.0	98.0	93.1	7.3	6.8
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	7.3	6.4
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	7.3	6.4
					*VOC Baseline =	7.4 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Carbon Adsorption (Fixed Bed)	396,446	51,342	7,984	207,403	32,251
2.	Rotary Concentrator/Oxidizer	631,171	60,808	8,684	285,728	40,804
3.	Carbon Adsorption (Canister)	279,035	36,136	5,619	301,402	46,868
4.	Regenerative Thermal Oxidizer	808,636	77,906	11,125	375,915	53,683
5.	Catalytic Oxidation	802,788	76,155	10,875	412,727	58,940
6.	Thermal Oxidation	686,335	66,123	9,443	526,415	75,176
7.	Refrigerated Condenser	7,549,361	727,323	107,147	2,920,397	430,223

^{*} PTE based on sum of #1 and #2 Pastillating Belts at C5; taken from IP-11d.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Total Capital Investment (TCI).	000,333	-1.300 (Table 2.10)			
Total Capital Investment (TCI):		=1.18A (Table 2.10)			
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)			
Total Equipment Costescalated (A):		=Base cost x inflation factor			
Total Equipment Costbase:	167,045	=EC + Auxiliary costs			
Auxiliary equipment :	_				
@ 70 % heat recovery:	0	Equation 2.32			
@ 50 % heat recovery:		Equation 2.31			
@ 35 % heat recovery:		Equation 2.30	Total Annual Cost	526,415	
@ 0 % heat recovery:		Equation 2.29	Tabal Assurant Coat	F26 ***	
Incinerator:	_		Capital recovery	66,123	=CRF x TCI
Equipment Costs (EC):			Taxes, insurance, administrative	34,317	
CALCULATED CAPITAL COSTS			Overhead		Table 2.12
CALCULATED CARITAL COSTS			Electricity	,	Section 2.5.2.1
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	281,475	
Total Gas Flowrate (scfm):	9,134		Maintenance materials	•	Table 2.12
(scfm):	133.9		Maintenance labor	26,828	
Auxiliary Fuel Needed (lb/min):		Equation 2.21	Supervisory labor	,	Table 2.12
CALCULATED PARAMETERS	F 460		Operating labor	26,280	
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS	26.222	
Fuel heat of combustion (BTU/lb):		methane			
Preheat temperature (oF):		Equation 2.18			
Combustion temperature (oF):	1,400				
Gas heat capacity (BTU/lb-oF):	0.255	air			
Waste gas heat content (BTU/lb):	13.5	١.	Taxes, insurance, admin. factor:	0.05	
Waste gas heat content (BTU/scf):		Equation 2.16	Capital recovery factor (CRF):		
Pollutant concentration (ppmv):		based on Toluene	Control system life (years):	0.0963	
Pollutant molecular weight (lb/lb-mole)				0.050	
Pollutant melocular weight (lb/lb melo)		Table 2.16 based on Toluene	Natural gas price (\$/mscf): Annual interest rate (fraction):	0.050	
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055 4.00	
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):		Table 2.12
Inlet gas density (lb/scf):	0.0739	aır	Operating labor factor (hr/sh):		Table 2.12
Inlet gas temperature (oF):	200	l _.	Maintenance labor rate (\$/hr):		includes benefits
Reference temperature (oF):	77		Operating labor rate (\$/hr):		includes benefits
Gas flowrate (scfm):	9,000		Operating factor (hr/yr):	8,760	
INPUT PARAMETERS			ANNUAL COST INPUTS		
Inflation adjustment factor:	2.20				
Average inflation rate/year, %:	2.5				
Years since Cost Base Date:	32				
Current Date:	1/15/2020				
COST REFERENCE DATE*:	1988				

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	i			
Current Date:		1/15/2020				
Years since Cost Base Date:		_,,				
Average inflation rate/year, %:		2.5				
Inflation adjustment factor:		1.10				
INPUT PARAMETERS				ANNUAL COST INPUTS		
Exhaust Gas flowrate (scfm):		9,000		Operating factor (hr/yr):	8,760	
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00	
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12	
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12	
Waste gas heat content, annual avg. (BTU/scf):		1.00	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):		13.5		Natural gas price (\$/mscf):	4.00	
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050	
Combustion temperature (oF):		1,400		Control system life (years):	15	
Temperature leaving heat exchanger, Tw_o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963	
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05	
Fuel density (lb/ft3):		0.041	methane			
Pressure drop (in. w.c.):		19.0	Table 2.13			
Pressure drop (in. w.c.):		19.0	Table 2.13	ANNUAL COSTS		
Pressure drop (in. w.c.): CALCULATED UTILITY USAGES		19.0	Table 2.13	ANNUAL COSTS Item	Cost (\$/yr)	
	(lb/min):		Table 2.13 Equation 2.21		Cost (\$/yr) 26,280	
CALCULATED UTILITY USAGES	(scfm):	2.081 51.00		Item	26,280 3,942 Table 2.12	
CALCULATED UTILITY USAGES	. , ,	2.081 51.00 26,804.3		Item Operating labor	26,280	
CALCULATED UTILITY USAGES	(scfm):	2.081 51.00		Operating labor Supervisory labor	26,280 3,942 Table 2.12	
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement:	(scfm): (mcf/yr):	2.081 51.00 26,804.3		Item Operating labor Supervisory labor Maintenance labor	26,280 3,942 Table 2.12 26,828	
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS	(scfm): (mcf/yr):	2.081 51.00 26,804.3		Item Operating labor Supervisory labor Maintenance labor Maintenance materials	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12	.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC):	(scfm): (mcf/yr): (scfm):	2.081 51.00 26,804.3 9,051	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 107,217 16,157 Section 2.5 50,326 Table 2.12	.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery:	(scfm): (mcf/yr): (scfm):	2.081 51.00 26,804.3 9,051	Equation 2.21 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 107,217 16,157 Section 2.5 50,326 Table 2.12 40,432	.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC):	(scfm): (mcf/yr): (scfm):	2.081 51.00 26,804.3 9,051	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 107,217 16,157 Section 2.5 50,326 Table 2.12	.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery:	(scfm): (mcf/yr): (scfm):	2.081 51.00 26,804.3 9,051	Equation 2.21 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 107,217 16,157 Section 2.5 50,326 Table 2.12 40,432	.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery:	(scfm): (mcf/yr): (scfm):	2.081 51.00 26,804.3 9,051 392,933 0	Equation 2.21 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 107,217 16,157 Section 2.5 50,326 Table 2.12 40,432 77,906 =CRF x TCI	.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment:	(scfm): (mcf/yr): (scfm):	2.081 51.00 26,804.3 9,051 392,933 0	Equation 2.21 Equation 2.33 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 107,217 16,157 Section 2.5 50,326 Table 2.12 40,432 77,906 =CRF x TCI	.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment: Total Equipment Cost—base:	(scfm): (mcf/yr): (scfm):	2.081 51.00 26,804.3 9,051 392,933 0 0 392,933 433,724	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 107,217 16,157 Section 2.5 50,326 Table 2.12 40,432 77,906 =CRF x TCI	.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment : Total Equipment Costbase: Total Equipment Costescalated (A):	(scfm): (mcf/yr): (scfm):	2.081 51.00 26,804.3 9,051 392,933 0 0 392,933 433,724 511,795	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs =Base cost x inflation factor	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 Table 2.12 26,828 26,828 Table 2.12 107,217 16,157 Section 2.5 50,326 Table 2.12 40,432 77,906 =CRF x TCI	.2.1

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988			
Current Date:	1/15/2020			
Years since Cost Base Date:	1/15/2020			
Average inflation rate/year, %:	2.5			
Inflation adjustment factor:	2.20			
illiation adjustment factor.	2.20			
INPUT PARAMETERS			ANNUAL COST INPUTS	
Gas flowrate (scfm):	9,000		Operating factor (hr/yr):	8760
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.1
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5 Table 2.1
Waste gas heat content (BTU/scf):	1.00	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):	13.53		Catalyst price (\$/ft3):	650
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2
Fuel density (lb/ft3):	0.0408	Methane	Capital recovery factor (system):	0.0963
,,,,			Capital recovery factor (catalyst):	0.5378
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05
Auxiliary Fuel Needed (lb/min):	2.788	Equation 2.21		
(scfm):	68.3			
Total Gas Flowrate (scfm):	9,068		CALCULATED ANNUAL COSTS	
Catalyst Volume (ft3):	17.6		Operating labor	26,280
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942 Table 2.1
			Maintenance labor	26,828
CALCULATED CAPITAL COSTS			Maintenance materials	26,828 Table 2.1
Equipment Costs (\$):			Natural gas	143,672
Incinerator:			Electricity	11,928 Section 2
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	6,631
@ 35 % heat recovery:	0	Equation 2.35	Overhead	50,326 Table 2.1
@ 50 % heat recovery:	195,388	Equation 2.36	Taxes, insurance, administrative	40,139
@ 70 % heat recovery:	0	Equation 2.37	Capital recovery	76,155 =CRF x T
Other equipment :	_		Total Annual Cost	412,727
• •	195.388	=EC + Auxiliary costs		
Total Equipment Costbase:	•	=EC + Auxiliary costs =Base cost x inflation factor		
• •	430,588	=EC + Auxiliary costs =Base cost x inflation factor =1.18A (Table 2.10)		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
DADAMETERS		ANNUAL COST INDUTS	
PARAMETERS	0.000	ANNUAL COST INPUTS	0.750
Flowrate (cfm)	9,000	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	7.3	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	16.13 based on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	24.6 Section 2.5.2.1		
Fuel usage (Btu/hr)	1,350,448 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96) 173,266	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	313,391 inflation adjustment	Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	514,590 sty-cost.wk3	Natural gas	47,320
Total Capital Investment (TCI), (\$)	631,171 sty-cost.wk3	Electricity	11,838
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	31,559
		Capital recovery	60,808 =CRF x TCI
		'	•

Total Annual Cost 285,728

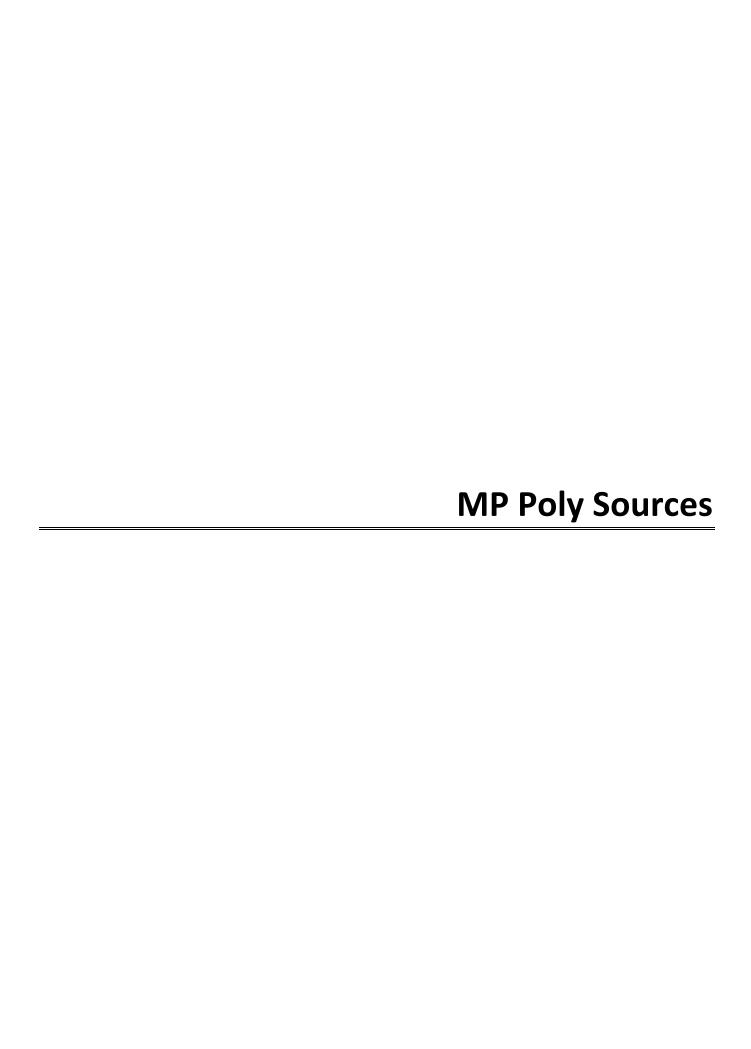
^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:	1/13/2020				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
imation adjustment factor.	1.10	,			
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	9,000)	Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	0	Equation 2.2
VOC to be condensed:	Toluene		Refrigeration unit/single-stage (> 10 tons):	1,241,275	Equation 2.2
VOC inlet volume fraction:	0.000016		Multistage refrigeration unit:	2,819,922	Equation 2.2
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	3,524,903	Equation 2.2
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	4,087,807	inflation adju
	: 6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	4,414,831	Equation 2.3
E	: 1344.800	Table B below, for Toluene	Total Capital Investment (\$):	7,549,361	Table 2.3
		Table B below, for Toluene	,,		
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	. Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	0.0012	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	-117.7	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0222	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.002	Equation 2.10			
VOC condensed (lb-moles/hr):	0.020	inlet - outlet	ANNUAL COSTS:		
(lb/hr	: 1.8	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	18,355	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	605	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	26	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	3,041,789	Equation 2.17	Electricity	1,681,403	
Condenser heat load (BTU/hr):	3,042,421	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	377,468	
Log-mean temperature difference (oF):	96.9	Equation 2.19	Capital recovery	727,323	
Condenser surface area (ft2):	1570.0	Equation 2.18			_
Coolant flowrate (lb/hr):	187,226	Equation 2.22	Total Annual Cost (without credits)	2,920,397	
Refrigeration capacity (tons):	253.54	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration	n) 11.7	Table 2.5 (see below)	Total Annual Cost (with credits)	2,920,397	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020				
Years since Cost Base Date:	21				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68				
•					
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	9,000)	Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200)	Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.66		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	1.61E-05		Steam price (\$/1000 lb):	5.00	Default values in EPA Cost Manual
VOC inlet concentration (ppmv):	16.1		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0002		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	7.29		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	Regenerated off-site	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):		Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):		50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:		Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):		Equation 1.14	Electricity		Section 1.8.1.3
Carbon requirement per vessel (lb):	91		Steam		Equation 1.28
Gas flowrate per adsorbing vessel (acfm):	4,500	Vertical vessel, flow under 9000 cfm	Cooling water		Equation 1.29
Adsorber vessel diameter (ft):		Equation 1.18 or 1.21	Carbon replacement		Equation 1.38
Adsorber vessel length or height (ft):		Equation 1.19 or 1.23	Overhead	50,326	
Adsorber vessel surface area (ft2):		Equation 1.24	Taxes, insurance, administrative	19,822	
Carbon bed depth (ft):	0.050	Equation 1.31	Capital recovery	51,342	_
Carbon bed pressure drop (in. w.c.):	1.170	Equation 1.30			
CAPITAL COSTS:			Total Annual Cost (without credits) Recovery credits	207,403	Recovered solvent not re-sold
Adsorber vessels	79 646	Equation 1.25	Total Annual Cost (with credits)	207,403	Recovered solvent not re-solu
Carbon	-	Equation 1.16	Total Aimaal Cost (with credits)	207,403	
Auxiliary equipment (ductwork, etc.)	0				
Total equipment cost (\$)base:		Equation 1.27			
Total equipment cost (\$)base: Total equipment cost (\$)escalated:	•	apply inflation factor			
Purchased Equipment Cost (\$): Total Capital Investment (\$):	-	Table 1.4 (less sales taxes)			
rotai Capitai investinent (\$):	396,446	Table 1.4			


Total Capital Investment (\$):

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	9,000		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.66		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	1.61E-05		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	16.1		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.0002		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	7.29		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	500 Operating hours betw	veen carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	0 Regenerated off-site		Capital recovery factor (carbon):	0.5378	
Number of canisters:	2 Only one online at a ti	ime	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0 default, page 1-35				
Carbon price (\$/lb):	1.25 reactivated, page 1-6				
, ,,,					
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.220 Equation 1.1 and Table	le 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.110 50% of equilibrium ca	apacity	Operating labor	26,280	
Number of desorbing vessels:	O Regenerated off-site		Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	7,567 Equation 1.14 (at 500	adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	18		Electricity	962	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	136,215 Lbs per replacement t	times number of replacements	Carbon replacement	116,149	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	13,952	
Adsorber vessels (includes cost of carbon)	90,000 Tables 1.5 & 1.6 (base	ed on carbon requirement)	Capital recovery	36,136	
Auxiliary equipment (ductwork, etc.)	0				_
Total equipment cost (\$)base:	156,045 Equation 1.27		Total Annual Cost (without credits)	301,402	
Total equipment cost (\$)escalated:	163,945 apply inflation factor		Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	188,537 Table 1.4 (less sales ta	axes)	Total Annual Cost (with credits)	301,402	

279,035 Table 1.4

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	10.1	9.7
2.	Catalytic Oxidation	98.0	98.0	96.0	10.1	9.7
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	10.1	9.7
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	10.1	9.7
5.	Refrigerated Condenser	95.0	98.0	93.1	10.1	9.4
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	10.1	8.9
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	10.1	8.9
					*VOC Baseline =	10.3 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	95,946	9,217	948	150,236	15,452
2.	Carbon Adsorption (Fixed Bed)	129,184	16,730	1,874	158,992	17,807
3.	Thermal Oxidation	264,542	25,487	2,621	177,803	18,288
4.	Rotary Concentrator/Oxidizer	350,649	33,782	3,475	186,833	19,216
5.	Refrigerated Condenser	383,110	36,910	3,916	193,751	20,557
6.	Regenerative Thermal Oxidizer	554,002	53,374	5,490	216,423	22,260
7.	Carbon Adsorption (Canister)	438,261	56,757	6,357	315,413	35,325

^{*} PTE based on sum of all emission sources within the MP Poly operations that vent to S034

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Total Capital Investment (TCI):	264,542	=1.58B (Table 2.10)			
Purchased Equipment Cost (B):	,	=1.18A (Table 2.10)			
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Total Equipment Cost - oscalated (A):		=EC + Auxiliary costs			
Auxiliary equipment :	- 64 390	FC + Assilians and			
Auviliary aguinment					
@ 70 % heat recovery:	0	Equation 2.32			
@ 50 % heat recovery:	64,386	Equation 2.31			
@ 35 % heat recovery:		Equation 2.30	Total Annual Cost	177,803	
@ 0 % heat recovery:	0	Equation 2.29			
Incinerator:			Capital recovery	25,487	=CRF x TCI
Equipment Costs (EC):			Taxes, insurance, administrative	13,227	
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
			Electricity	228	Section 2.5.2.1
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	4,658	
Total Gas Flowrate (scfm):	202		Maintenance materials	26,828	Table 2.12
(scfm):	2.2		Maintenance labor	26,828	
Auxiliary Fuel Needed (lb/min):	0.090	Equation 2.21	Supervisory labor	3,942	Table 2.12
CALCULATED PARAMETERS			Operating labor	26,280	
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
Fuel heat of combustion (BTU/lb):	21,502	methane			
Preheat temperature (oF):	800	Equation 2.18			
Combustion temperature (oF):	1,400				
Gas heat capacity (BTU/lb-oF):	0.255	air			
Waste gas heat content (BTU/lb):	57.8		Taxes, insurance, admin. factor:	0.05	
Waste gas heat content (BTU/scf):		Equation 2.16	Capital recovery factor (CRF):	0.0963	
Pollutant concentration (ppmv):		based on Toluene	Control system life (years):	15	
Pollutant molecular weight (lb/lb-mole)		based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant heat of combustion (Btu/scf):		Table 2.16	Natural gas price (\$/mscf):	4.00	
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):		Table 2.12
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):		Table 2.12
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	includes benefits
Gas flowrate (scfm):	200		Operating factor (hr/yr):	8,760	
INPUT PARAMETERS			ANNUAL COST INPUTS		
imation adjustment factor.	2.20				
Inflation adjustment factor:	2.20				
Years since Cost Base Date: Average inflation rate/year, %:	32 2.5				
Current Date:	1/15/2020				
COST REFERENCE DATE*:	1988				

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016				
Current Date:		1/15/2020)			
Years since Cost Base Date:		4	l .			
Average inflation rate/year, %:		2.5				
Inflation adjustment factor:		1.10)			
INPUT PARAMETERS				ANNUAL COST INPUTS		
Exhaust Gas flowrate (scfm):		200		Operating factor (hr/yr):	8,760	
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00	
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		4.27	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):		57.8		Natural gas price (\$/mscf):	4.00	
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050	
Combustion temperature (oF):		1,400		Control system life (years):	15	
Temperature leaving heat exchanger, Tw_o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963	
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05	
Fuel density (lb/ft3):		0.041	methane			
Pressure drop (in. w.c.):		19.0	Table 2.13			
Pressure drop (in. w.c.):		19.0	Table 2.13	ANNUAL COSTS		
Pressure drop (in. w.c.): CALCULATED UTILITY USAGES		19.0	Table 2.13	ANNUAL COSTS	Cost (\$/yr)	
	(lb/min):		Table 2.13 Equation 2.21		Cost (\$/yr) 26,280	
CALCULATED UTILITY USAGES	(lb/min): (scfm):			Item	26,280	Table 2.12
CALCULATED UTILITY USAGES		0.015		Item Operating labor	26,280	Table 2.12
CALCULATED UTILITY USAGES	(scfm):	0.015 0.38		Item Operating labor Supervisory labor	26,280 3,942 26,828	Table 2.12 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement:	(scfm): (mcf/yr):	0.015 0.38 197.1		Item Operating labor Supervisory labor Maintenance labor	26,280 3,942 26,828	
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement:	(scfm): (mcf/yr):	0.015 0.38 197.1		Item Operating labor Supervisory labor Maintenance labor Maintenance materials	26,280 3,942 26,828 26,828 788	
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate:	(scfm): (mcf/yr):	0.015 0.38 197.1		Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas	26,280 3,942 26,828 26,828 788 358	Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS	(scfm): (mcf/yr):	0.015 0.38 197.1 200		Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity	26,280 3,942 26,828 26,828 788 358	Table 2.12 Section 2.5.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC):	(scfm): (mcf/yr):	0.015 0.38 197.1 200	Equation 2.21	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead	26,280 3,942 26,828 26,828 788 358 50,326 27,700	Table 2.12 Section 2.5.2.1
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery:	(scfm): (mcf/yr):	0.015 0.38 197.1 200	Equation 2.21 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative	26,280 3,942 26,828 26,828 788 358 50,326 27,700	Table 2.12 Section 2.5.2.1 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery:	(scfm): (mcf/yr):	0.015 0.38 197.1 200 269,201 0	Equation 2.21 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 26,828 26,828 788 358 50,326 27,700 53,374	Table 2.12 Section 2.5.2.1 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment:	(scfm): (mcf/yr):	0.015 0.38 197.1 200 269,201 0	Equation 2.21 Equation 2.33 Equation 2.33	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 26,828 26,828 788 358 50,326 27,700 53,374	Table 2.12 Section 2.5.2.1 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment: Total Equipment Costbase:	(scfm): (mcf/yr):	0.015 0.38 197.1 200 269,201 0 269,201 297,148	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 26,828 26,828 788 358 50,326 27,700 53,374	Table 2.12 Section 2.5.2.1 Table 2.12
CALCULATED UTILITY USAGES Auxiliary Fuel Requirement: Total Maximum Exhaust Gas Flowrate: CALCULATED CAPITAL COSTS Oxidizer Equipment Cost (EC): @ 85% heat recovery: @ 95% heat recovery: Auxiliary equipment: Total Equipment Costbase: Total Equipment Costescalated (A):	(scfm): (mcf/yr):	0.015 0.38 197.1 200 269,201 0 269,201 297,148 350,634	Equation 2.21 Equation 2.33 Equation 2.33 =EC + Auxiliary costs =Base cost x inflation factor	Item Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative Capital recovery	26,280 3,942 26,828 26,828 788 358 50,326 27,700 53,374	Table 2.12 Section 2.5.2.1 Table 2.12

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	3			
Current Date:	1/15/2020)			
Years since Cost Base Date:	32	2			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20)			
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	200		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5 Ta	able 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5 Ta	able 2.12
Waste gas heat content (BTU/scf):	4.27	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):	57.76	·	Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	0.0408	Methane	Capital recovery factor (system):	0.0963	
, , ,			Capital recovery factor (catalyst):	0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.031	Equation 2.21			
(scfm):	0.8				
Total Gas Flowrate (scfm):	201		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	0.4		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942 Та	able 2.12
			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828 Ta	able 2.12
Equipment Costs (\$):			Natural gas	1,607	
Incinerator:			Electricity	264 Se	ection 2.5.
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	147	
@ 35 % heat recovery:	0	Equation 2.35	Overhead	50,326 та	able 2.12
@ 50 % heat recovery:	23,352	Equation 2.36	Taxes, insurance, administrative	4,797	
@ 70 % heat recovery:	0	Equation 2.37	Capital recovery	9,217 =0	CRF x TCI
Other equipment :	_		Total Annual Cost	150,236	
Total Equipment Costbase:	23.352	=EC + Auxiliary costs		,	
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	•	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	200	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	10.1	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	1,007.58 based on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.5 Section 2.5.2.1		
Fuel usage (Btu/hr)	30,010 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	98,782	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	178,669 inflation adjustment	Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	284,184 sty-cost.wk3	Natural gas	1,052
Total Capital Investment (TCI), (\$)	350,649 sty-cost.wk3	Electricity	263
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	17,532

Total Annual Cost 186,833

33,782 =CRF x TCI

Capital recovery

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:	1/15/2020				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
imation adjustment factor.	1.10	•			
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	200	1	Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	122,830	Equation 2.2
VOC to be condensed:	Toluene	1	Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.2
VOC inlet volume fraction:	0.001008		Multistage refrigeration unit:	143,104	Equation 2.2
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	178,880	Equation 2.2
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	207,445	inflation adju
A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	224,041	Equation 2.3
В:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	383,110	Table 2.3
C:	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	0.0766	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	-63.1	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0308	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.003	Equation 2.10			
/OC condensed (lb-moles/hr):	0.028	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	2.6	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	17,815	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	769	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	30	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	55,923	Equation 2.17	Electricity	3,483	
Condenser heat load (BTU/hr):	56,722	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	19,156	
og-mean temperature difference (oF):	84.3	Equation 2.19	Capital recovery	36,910	_
Condenser surface area (ft2):	33.7	Equation 2.18			-
Coolant flowrate (lb/hr):	3,491	Equation 2.22	Total Annual Cost (without credits)	193,751	
Refrigeration capacity (tons):	4.73	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration) 1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	193,751	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020)			
Years since Cost Base Date:	21	L			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68	3			
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	200		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	2.31		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	1.01E-03		Steam price (\$/1000 lb):	5.00	
VOC inlet concentration (ppmv):	1007.6		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0148		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	10.12		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	S	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):	0.347	Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):		50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:		Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3	-	Maintenance materials	26,828	
Carbon requirement, total (lb):		Equation 1.14	Electricity	•	Section 1.8.1.3
Carbon requirement per vessel (lb):	80	240000.112.	Steam		Equation 1.28
Gas flowrate per adsorbing vessel (acfm):		Vertical vessel, flow under 9000 cfm	Cooling water		Equation 1.29
Adsorber vessel diameter (ft):		Equation 1.18 or 1.21	Carbon replacement		Equation 1.38
Adsorber vessel length or height (ft):		Equation 1.19 or 1.23	Overhead	50,326	1400.0. 1.55
Adsorber vessel surface area (ft2):		Equation 1.24	Taxes, insurance, administrative	6,459	
Carbon bed depth (ft):		Equation 1.31	Capital recovery	16,730	
Carbon bed pressure drop (in. w.c.):		Equation 1.30		20,700	_
carson sea pressare arep (wee).	7.7.50	240000.1 2.00	Total Annual Cost (without credits)	158,992	
CAPITAL COSTS:			Recovery credits		Recovered solvent not re-sold
Adsorber vessels	15,410	Equation 1.25	Total Annual Cost (with credits)	158,992	
Carbon	300	Equation 1.16			
Auxiliary equipment (ductwork, etc.)	0				
Total equipment cost (\$)base:	45,191	Equation 1.27			
Total equipment cost (\$)escalated:	75,902	apply inflation factor			
Purchased Equipment Cost (\$):	87,287	Table 1.4 (less sales taxes)			
Total Capital Investment (\$):	129,184	Table 1.4			
·					

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
AVOUT DAD AAAFTFOG			ANNUAL COST INDUTS		
INPUT PARAMETERS:	200		ANNUAL COST INPUTS:	0760	
Inlet stream flowrate (acfm):	200		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	T-1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	2.31		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	1.01E-03		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	1007.6		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.0148		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	10.12		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):		Operating hours between carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):		Regenerated off-site	Capital recovery factor (carbon):	0.5378	
Number of canisters:		Only one online at a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):		default, page 1-35			
Carbon price (\$/lb):	1.25	reactivated, page 1-6			
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.347	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.173	50% of equilibrium capacity	Operating labor	26,280	
Number of desorbing vessels:	0	Regenerated off-site	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	6,667	Equation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	18		Electricity	208	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	120,011	Lbs per replacement times number of replacements	Carbon replacement	102,332	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	21,913	
Adsorber vessels (includes cost of carbon)	85,200	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	56,757	
Auxiliary equipment (ductwork, etc.)	0				_
Total equipment cost (\$)base:	245,090	Equation 1.27	Total Annual Cost (without credits)	315,413	
Total equipment cost (\$)escalated:	257,498	apply inflation factor	Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	296,122	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	315,413	
Total Capital Investment (\$):	438,261	Table 1.4			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

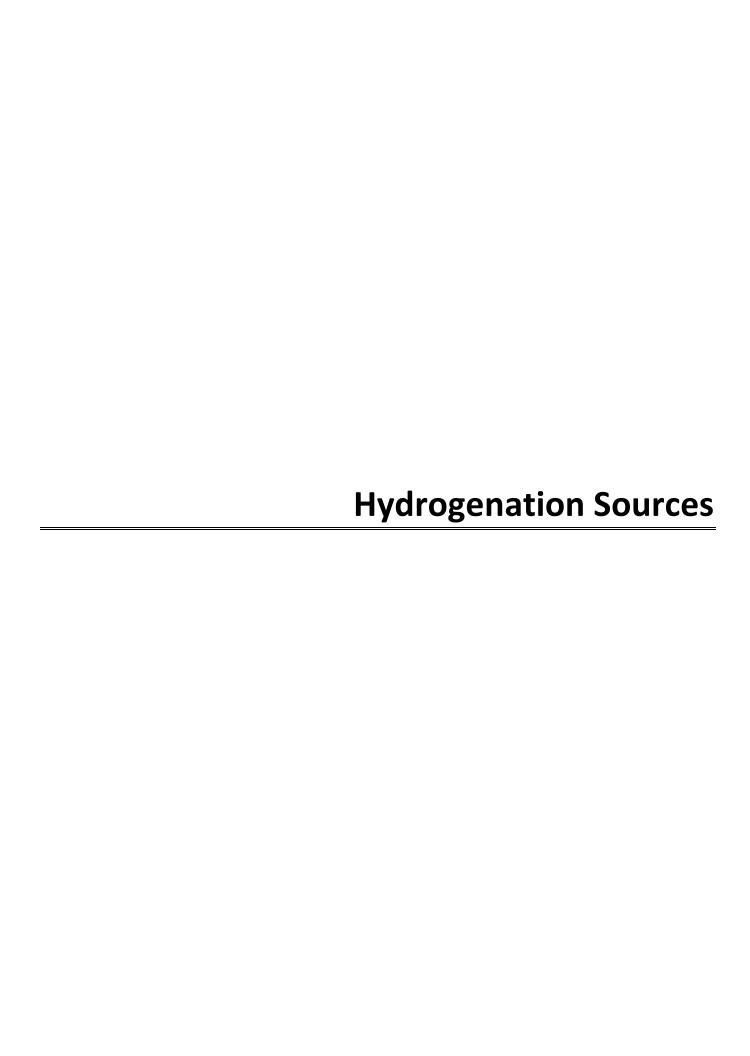


Table 1. VOC Control Technology Cost Analysis, Hydrogenation Operations, Combination of Stacks S004 and S001 Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	13.9	13.4
2.	Catalytic Oxidation	98.0	98.0	96.0	13.9	13.4
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	13.9	13.4
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	13.9	13.4
5.	Refrigerated Condenser	95.0	98.0	93.1	13.9	13.0
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	13.9	12.3
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	13.9	12.3
					*VOC Baseline =	14.2 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	57,070	5,488	411	142,844	10,688
2.	Thermal Oxidation	209,180	20,153	1,508	165,140	12,356
3.	Refrigerated Condenser	174,084	16,772	1,295	160,986	12,426
4.	Carbon Adsorption (Fixed Bed)	140,301	18,170	1,480	161,638	13,169
5.	Rotary Concentrator/Oxidizer	346,842	33,416	2,500	185,480	13,878
6.	Regenerative Thermal Oxidizer	550,487	53,035	3,968	213,174	15,950
7.	Carbon Adsorption (Canister)	768,280	99,496	8,106	395,118	32,192

^{*} PTE based on sum of following emission sources within the Hydro operations:

Metering Tank/Tanks 103&104/Catalyst Catch Tank/Mott Filter/Heel Tank (S004)

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	79		Operating factor (hr/yr):	8,760	
, ,	79				includes benefits
Reference temperature (oF):	200		Operating labor rate (\$/hr): Maintenance labor rate (\$/hr):		
Inlet gas temperature (oF): Inlet gas density (lb/scf):	0.0739		,		includes benefits Table 2.12
	0.0739	air	Operating labor factor (hr/sh):		
Primary heat recovery (fraction):			Maintenance labor factor (hr/sh):		Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):		Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)		based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):		based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):		Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	201.0		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):		Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.005	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	0.1		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	79		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	236	
			Electricity	89	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	10,459	
Incinerator:			Capital recovery	20,153	=CRF x TCI
@ 0 % heat recovery:	0	Equation 2.29			_
@ 35 % heat recovery:	0	Equation 2.30	Total Annual Cost	165,140	
@ 50 % heat recovery:	50,912	Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :	-				
Total Equipment Costbase:	50,912	=EC + Auxiliary costs			
Total Equipment Costescalated (A):		=Base cost x inflation factor			
Purchased Equipment Cost (B):	,	=1.18A (Table 2.10)			
Total Capital Investment (TCI):		=1.58B (Table 2.10)			
		,			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016			
Current Date:		1/15/2020			
Years since Cost Base Date:		1/15/2020			
Average inflation rate/year, %:		2.5			
Inflation adjustment factor:		1.10			
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		79		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		14.86	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):		201.0		Natural gas price (\$/mscf):	4.00
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050
Combustion temperature (oF):		1,400		Control system life (years):	15
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.041	methane		
Pressure drop (in. w.c.):		19.0	Table 2.13		
				ANNUAL COSTS	
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)
Auxiliary Fuel Requirement:	(lb/min):	-0.034	Equation 2.21	Operating labor	26,280
	(scfm):	-0.82		Supervisory labor	3,942 Table 2.12
	(mcf/yr):	(432.0)		Maintenance labor	26,828
Total Maximum Exhaust Gas Flowrate:	(scfm):	78		Maintenance materials	26,828 Table 2.12
				Natural gas	(1,728)
CALCULATED CAPITAL COSTS				Electricity	140 Section 2.5.2.1
Oxidizer Equipment Cost (EC):				Overhead	50,326 Table 2.12
@ QEO/ heat recovery				T	27.524
@ 85% heat recovery:		267,493	Equation 2.33	Taxes, insurance, administrative	27,524
@ 95% heat recovery:		•	Equation 2.33 Equation 2.33	Capital recovery	27,524 53,035 = CRF x TCI
@ 95% heat recovery:		•	·		53,035 =CRF x TCI
@ 95% heat recovery: Auxiliary equipment :		0	Equation 2.33	Capital recovery	·
@ 95% heat recovery: Auxiliary equipment: Total Equipment Costbase:		0 0 267,493	Equation 2.33 =EC + Auxiliary costs	Capital recovery	53,035 =CRF x TCI
@ 95% heat recovery: Auxiliary equipment: Total Equipment Costbase: Total Equipment Costescalated (A):		0 267,493 295,262	Equation 2.33 =EC + Auxiliary costs =Base cost x inflation factor	Capital recovery	53,035 = CRF x TCI
@ 95% heat recovery: Auxiliary equipment : Total Equipment Costbase:		0 267,493 295,262 348,409	Equation 2.33 =EC + Auxiliary costs	Capital recovery	53,035 = CRF x TCI

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	3			
Current Date:	1/15/2020)			
Years since Cost Base Date:	32	2			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20)			
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	79		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.1
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.1
Waste gas heat content (BTU/scf):	14.86	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):	201.02		Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	0.0408	Methane	Capital recovery factor (system):	0.0963	
			Capital recovery factor (catalyst):	0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.003	Equation 2.21			
(scfm):	0.1				
Total Gas Flowrate (scfm):	79		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	0.2		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942	Table 2.1
			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828	Table 2.1
Equipment Costs (\$):			Natural gas	138	
Incinerator:			Electricity	104	Section 2
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	58	
@ 35 % heat recovery:	0	Equation 2.35	Overhead	50,326	Table 2.1
@ 50 % heat recovery:	13,890	Equation 2.36	Taxes, insurance, administrative	2,853	
@ 70 % heat recovery:	0	Equation 2.37	Capital recovery	5,488	=CRF x TC
Other equipment :	-		Total Annual Cost	142,844	
Total Equipment Costbase:	13,890	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	30,610	=Base cost x inflation factor			
Purchased Equipment Cost (B):	36,120	=1.18A (Table 2.10)			

57,070 =1.58B (Table 2.10)

Total Capital Investment (TCI):

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	79	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	13.9	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	3,506.46 based on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.2 Section 2.5.2.1		
Fuel usage (Btu/hr)	11,854 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	97,772	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	176,843 inflation adjustment	Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	281,056 sty-cost.wk3	Natural gas	415
Total Capital Investment (TCI), (\$)	346,842 sty-cost.wk3	Electricity	104
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	17,342

Total Annual Cost 185,480

33,416 =CRF x TCI

Capital recovery

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6. Total Annual Cost Spreadsheet - Packaged Condenser

Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Current Date: 1/15/2020	COST REFERENCE DATE*:	2014				
Average inflation rate/pex; %: 1.16	Current Date:	1/15/2020				
Inflation adjustment factor:	Years since Cost Base Date:	6	i			
Inlet stream (lowrate (scfm): 79 Full test tream (lowrate (scfm): 70 Full test tream (lowrate (scfm):	Average inflation rate/year, %:	2.5				
Inlet stream flowrate (scfm): 79 Equipment Costs (\$): - Refrigeration unit/single-stage (< 10 tons): 65,025 Equation 2.28	Inflation adjustment factor:	1.16				
Inlet stream flowrate (scfm): 79 Equipment Costs (\$): - Refrigeration unit/single-stage (< 10 tons): 65,025 Equation 2.28	•					
Inlet stream temperature (oF):	INPUT PARAMETERS:			CAPITAL COSTS:		
VOC to be condensed:	Inlet stream flowrate (scfm):	79	1	Equipment Costs (\$):		
NoC inlet volume fraction: 0.003506	Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	65,026	Equation 2.26
Required VOC removal (fraction): 0.90	VOC to be condensed:	Toluene	!	Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
A: 6.955 Table 8 below, for Toluene B: 1344.800 Table 8 below, for Toluene C: 219.480 Table 8 below, for Toluene C: 219.480 Table 8 below, for Toluene C: 219.480 Table 8 below, for Toluene VOC heat of condensation (BTU/lb-mole): 14,290.0 Table 8 below, for Toluene VOC heat of condensation (BTU/lb-mole): 14,290.0 Table 8 below, for Toluene VOC heat of condensation (BTU/lb-mole): 14,290.0 Table 8 below, for Toluene VOC heat of condensation (BTU/lb-mole): 14,290.0 Table 8 below, for Toluene VOC heat of condensation (BTU/lb-mole): 14,290.0 Table 8 below, for Toluene VOC beat of condensation (BTU/lb-mole): 14,290.0 Table 8 below, for Toluene VOC beat of condensation (BTU/lb-mole): 14,290.0 Table 8 below, for Toluene VOC critical temperature (oR): 14,065.0 Table 8 below, for Toluene VOC critical temperature (oR): 15,065.0 Table 8 below, for Toluene VOC critical temperature (oR): 15,065.0 Table 8 below, for Toluene VOC condensate density (lb/gal): 17,20 Table A below, for Toluene VOC condensate density (lb/gal): 17,20 Table A below, for Toluene VOC condensate density (lb/gal): 17,20 Table A below, for Toluene VOC condensate density (lb/gal): 18,00 Table 2.4 18,00 Table 2	VOC inlet volume fraction:	0.003506		Multistage refrigeration unit:	62,275	Equation 2.28
A: 6.955 Table 8 below, for Toluene B: 1344.800 Table 8 below, for Toluene C: 219.480 Table 8 below, for Toluene C: 219.480 Table 8 below, for Toluene VOC heat of condensation (BTU/lb-mole-of):	Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	81,282	Equation 2.29
B: 1344.800 Table B below, for Toluene C: 219.480 Table B below C: 219.480 Table B below C: 219.480 Table	Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	94,263	inflation adjusted
C: 219.480 Table 8 below, for Toluene	A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	101,804	Equation 2.30
VOC heat of condensation (BTU/lb-mole): 14,290.0 Table A below, for Toluene ANNUAL COST INPUTS: VOC heat capacity (BTU/lb-mole-oF): 0.650 Default value Operating factor (hr/yr): 8760 VOC boiling point (oF): 231.0 Table A below, for Toluene Operating factor (hr/yr): 48.00 VOC critical temperature (oR): 1,065.0 Table A below, for Toluene Operating labor rate (\$/hr): 49.00 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Operating labor rate (from the (\$/hr): 0.5 Table 2.4 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.5 Table 2.4 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.05 DESIGN PARAMETERS: Annual interest rate (fraction): 0.05 0.05 Outlet VOC partial pressure (mm Hg): 0.2673 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0424 Equation 2.9 Taxes, insurance, admin. factor: 0.05 VOC condensed (lb-moles/hr): 0.038 iniet - outlet ANNUAL COSTS: VOC condensed (lb-	B:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	174,084	Table 2.3
VOC heat capacity (BTU/lb-mole-oF): 37.5 Table A below, for Toluene ANNUAL COST INPUTS: Coolant specific heat (BTU/lb-oF): 0.650 Default value Operating factor (hr/yr): 8760 VOC bolling point (oF): 231.0 Table A below, for Toluene Operating labor rate (\$/hr): 48.00 VOC critical temperature (oR): 1,065.0 Table A below, for Toluene Maintenance labor rate (\$/hr): 49.00 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Operating labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.05 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.05 DESIGN PARAMETERS: Annual interest rate (fraction): 0.05 Outlet VOC partial pressure (mm Hg): 0.2673 Equation 2.6 Control system life (years): 15 Condensation temperature, Tc (oF): -41.5 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0424 Equation 2.19 Taxes, insurance, admin. factor: 0.05 VOC modensed (lb-moles/hr): 0.038 inlet-outlet ANNUAL cOSTS: <tr< td=""><td>C:</td><td>219.480</td><td>Table B below, for Toluene</td><td></td><td></td><td></td></tr<>	C:	219.480	Table B below, for Toluene			
Coolant specific heat (BTU/lb-oF): 0.650 Default value Operating factor (hr/yr): 8760 VOC boiling point (oF): 23.1.0 Table A below, for Toluene Operating labor rate (\$/hr): 48.00 VOC condensate density (lb/lb-mole): 1,065.0 Table A below, for Toluene Maintenance labor rate (\$/hr): 49.00 VOC condensate density (lb/lb-mole): 92.1 Table A below, for Toluene Operating labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Maintenance labor factor (hr/sh): 0.5 Table 2.4 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.05 DESIGN PARAMETERS: Default value Electricity price (\$/kWhr): 0.055 Outlet VOC partial pressure (mm Hg): 0.2673 Equation 2.6 Control system life (years): 15 Condensation temperature, Tc (oF): -41.5 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0424 Equation 2.9 Taxes, insurance, admin. factor: 0.05 VOC andensed (lb-moles/hr): 0.038 intet - outlet ARNUAL COSTS: VOC heat of condensation @ Tc (BTU/lb-mole): 17,594 Equation 2.12 <td>VOC heat of condensation (BTU/lb-mole):</td> <td>14,290.0</td> <td>Table A below, for Toluene</td> <td></td> <td></td> <td></td>	VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC boiling point (oF): 231.0 Table A below, for Toluene VOC critical temperature (oR): 1,065.0 Table A below, for Toluene VOC condensular weight (lb/lb-mole): 92.1 Table A below, for Toluene VOC condensular weight (lb/lb-mole): 92.1 Table A below, for Toluene VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.055 Recovered VOC value (\$/lb): 0.00 DESIGN PARAMETERS: 0.0461 Outlet VOC partial pressure (mm Hg): 0.057 Condensation temperature, Tc (oF): 4-1.5 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.054 VOC condensed (lb-moles/hr): 0.038 inlet - outlet (lb/hr): 3.5 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): 17,594 Equation 2.12 Enthalpy change, condensed VOC (BTU/hr): 1,017 Equation 2.12 Enthalpy change, air (BTU/hr): 20,224 Equation 2.17 Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Heat transfer coefficient, U (BTU/hr-ft2-oF): 10,0964 Refrigeration capacity (tons): 1,77 Equation 2.23 Recovered VOC value (\$/hbr): 1,007 Equation 2.19 Coolant flowrate (lb/hr): 1,107 Equation 2.19 Coolant flowrate (BTU/hr): 1,109 Equation 2.22 Total Annual Cost (without credits) Recovery credits 0 column factor Operating labor ate (\$/hr): 1,207 Condenser and (FTU/hr): 1,207 Condenser and (FTU/hr): 1,207 Condenser area (ft2): 13.4 Equation 2.19 Capital recovery 16,772 Column factor 15,772 Column flowrate (BTU/hr): 1,209 Equation 2.23 Total Annual Cost (without credits) Recovery credits 0 column factor (R/hr): 16,986 Refrigeration capacity (tons): 1,777 Equation 2.23	VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
VOC critical temperature (oR): 1,065.0 Table A below, for Toluene Maintenance labor rate (\$/hr): 49.00 VOC molecular weight (lb/lb-mole): 92.1 Table A below, for Toluene Operating labor factor (hr/sh): 0.5 Table 2.4 VOC condensate density (lb/gal): 7.20 Table A below, for Toluene Maintenance labor factor (hr/sh): 0.5 Table 2.4 Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (\$/kWhr): 0.05 DESIGN PARAMETERS: Annual interest rate (fraction): 0.05 Outlet VOC partial pressure (mm Hg): 0.2673 Equation 2.6 Control system life (years): 15 Condensation temperature, Tc (oF): -41.5 Equation 2.8 Capital recovery factor: 0.0963 VOC flowrate in (lb-moles/hr): 0.0424 Equation 2.9 Taxes, insurance, admin. factor: 0.05 VOC flowrate out (lb-moles/hr): 0.038 inlet-outlet ANNUAL COSTS: VOC heat of condensation @ Tc (BTU/lb-mole): 17.594 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 1,017 Equation 2.12 Maintenance labor 26,828 Enthalpy change, air (BTU/hr): 20,224 Equation 2.16 Maintenance materi	Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC molecular weight (lb/lb-mole): VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF): 6.95 Default value Electricity price (S/kWhr): Annual interest rate (fraction): Outlet VOC partial pressure (mm Hg): Outlet Equation 2.9 Taxes, insurance, admin. factor: Outlet ANNUAL COSTS: (lb/hr): Outlet ANNUAL COSTS: (lb/hr): Outlet ANNUAL COSTS: (lb/hr): Outlet ANNUAL COSTS: VOC heat of condensation @ Tc (BTU/lb-mole): Inhalpy change, condensed VOC (BTU/hr): Inhalpy change, air (BTU/hr): Outlet inhalpy changes Overhead Source inhalpy changes Source inhalpy changes Source inhalpy changes Sou	VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC condensate density (lb/gal): Air heat capacity (BTU/lb-mole-oF): Befault value Belectricity price (\$/kWhr): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC condensed (lb-moles/hr): VOC condensed (lb-moles/hr): VOC condensed (lb-moles/hr): VOC condensed (lb-moles/hr): VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): ZOC 2424 Equation 2.16 Equation 2.17 Equation 2.17 Equation 2.18 Equation 2.19 Equation 2.19 Equation 2.11 Equation 2.11 Equation 2.12 Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): ZOC 224 Equation 2.17 Equation 2.18 Enthalpy change, air (BTU/hr): Condenser surface area (ft2): 13.4 Equation 2.23 Recovery credits Maintenance labor factor (hr/sh): O.055 Recovery (Arctor): O.050 Annual interest rate (fraction): O.05 Annual interest rate (fraction): O.05 Control system life (years): 15 Control system life (years): 15	VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
Air heat capacity (BTU/lb-mole-oF): Default value	VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
DESIGN PARAMETERS: Outlet VOC partial pressure (mm Hg): O.2673 Equation 2.6 Control system life (years): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): O.0424 Equation 2.9 Taxes, insurance, admin. factor: O.05 VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): O.045 Equation 2.0 (lb/hr): O.046 Equation 2.10 VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): D.047 Equation 2.12 Enthalpy change, uncondensed VOC (BTU/hr): D.048 Equation 2.16 Enthalpy change, air (BTU/hr): D.059 Equation 2.16 Enthalpy change, air (BTU/hr): D.069 Equation 2.17 Condenser heat load (BTU/hr): D.070 Equation 2.17 Equation 2.17 Equation 2.19 Equation 2.19 Entransfer coefficient, U (BTU/hr-ft2-oF): D.070 Default value Default value Taxes, insurance, admin. factor: D.050 ANNUAL COSTS: ANNUAL COSTS: Operating labor Departing labor	VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
DESIGN PARAMETERS: Outlet VOC partial pressure (mm Hg): Outlet VOC partial pressure (mm Hg): Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): VOC ondensed (lb-moles/hr): VOC condensed (lb-moles/hr): VOC condensed (lb-moles/hr): VOC condensed (lb-moles/hr): (lb/hr): 3.5 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, uncondensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): VOC condenser heat load (BTU/hr): VOC condenser surface area (ft2): Condenser surface area (ft2): Coolant flowrate (lb/hr): 1,309 Equation 2.23 Ential process must a supervisor of the part of the par	Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
Outlet VOC partial pressure (mm Hg): Outlet VOC flowrate in (lb-moles/hr): Outlet VOC flowrate in (lb-moles/hr): Outlet VOC flowrate out (lb-moles/hr): Outlet VOC condensed (lb-moles/hr): Outlet ANNUAL COSTS: Outlet ANNUAL COSTS: Operating labor 26,280 VOC heat of condensation @ Tc (BTU/lb-mole): Inthalpy change, condensed VOC (BTU/hr): Inthalpy change, condensed VOC (BTU/hr): Inthalpy change, uncondensed VOC (BTU/hr): Inthalpy change, uncondensed VOC (BTU/hr): Inthalpy change, air (BTU/hr): Inthalpy change (BTU/hr): In				Recovered VOC value (\$/lb):	0.00	
Condensation temperature, Tc (oF): VOC flowrate in (lb-moles/hr): VOC flowrate out (lb-moles/hr): (lb/hr): (lb/hr): 3.5 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): Enthalpy change, air (BTU/hr): 20,224 Equation 2.17 Equation 2.17 Electricity Enthalpy change, air (BTU/hr): Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Coolant flowrate (lb/hr): 1,309 Equation 2.22 Equation 2.18 Equation 2.19 Capital recovery factor: 0.0963 Taxes, insurance, admin. factor: 0.05 ANNUAL COSTS: ANNUAL COSTS: Operating labor 26,280 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 1,017 Equation 2.14 Supervisory labor 3,942 Enthalpy change, uncondensed VOC (BTU/hr): 38 Equation 2.12 Maintenance labor 26,828 Enthalpy change, air (BTU/hr): 20,224 Equation 2.17 Electricity 1,307 Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 8,704 Log-mean temperature difference (oF): 79.1 Equation 2.19 Capital recovery 16,772 Condenser surface area (ft2): 13.4 Equation 2.22 Total Annual Cost (without credits) 160,986 Refrigeration capacity (tons): 1.77 Equation 2.23 Recovery credits	DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
VOC flowrate in (lb-moles/hr): VOC condensed (lb-moles/hr): (lb/hr): 3.5 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Inthalpy change, condensed VOC (BTU/hr): Inthalpy change, air (BTU/h	Outlet VOC partial pressure (mm Hg):	0.2673	Equation 2.6	Control system life (years):	15	
VOC flowrate out (lb-moles/hr): VOC condensed (lb-moles/hr): (lb/hr): 3.5 lb-moles x molecular weight VOC heat of condensation @ Tc (BTU/lb-mole): Enthalpy change, condensed VOC (BTU/hr): 1,017 Equation 2.14 Supervisory labor 3,942 Supervisory labor 3,942 Supervisory labor 4,828 Supervisory labor 26,828 Supervisory labor 3,942	Condensation temperature, Tc (oF):	-41.5	Equation 2.8	Capital recovery factor:	0.0963	
VOC condensed (lb-moles/hr): 0.038 inlet - outlet ANNUAL COSTS: (lb/hr): 3.5 lb-moles x molecular weight Operating labor 26,280 VOC heat of condensation @ Tc (BTU/lb-mole): 17,594 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 1,017 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 38 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 20,224 Equation 2.17 Electricity 1,307 Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 8,704 Log-mean temperature difference (oF): 79.1 Equation 2.19 Condenser surface area (ft2): 13.4 Equation 2.18 Coolant flowrate (lb/hr): 1,309 Equation 2.22 Total Annual Cost (without credits) 160,986 Refrigeration capacity (tons): 1.77 Equation 2.23 Recovery credits	VOC flowrate in (lb-moles/hr):	0.0424	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
(lb/hr): 3.5 lb-moles x molecular weight Operating labor 26,280 VOC heat of condensation @ Tc (BTU/lb-mole): 17,594 Equation 2.14 Supervisory labor 3,942 Enthalpy change, condensed VOC (BTU/hr): 1,017 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 38 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 20,224 Equation 2.17 Electricity 1,307 Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 8,704 Log-mean temperature difference (oF): 79.1 Equation 2.19 Capital recovery 16,772 Condenser surface area (ft2): 13.4 Equation 2.18 Coolant flowrate (lb/hr): 1,309 Equation 2.22 Total Annual Cost (without credits) 160,986 Refrigeration capacity (tons): 1.77 Equation 2.23 Recovery credits 0	VOC flowrate out (lb-moles/hr):	0.004	Equation 2.10			
VOC heat of condensation @ Tc (BTU/lb-mole):17,594 Equation 2.14Supervisory labor3,942Enthalpy change, condensed VOC (BTU/hr):1,017 Equation 2.12Maintenance labor26,828Enthalpy change, uncondensed VOC (BTU/hr):38 Equation 2.16Maintenance materials26,828Enthalpy change, air (BTU/hr):20,224 Equation 2.17Electricity1,307Condenser heat load (BTU/hr):21,279 sum of enthalpy changesOverhead50,326Heat transfer coefficient, U (BTU/hr-ft2-oF):20.0 Default valueTaxes, insurance, administrative8,704Log-mean temperature difference (oF):79.1 Equation 2.19Capital recovery16,772Condenser surface area (ft2):13.4 Equation 2.18Coolant flowrate (lb/hr):1,309 Equation 2.22Total Annual Cost (without credits)160,986Refrigeration capacity (tons):1.77 Equation 2.23Recovery credits0	VOC condensed (lb-moles/hr):	0.038	inlet - outlet	ANNUAL COSTS:		
Enthalpy change, condensed VOC (BTU/hr): 1,017 Equation 2.12 Maintenance labor 26,828 Enthalpy change, uncondensed VOC (BTU/hr): 38 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 20,224 Equation 2.17 Electricity 1,307 Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 Default value Taxes, insurance, administrative 8,704 Log-mean temperature difference (oF): 79.1 Equation 2.19 Capital recovery 16,772 Condenser surface area (ft2): 13.4 Equation 2.18 Coolant flowrate (lb/hr): 1,309 Equation 2.22 Total Annual Cost (without credits) 160,986 Refrigeration capacity (tons): 1.77 Equation 2.23 Recovery credits 0	(lb/hr):	3.5	lb-moles x molecular weight	Operating labor	26,280	
Enthalpy change, uncondensed VOC (BTU/hr): 38 Equation 2.16 Maintenance materials 26,828 Enthalpy change, air (BTU/hr): 20,224 Equation 2.17 Electricity 1,307 Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20,0 befault value Taxes, insurance, administrative 8,704 Log-mean temperature difference (oF): 79.1 Equation 2.19 Capital recovery 16,772 Condenser surface area (ft2): 13.4 Equation 2.18 Coolant flowrate (lb/hr): 1,309 Equation 2.22 Total Annual Cost (without credits) 160,986 Refrigeration capacity (tons): 1,77 Equation 2.23 Recovery credits 0	VOC heat of condensation @ Tc (BTU/lb-mole):	17,594	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, air (BTU/hr): 20,224 Equation 2.17 Electricity 1,307 Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 befault value Taxes, insurance, administrative 8,704 Log-mean temperature difference (oF): 79.1 Equation 2.19 Capital recovery 16,772 Condenser surface area (ft2): 13.4 Equation 2.18 Coolant flowrate (lb/hr): 1,309 Equation 2.22 Total Annual Cost (without credits) 160,986 Refrigeration capacity (tons): 1.77 Equation 2.23 Recovery credits 0	Enthalpy change, condensed VOC (BTU/hr):	1,017	Equation 2.12	Maintenance labor	26,828	
Condenser heat load (BTU/hr): 21,279 sum of enthalpy changes Overhead 50,326 Heat transfer coefficient, U (BTU/hr-ft2-oF): 20.0 befault value Taxes, insurance, administrative 8,704 Log-mean temperature difference (oF): 79.1 Equation 2.19 Capital recovery 16,772 Condenser surface area (ft2): 13.4 Equation 2.18 Coolant flowrate (lb/hr): 1,309 Equation 2.22 Total Annual Cost (without credits) 160,986 Refrigeration capacity (tons): 1.77 Equation 2.23 Recovery credits 0	Enthalpy change, uncondensed VOC (BTU/hr):	38	Equation 2.16	Maintenance materials	26,828	
Heat transfer coefficient, U (BTU/hr-ft2-oF): Log-mean temperature difference (oF): Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): 20.0 befault value Taxes, insurance, administrative April (Capital recovery 16,772) Capital recovery 16,772 Total Annual Cost (without credits) 160,986 Recovery credits 0	Enthalpy change, air (BTU/hr):	20,224	Equation 2.17	Electricity	1,307	
Log-mean temperature difference (oF):79.1 Equation 2.19Capital recovery16,772Condenser surface area (ft2):13.4 Equation 2.18Coolant flowrate (lb/hr):1,309 Equation 2.22Total Annual Cost (without credits)160,986Refrigeration capacity (tons):1.77 Equation 2.23Recovery credits0	Condenser heat load (BTU/hr):	21,279	sum of enthalpy changes	Overhead	50,326	
Condenser surface area (ft2): Coolant flowrate (lb/hr): Refrigeration capacity (tons): 13.4 Equation 2.18 Equation 2.22 Total Annual Cost (without credits) Recovery credits 0	Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	8,704	
Coolant flowrate (lb/hr): 1,309 Equation 2.22 Total Annual Cost (without credits) 160,986 Refrigeration capacity (tons): 1.77 Equation 2.23 Recovery credits 0	Log-mean temperature difference (oF):	79.1	Equation 2.19	Capital recovery	16,772	_
Refrigeration capacity (tons): 1.77 Equation 2.23 Recovery credits 0	Condenser surface area (ft2):	13.4	Equation 2.18			
- O	Coolant flowrate (lb/hr):	1,309	Equation 2.22	Total Annual Cost (without credits)	160,986	
Electricity requirement (kW/ton of refrigeration) 1.3 Table 2.5 (see below) Total Annual Cost (with credits) 160,986	Refrigeration capacity (tons):	1.77	Equation 2.23	Recovery credits	0	
	Electricity requirement (kW/ton of refrigeration)	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	160,986	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneration Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020				
Years since Cost Base Date:	21				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	79		Operating factor (hr/yr):	8760	
	200			48.00	
Inlet stream temperature (oF):	1		Operating labor rate (\$/hr):		
Inlet stream pressure (atm):	Toluene		Maintenance labor rate (\$/hr):	49.00 0.5	
VOC to be condensed:			Operating labor factor (hr/sh):		
Inlet VOC flowrate (avg. lb/hr):	3.18		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	3.51E-03		Steam price (\$/1000 lb):	5.00	
VOC inlet concentration (ppmv):	3506.5		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0515		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	13.92		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	Regenerated off-site	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):	0.398	Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):		50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:		Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):	288	Equation 1.14	Electricity	•	Section 1.8.1.3
Carbon requirement per vessel (lb):	96		Steam		Equation 1.28
Gas flowrate per adsorbing vessel (acfm):	40	Vertical vessel, flow under 9000 cfm	Cooling water		Equation 1.29
Adsorber vessel diameter (ft):		Equation 1.18 or 1.21	Carbon replacement	•	Equation 1.38
Adsorber vessel length or height (ft):		Equation 1.19 or 1.23	Overhead	50,326	·
Adsorber vessel surface area (ft2):		Equation 1.24	Taxes, insurance, administrative	7,015	
Carbon bed depth (ft):		Equation 1.31	Capital recovery	18,170	
Carbon bed pressure drop (in. w.c.):		Equation 1.30	capital recovery	10,170	_
carbon bea pressure drop (iii. w.c.).	21.505	Equation 1.30	Total Annual Cost (without credits)	161,638	
CAPITAL COSTS:			Recovery credits	•	Recovered solvent not re-sold
Adsorber vessels	-	Equation 1.25	Total Annual Cost (with credits)	161,638	
Carbon	360	Equation 1.16			
Auxiliary equipment (ductwork, etc.)	0				
Total equipment cost (\$)base:	49,079	Equation 1.27			
Total equipment cost (\$)escalated:	82,433	apply inflation factor			
Purchased Equipment Cost (\$):	94,798	Table 1.4 (less sales taxes)			
Tatal Cardalla and sand (Å)					

140,301 Table 1.4

Total Capital Investment (\$):

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	79		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	3.18		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	3.51E-03		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	3506.5		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.0515		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	13.92		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	500 Ope	erating hours between carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	0 Reg	generated off-site	Capital recovery factor (carbon):	0.5378	
Number of canisters:	2 Only	ly one online at a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0 defa	fault, page 1-35			
Carbon price (\$/lb):	1.25 read	activated, page 1-6			
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.398 Equ	uation 1.1 and Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.199 50%	% of equilibrium capacity	Operating labor	26,280	
Number of desorbing vessels:	O Reg	generated off-site	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	7,990 Equ	uation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	18		Electricity	368	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	143,825 Lbs	per replacement times number of replacements	Carbon replacement	122,637	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	38,414	
Adsorber vessels (includes cost of carbon)	132,000 Tabl	oles 1.5 & 1.6 (based on carbon requirement)	Capital recovery	99,496	
Auxiliary equipment (ductwork, etc.)	0				=
Total equipment cost (\$)base:	429,648 Equ	uation 1.27	Total Annual Cost (without credits)	395,118	
Total equipment cost (\$)escalated:	451,399 app	oly inflation factor	Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	519,108 Tabl	ole 1.4 (less sales taxes)	Total Annual Cost (with credits)	395,118	
and the second s					

768,280 Table 1.4

Total Capital Investment (\$):

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	14.7	14.1
2.	Catalytic Oxidation	98.0	98.0	96.0	14.7	14.1
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	14.7	14.1
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	14.7	14.1
5.	Refrigerated Condenser	95.0	98.0	93.1	14.7	13.7
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	14.7	13.0
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	14.7	13.0
					*VOC Baseline =	15.0 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Catalytic Oxidation	87,202	8,379	594	147,584	10,454
2.	Thermal Oxidation	253,402	24,413	1,729	174,148	12,335
3.	Carbon Adsorption (Fixed Bed)	139,217	18,029	1,391	161,521	12,458
4.	Rotary Concentrator/Oxidizer	349,673	33,688	2,386	186,486	13,209
5.	Refrigerated Condenser	307,104	29,587	2,162	182,016	13,300
6.	Regenerative Thermal Oxidizer	553,092	53,286	3,774	214,847	15,218
7.	Carbon Adsorption (Canister)	994,221	128,756	9,931	452,995	34,939

^{*} PTE based on sum of following emission sources within the Hydro operations:

Vent Tank/Autoclave #1/Autoclave #2

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	169		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	1731.5	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	7.3	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	99.3		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air (hydrogen?)	0.255		
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.052	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	1.3		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	170		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	2,669	
			Electricity	192	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	12,670	
Incinerator:			Capital recovery	24,413	=CRF x TCI
@ 0 % heat recovery:	0	Equation 2.29			='
@ 35 % heat recovery:	0	Equation 2.30	Total Annual Cost	174,148	
@ 50 % heat recovery:	61,675	Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
A continue a continue and a					
Auxiliary equipment:	- 61 675	50 · A · 'I' · · · · · · · ·			
Total Equipment Cost base:	•	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Purchased Equipment Cost (B):		=1.18A (Table 2.10)			
Total Capital Investment (TCI):	253,402	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:		2016	i			
Current Date:		1/15/2020)			
Years since Cost Base Date:		4				
Average inflation rate/year, %:		2.5				
Inflation adjustment factor:		1.10)			
INPUT PARAMETERS				ANNUAL COST INPUTS		
Exhaust Gas flowrate (scfm):		169		Operating factor (hr/yr):	8,760	
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00	
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12	
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12	
Waste gas heat content, annual avg. (BTU/scf):		7.34	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):		99.3		Natural gas price (\$/mscf):	4.00	
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050	
Combustion temperature (oF):		1,400		Control system life (years):	15	
Temperature leaving heat exchanger, Tw_o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963	
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05	
Fuel density (lb/ft3):		0.041	methane			
Pressure drop (in. w.c.):		19.0	Table 2.13			
				ANNUAL COSTS		
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)	
Auxiliary Fuel Requirement:	(lb/min):	-0.012	Equation 2.21	Operating labor	26,280	
	(scfm):	-0.28		Supervisory labor	3,942 Table 2.12	
	(mcf/yr):	(149.4)		Maintenance labor	26,828	
Total Maximum Exhaust Gas Flowrate:	(scfm):	169		Maintenance materials	26,828 Table 2.12	
				Natural gas	(598)	
CALCULATED CAPITAL COSTS				Electricity	301 Section 2.5.2.1	L
Oxidizer Equipment Cost (EC):				Overhead	50,326 Table 2.12	
@ 85% heat recovery:		268,759	Equation 2.33	Taxes, insurance, administrative	27,655	
@ 95% heat recovery:		0	Equation 2.33	Capital recovery	53,286 =CRF x TCI	
Auxiliary equipment :		0		Total Annual Cost	214,847	
Total Equipment Costbase:						
Total Equipment Cost-base.		268,759	=EC + Auxiliary costs			
Total Equipment Costescalated (A):		•	=EC + Auxiliary costs =Base cost x inflation factor			
		296,659	•			
Total Equipment Costescalated (A):		296,659 350,058	=Base cost x inflation factor			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	3			
Current Date:	1/15/2020)			
Years since Cost Base Date:	32	2			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20)			
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	169		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Waste gas heat content (BTU/scf):	7.34	Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/Ib):	99.26		Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):	21,502	Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	0.0408	Methane	Capital recovery factor (system):	0.0963	
			Capital recovery factor (catalyst):	0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.006	Equation 2.21			
(scfm):	0.1				
Total Gas Flowrate (scfm):	169		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	0.3		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942	Table 2.12
			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828	Table 2.12
Equipment Costs (\$):			Natural gas	295	
Incinerator:			Electricity	222	Section 2.5.2
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	124	
@ 35 % heat recovery:	0	Equation 2.35	Overhead	50,326	Table 2.12
@ 50 % heat recovery:	21,224	Equation 2.36	Taxes, insurance, administrative	4,360	
@ 70 % heat recovery:	0	Equation 2.37	Capital recovery	8,379	=CRF x TCI
Other equipment :	-		Total Annual Cost	147,584	
Total Equipment Costbase:	21,224	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)			
	, -	,			

87,202 =1.58B (Table 2.10)

Total Capital Investment (TCI):

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	169	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	14.7	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	1,731.46 based on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.5 Section 2.5.2.1		
Fuel usage (Btu/hr)	25,358 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	98,523	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	178,201 inflation adjustment	Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	283,382 sty-cost.wk3	Natural gas	889
Total Capital Investment (TCI), (\$)	349,673 sty-cost.wk3	Electricity	222
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	17,484
		Capital recovery	33,688 =CRF x TCI

Total Annual Cost 186,486

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6. Total Annual Cost Spreadsheet - Packaged Condenser

Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020)			
Years since Cost Base Date:		5			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16	5			
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	169)	Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	101,377	Equation 2.26
VOC to be condensed:	Toluene	!	Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
VOC inlet volume fraction:	0.001731		Multistage refrigeration unit:	114,713	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	143,391	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	166,290	inflation adjusted
A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	179,593	Equation 2.30
B:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	307,104	Table 2.3
C:	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	0.1318	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	-54.1	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0448	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.004	Equation 2.10			
VOC condensed (lb-moles/hr):	0.040	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	3.7	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	17,723	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	1,099	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	43	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	45,603	Equation 2.17	Electricity	2,870	
Condenser heat load (BTU/hr):	46,744	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	15,355	
Log-mean temperature difference (oF):	82.1	Equation 2.19	Capital recovery	29,587	_
Condenser surface area (ft2):	28.5	Equation 2.18			
Coolant flowrate (lb/hr):	2,877	Equation 2.22	Total Annual Cost (without credits)	182,016	
Refrigeration capacity (tons):	3.90	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration)	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	182,016	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020				
Years since Cost Base Date:	21				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	169		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	3.36		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	1.73E-03		Steam price (\$/1000 lb):	5.00 Default values in EPA Cost Manu	ual
VOC inlet concentration (ppmv):	1731.5		Cooling water price (\$/1000 gal):	3.55 Default values in EPA Cost Manu	ual
VOC inlet partial pressure (psia):	0.0254		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	14.70		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	Regenerated off-site	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):		Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon):	0.184	50% of equilibrium capacity	Operating labor Supervisory labor	3,942	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels:	0.184 1	· ·	Operating labor Supervisory labor Maintenance labor	3,942 26,828	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels:	0.184 1 3	50% of equilibrium capacity Regenerated off-site	Operating labor Supervisory labor Maintenance labor Maintenance materials	3,942 26,828 26,828	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb):	0.184 1 3 328	50% of equilibrium capacity	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity	3,942 26,828 26,828 321 Section 1.8.1.3	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb):	0.184 1 3 328 109	50% of equilibrium capacity Regenerated off-site Equation 1.14	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm):	0.184 1 3 328 109 85	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft):	0.184 1 3 328 109 85 1.20	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft):	0.184 1 3 328 109 85 1.20 8.24	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2):	0.184 1 3 328 109 85 1.20 8.24 33.25	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft):	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2):	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961 18,029	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft):	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235 11.941	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits)	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961 18,029	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.):	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235 11.941	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961 18,029 161,521 Recovered solvent not re-sold	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235 11.941	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961 18,029 161,521 Recovered solvent not re-sold	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235 11.941 16,144 410 0	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961 18,029 161,521 Recovered solvent not re-sold	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.)	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235 11.941 16,144 410 0 48,700	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961 18,029 161,521 Recovered solvent not re-sold	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base:	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235 11.941 16,144 410 0 48,700 81,796	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16 Equation 1.27	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961 18,029 161,521 Recovered solvent not re-sold	
Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total number of vessels: Carbon requirement, total (lb): Carbon requirement per vessel (lb): Gas flowrate per adsorbing vessel (acfm): Adsorber vessel diameter (ft): Adsorber vessel length or height (ft): Adsorber vessel surface area (ft2): Carbon bed depth (ft): Carbon bed pressure drop (in. w.c.): CAPITAL COSTS: Adsorber vessels Carbon Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated:	0.184 1 3 328 109 85 1.20 8.24 33.25 3.235 11.941 16,144 410 0 48,700 81,796	50% of equilibrium capacity Regenerated off-site Equation 1.14 Vertical vessel, flow under 9000 cfm Equation 1.18 or 1.21 Equation 1.19 or 1.23 Equation 1.24 Equation 1.31 Equation 1.30 Equation 1.25 Equation 1.16 Equation 1.27 apply inflation factor Table 1.4 (less sales taxes)	Operating labor Supervisory labor Maintenance labor Maintenance materials Electricity Steam Cooling water Carbon replacement Overhead Taxes, insurance, administrative Capital recovery Total Annual Cost (without credits) Recovery credits	3,942 26,828 26,828 321 Section 1.8.1.3 515 Equation 1.28 1,253 Equation 1.29 238 Equation 1.38 50,326 6,961 18,029 161,521 Recovered solvent not re-sold	

Total Capital Investment (\$):

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	169		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	3.36		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	1.73E-03		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	1731.5		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.0254		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	14.70		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	500	Operating hours between carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	0	Regenerated off-site	Capital recovery factor (carbon):	0.5378	
Number of canisters:	2	Only one online at a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35			
Carbon price (\$/lb):	1.25	reactivated, page 1-6			
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.368	Equation 1.1 and Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.184	50% of equilibrium capacity	Operating labor	26,280	
Number of desorbing vessels:	0	Regenerated off-site	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	9,122	Equation 1.14 (at 500 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	18		Electricity	321	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	164,190	Lbs per replacement times number of replacements	Carbon replacement	140,003	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	49,711	
Adsorber vessels (includes cost of carbon)	189,000	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	128,756	
Auxiliary equipment (ductwork, etc.)	0				=
Total equipment cost (\$)base:	556,001	Equation 1.27	Total Annual Cost (without credits)	452,995	
Total equipment cost (\$)escalated:	584,149	apply inflation factor	Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	671,771	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	452,995	
Tabal Camibal Incombus and Idla	004 334				

994,221 Table 1.4

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	6.2	5.9
2.	Catalytic Oxidation	98.0	98.0	96.0	6.2	5.9
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	6.2	5.9
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	6.2	5.9
5.	Refrigerated Condenser	95.0	98.0	93.1	6.2	5.7
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	6.2	5.4
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	6.2	5.4
					*VOC Baseline =	6.3 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
4	Catalytic Ovidation	7.250	700	110	425.206	22.046
1.	Catalytic Oxidation	7,350	708	119	135,286	22,816
2.	Refrigerated Condenser	22,574	2,175	378	137,554	23,931
3.	Thermal Oxidation	83,378	8,033	1,355	146,413	24,692
4.	Rotary Concentrator/Oxidizer	344,420	33,182	5,596	184,620	31,136
5.	Carbon Adsorption (Fixed Bed)	250,081	32,387	5,947	180,771	33,197
6.	Regenerative Thermal Oxidizer	548,278	52,822	8,908	213,201	35,956
7.	Carbon Adsorption (Canister)	1,252,758	162,238	29,793	406,272	74,607

^{*} PTE based on sum of following emission sources within the Hydro operations:

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	2		Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	61449.5	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	260.3	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	3522.8		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	0.0		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	2		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	6	
			Electricity	2	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	4,169	
Incinerator:			Capital recovery	8,033	=CRF x TCI
@ 0 % heat recovery:	0	Equation 2.29			
@ 35 % heat recovery:	0	Equation 2.30	Total Annual Cost	146,413	
@ 50 % heat recovery:	20,293	Equation 2.31			
@ 70 % heat recovery:	0	Equation 2.32			
Auxiliary equipment :	-				
Total Equipment Costbase:	20,293	=EC + Auxiliary costs			
Total Equipment Costescalated (A):	44,721	=Base cost x inflation factor			
Purchased Equipment Cost (B):	52,771	=1.18A (Table 2.10)			
Total Capital Investment (TCI):	83,378	=1.58B (Table 2.10)			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Auxiliary Fuel Require Total Maximum Exha CALCULATED CAPITA Oxidizer Equipment (ement: oust Gas Flowrate: NL COSTS	(lb/min): (scfm): (mcf/yr): (scfm):	-0.59 (310.3) 1	Equation 2.21 Equation 2.33	Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity Overhead Taxes, insurance, administrative	26,828 26,828 (1,241) 3	Table 2.12 Table 2.12 Section 2.5.2.1 Table 2.12
Auxiliary Fuel Require Total Maximum Exha	ement: oust Gas Flowrate: NL COSTS	(scfm): (mcf/yr):	-0.59 (310.3)		Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas Electricity	26,280 3,942 26,828 26,828 (1,241) 3	Table 2.12 Section 2.5.2.1
Auxiliary Fuel Require Total Maximum Exha	ement: nust Gas Flowrate:	(scfm): (mcf/yr):	-0.59 (310.3)		Operating labor Supervisory labor Maintenance labor Maintenance materials Natural gas	26,280 3,942 26,828 26,828 (1,241)	Table 2.12
Auxiliary Fuel Require	ement:	(scfm): (mcf/yr):	-0.59 (310.3)		Operating labor Supervisory labor Maintenance labor Maintenance materials	26,280 3,942 26,828 26,828	
Auxiliary Fuel Require	ement:	(scfm): (mcf/yr):	-0.59 (310.3)		Operating labor Supervisory labor Maintenance labor	26,280 3,942 26,828	
		(scfm):	-0.59		Operating labor Supervisory labor	26,280 3,942	Table 2.12
				Equation 2.21	Operating labor	26,280	Table 2.12
		(lb/min):	-0.024	Equation 2.21			
CALCULATED UTILI						Cost (\$/vr)	
CALCULATED UTILI	TV LISAGES				Item		
					ANNUAL COSTS		
Pressure drop (in. w.	c.):			Table 2.13			
Fuel density (lb/ft3):	(= . = / / .		•	methane			
Fuel heat of combust	= *			methane	Taxes, insurance, admin. factor:	0.05	
·	heat exchanger, Tw _o (oF):		•	Equation 2.18	Capital recovery factor:	0.0963	
Combustion tempera	•		1,400		Control system life (years):	15	
Gas heat capacity (BT			0.255		Annual interest rate (fraction):	0.050	
Waste gas heat conte			3522.8	Equation 2.10	Natural gas price (\$/mscf):	4.00	
	ent, annual avg. (BTU/scf):			Equation 2.16	Electricity price (\$/kwh):	0.055	Tubic 2.12
Primary heat recover	•		0.0739	dii	Maintenance labor factor (hr/sh):		Table 2.12
Inlet gas density (lb/s			0.0739	o ir	Operating labor factor (hr/sh):		Table 2.12
Waste gas inlet temp	` '		200		Maintenance labor rate (\$/hr):	49.00	
Exhaust Gas flowrate Reference temperatu			2 77		Operating factor (hr/yr): Operating labor rate (\$/hr):	8,760 48.00	
INPUT PARAMETERS			2		ANNUAL COST INPUTS	0.760	
Inflation adjustment	factor:		1.10)			
Average inflation rate	e/year, %:		2.5				
Years since Cost Base	e Date:		4	<u>L</u>			
Current Date:			1/15/2020)			
C			2016				

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988	3			
Current Date:	1/15/2020)			
Years since Cost Base Date:	32	2			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20)			
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	2		Operating factor (hr/yr):	8760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):		Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):		Table 2.12
Waste gas heat content (BTU/scf):		Equation 2.16	Electricity price (\$/kwh):	0.055	
Waste gas heat content (BTU/lb):	3522.77	-4	Catalyst price (\$/ft3):	650	
Gas heat capacity (BTU/lb-oF):	0.26	air	Natural gas price (\$/mscf):	4.00	
Combustion temperature (oF):	850		Annual interest rate (fraction):	0.05	
Preheat temperature (oF):	525	Equation 2.18	Control system life (years):	15	
Fuel heat of combustion (BTU/lb):		Methane	Catalyst life (years):	2	
Fuel density (lb/ft3):	•	Methane	Capital recovery factor (system):	0.0963	
			Capital recovery factor (catalyst):	0.5378	
CALCULATED PARAMETERS			Taxes, insurance, admin. factor:	0.05	
Auxiliary Fuel Needed (lb/min):	0.000	Equation 2.21	,		
(scfm):	0.0	•			
Total Gas Flowrate (scfm):	2		CALCULATED ANNUAL COSTS		
Catalyst Volume (ft3):	0.0		Operating labor	26,280	
Pressure drop (in. w.c.):	14.0	Table 2.13	Supervisory labor	3,942	Table 2.12
. ,			Maintenance labor	26,828	
CALCULATED CAPITAL COSTS			Maintenance materials	26,828	Table 2.12
Equipment Costs (\$):			Natural gas	3	
Incinerator:			Electricity	3	Section 2.5.
@ 0 % heat recovery:	0	Equation 2.34	Catalyst replacement	1	
@ 35 % heat recovery:	0	Equation 2.35	Overhead	50,326	Table 2.12
@ 50 % heat recovery:	1,789	Equation 2.36	Taxes, insurance, administrative	368	
@ 70 % heat recovery:	0	Equation 2.37	Capital recovery	708	=CRF x TCI
Other equipment :	_		Total Annual Cost	135,286	
Total Equipment Costbase:	1.789	=EC + Auxiliary costs		,	
Total Equipment Costescalated (A):	•	=Base cost x inflation factor			
Purchased Equipment Cost (B):	•	=1.18A (Table 2.10)			
	.,002	- (/			

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	2	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	6.2	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	61,449.51 based on To	luene Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (d	catalytic) Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	0.0 Section 2.5.2	2.1	
Fuel usage (Btu/hr)	300 Equation 2.2	1	
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	97,130	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	175,681 inflation adj	ustment Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	279,067 sty-cost.wk3	Natural gas	11
Total Capital Investment (TCI), (\$)	344,420 sty-cost.wk3	B Electricity	3
		Overhead	50,326 Table 2.12

Total Annual Cost 184,620

17,221

33,182 = CRF x TCI

Taxes, insurance, administrative

Capital recovery

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6. Total Annual Cost Spreadsheet - Packaged Condenser

Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:		i			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
•					
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	2		Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	8,432	Equation 2.26
VOC to be condensed:	Toluene	!	Refrigeration unit/single-stage (> 10 tons):	0	Equation 2.27
VOC inlet volume fraction:	0.061450		Multistage refrigeration unit:	0	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	10,540	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	12,224	inflation adjusted
A:	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	13,201	Equation 2.30
B:	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	22,574	Table 2.3
C:	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	4.9436	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	23.6	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0188	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.002	Equation 2.10			
VOC condensed (lb-moles/hr):	0.017	inlet - outlet	ANNUAL COSTS:		
(lb/hr):	1.6	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	16,898	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	398	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	12	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	352	Equation 2.17	Electricity	47	
Condenser heat load (BTU/hr):	763	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	1,129	
Log-mean temperature difference (oF):	62.9	Equation 2.19	Capital recovery	2,175	_
Condenser surface area (ft2):	0.6	Equation 2.18			
Coolant flowrate (lb/hr):	47	Equation 2.22	Total Annual Cost (without credits)	137,554	
Refrigeration capacity (tons):	0.06	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration)	1.3	Table 2.5 (see below)	Total Annual Cost (with credits)	137,554	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020)			
Years since Cost Base Date:	21	L			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68	3			
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	2		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.41		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	6.14E-02		***	5.00	Default values in EPA Cost Manual
VOC inlet volume fraction. VOC inlet concentration (ppmv):	61449.5		Steam price (\$/1000 lb): Cooling water price (\$/1000 gal):		Default values in EPA Cost Manual Default values in EPA Cost Manual
VOC inlet concentration (ppinv).	0.9031		Recovered VOC value (\$/lb):	3.33	Default values III EPA Cost Ivialidal
Required VOC removal (fraction):	0.9031		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	6.17		Annual interest rate (fraction):	0.05	
Adsorption time (hr):		Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5		Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2	S	Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):		default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):		reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:		stainless steel 316, Table 1.3	raxes, msurance, aurilin. ractor.	0.030	
iviaterial of construction factor.	1.30	Stalliess steel 516, Table 1.5			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):	0.545	Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):	0.272	50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:	1	Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3		Maintenance materials	26,828	
Carbon requirement, total (lb):	93	Equation 1.14	Electricity	867	Section 1.8.1.3
Carbon requirement per vessel (lb):	31		Steam	216	Equation 1.28
Gas flowrate per adsorbing vessel (acfm):	1	Vertical vessel, flow under 9000 cfm	Cooling water	526	Equation 1.29
Adsorber vessel diameter (ft):	0.13	Equation 1.18 or 1.21	Carbon replacement	68	Equation 1.38
Adsorber vessel length or height (ft):	82.61	Equation 1.19 or 1.23	Overhead	50,326	
Adsorber vessel surface area (ft2):	33.84	Equation 1.24	Taxes, insurance, administrative	12,504	
Carbon bed depth (ft):	77.535	Equation 1.31	Capital recovery	32,387	_
Carbon bed pressure drop (in. w.c.):	263.219	Equation 1.30	·		_
CAPITAL COSTS:			Total Annual Cost (without credits) Recovery credits	180,771	Recovered solvent not re-sold
Adsorber vessels	16.367	Equation 1.25	Total Annual Cost (with credits)	180,771	
Carbon	•	Equation 1.16			
Auxiliary equipment (ductwork, etc.)	0	•			
Total equipment cost (\$)base:		Equation 1.27			
Total equipment cost (\$)escalated:		apply inflation factor			
Purchased Equipment Cost (\$):		Table 1.4 (less sales taxes)			
Total Capital Investment (\$):	250,081	· · · · · · · · · · · · · · · · · · ·			
	_50,001				

Table 8.

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

Current Date:	COST REFERENCE DATE*:	2018		
Average inflation rate/year, %:	Current Date:	1/15/2020		
Initiation adjustment factor:	Years since Cost Base Date:	2		
Inlet stream flowrate (acfm):	Average inflation rate/year, %:	2.5		
Inlet stream flowrate (acfm):	Inflation adjustment factor:	1.05		
Inlet stream flowrate (acfm):				
Inlet stream temperature (oF): Inlet stream pressure (atm): Inlet stream pressure (atm): Inlet stream pressure (atm): Inlet VOC to be condensed: Inlet VOC flowrate (age, lis/hr): Inlet VOE flowrate (age, lis/hr			ANNUAL COST INPUTS:	
Inlet stream pressure (atm):	Inlet stream flowrate (acfm):	2	Operating factor (hr/yr):	8760
VOC to be condensed: Toluene Operating labor factor (hr/sh): 0.5	Inlet stream temperature (oF):	200	Operating labor rate (\$/hr):	48.00
Inlet VOC flowrate (avg. lb/hr):	Inlet stream pressure (atm):	1	Maintenance labor rate (\$/hr):	49.00
VOC molecular weight (lb/lb-mole): 92 Electricity price (\$/kWhr): 0.055 VOC inlet volume fraction: 6.14E-02 Recovered VOC value (\$/lb): - VOC inlet concentration (ppmy): 61449-5 Overhead rate (fraction): 0.6 VOC inlet partial pressure (psia): 0.9031 Annual Voc Intervola (fraction): 0.05 Required VOC removal (fraction): 0.50 Control system life (years): 1.00 Annual VOC inlet (tons): 6.17 Capital recovery factor (system): 0.1295 Total Adsorption time per canister (hr): 1,750 Operating hours between carbon replacement Carbon life (years): 2.0 Description time (hr): 0. Regenerated off-site Capital recovery factor (carbon): 0.5378 Number of canisters: 2. Only one online at a time Taxes, insurance, admin. factor: 0.050 Superficial carbon bed velocity (ft/min): 75.0 default, page 1-35 Taxes, insurance, admin. factor: 0.050 Carbon price (\$/lb): Total Coston (\$/lb): 0.272 50% of equilibrium capacity Operating labor 26,280 Number of desorbing vessels: 2 2	VOC to be condensed:	Toluene	Operating labor factor (hr/sh):	0.5
VOC inlet volume fraction: VOC inlet concentration (ppmy): 61449-5 VOC inlet concentration (ppmy): 61449-5 VOC inlet concentration (ppmy): 61449-5 VOC inlet concentration (ppmy): 61449-5 VOC inlet concentration (ppmy): 6149-5 VOC inlet (cons): Control system life (years): 10.0 Control system life (years): 10.0 Control system life (years): 10.0 Capital recovery factor (system): Capital recovery factor (system): 10.25 Capital recovery factor (carbon): 0.5378 Number of canisters: Carbon price (S/lb): 1.25 reactivated, page 1-6 DESIGN PARAMETERS: Carbon working capacity (lb VOC/lb carbon): 0.545 Carbon adsorptivity (lb Toluene/lb carbon): 0.272 Solve of equilibrium capacity Number of vessels: 0 Regenerated off-site Supervisory labor 3,942 Total number of vessels: 2 Maintenance labor 26,828 Total Carbon needade per replacement cycle (lb): 9,055 Equation 1.14 (at 1750 adsorption hrs/cycle) Minimum carbon replacements per year: Minimum carbon replacements (lbs carbon/yr) Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (5)-base: 700,584 Equation 1.27 Total adamal Cost (without credits) Purchased Equipment Cost (5): 846,458 Table 1.4 (less sales taxes) Total Annual Cost (without credits) Total Annual Cost (without credits) 406,272 Fecovered Solvent not re-sold Purchased Equipment Cost (5): 846,458 Table 1.4 (less sales taxes) Total Annual Cost (with credits) 406,272	Inlet VOC flowrate (avg. lb/hr):	1.41	Maintenance labor factor (hr/sh):	0.5
VOC inlet concentration (ppmw): 61449.5 Overhead rate (fraction): 0.6 VOC inlet partial pressure (psia): 0.9031 Annual interest rate (fraction): 0.05 Required VOC removal (fraction): 0.90 Annual VOC inlet (tons): 6.17 Copital recovery factor (system): 0.1295 Capital recovery factor (system): 0.1295 Total Adsorption time per canister (hr): 1,750 Operating hours between carbon replacement Desorption time (hr): 0.5378 Number of canisters: 0 Negenerated off-site Capital recovery factor (carbon): 0.5378 Number of canisters: 0 Negenerated off-site Capital recovery factor (carbon): 0.5378 Number of canisters: 0 Negenerated off-site Capital recovery factor (carbon): 0.5378 Number of canisters: 0 Negenerated off-site Capital recovery factor (carbon): 0.500 **Superficial carbon bed velocity (ft/min): 75.0 default, page 1-35 Carbon price (5/hb): 1.25 reactivated, page 1-6 **DESIGN PARAMETERS:** Carbon adsorptivity (lb Toluene/lb carbon): 0.545 Equation 1.1 and Table 1.2 ANNUAL COSTS: Carbon working capacity (lb VOC/lb carbon): 0.272 50% of equilibrium capacity Operating labor 26,280 Number of desorbing vessels: 0 Regenerated off-site Supervisory labor 3,942 Total number of vessels: 2 Naintenance labor 26,828 Total Carbon needed per replacement cycle (lb): 9,055 Equation 1.14 (at 1750 adsorption hrs/cycle) Maintenance materials 26,828 Number of carbon replacements per year: 0 Naintenance materials 26,828 Maintenance and Security Naintenance materials 26,828 **CAPITAL COSTS:** CAPITAL COSTS: Adsorber vessels (includes cost of carbon) 132,000 Tables 1.5 & 1.6 (based on carbon requirement) Overhead 50,326 **CAPITAL COSTS: Adsorber vessels (includes cost of carbon) 132,000 Tables 1.5 & 1.6 (based on carbon requirement) Overhead 50,326 **CAPITAL COSTS: Adsorber vessels (includes cost of carbon) 132,000 Tables 1.5 & 1.6 (based on carbon requirement) Overhead 50,326 **CAPITAL COSTS: Adsorber vessels (includes cost of carbon) 132,000 Tables 1.5 & 1.6 (based on carbon requirement) Overhead 50,326 **CAPITAL COSTS: Adsorber ve	VOC molecular weight (lb/lb-mole):	92	Electricity price (\$/kWhr):	0.055
VOC inlet partial pressure (psia): Required VOC removal (fraction): 0.90 Control system life (years): Capital recovery factor (system): 1.00 Annual VOC inlet (tons): Total Adsorption time per canister (hr): 1.750 Desorption time (hr): 0 Regenerated off-site Capital recovery factor (carbon): 0.5378 Number of canisters: Carbon price (\$/\text{lb}: Carbon price (\$/\text{lb}: Carbon price (\$/\text{lb}: Carbon working capacity (lib VOC/lb carbon): Oz72 SoN of equilibrium capacity Number of desorbing vessels: Carbon needed per replacement cycle (lb): Number of desorbing vessels: 2 Regenerated off-site Superficial carbon price (\$/\text{lb}: Carbon working capacity (lib VOC/lb carbon): Oz72 SoN of equilibrium capacity Number of desorbing vessels: 10 Regenerated off-site Supervisory labor 3,942 Total number of vessels: 7 Regenerated off-site Supervisory labor 3,942 Total number of peracement cycle (lb): Number of carbon needed per replacement cycle (lb): Number of carbon replacement per per per year: 6 Electricity Maintenance materials 26,828 Minimum carbon replacement per year: Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) 7 Oz0,584 Equation 1.27 Total equipment cost (\$)-base: 7 70,584 Fequation 1.27 Total equipment cost (\$)-base: 7 36,651 3 apply inflation factor Recovery credits Total Annual Cost (without credits) 406,272 Purchased Equipment Cost (\$): 826 Recovered solvent not re-sold	VOC inlet volume fraction:	6.14E-02	Recovered VOC value (\$/lb):	
Required VOC removal (fraction): Annual VOC inlet (tons): 5.17 Total Adsorption time per canister (hr): Desorption time (hr): Superficial carbon bed velocity (ft/min): Carbon life (years): 7.50 Regenerated off-site Capital recovery factor (carbon): Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): DESIGN PARAMETERS: Carbon adsorptivity (lb Toluene/lb carbon): Carbon sorptivity (lb Toluene/lb carbon): O.272 Superficial carbon bed velocity (lb VOC/lb carbon): Carbon price (\$/lb): DESIGN PARAMETERS: Carbon adsorptivity (lb Toluene/lb carbon): Carbon price (\$/lb): Design Parameter (lb VOC/lb carbon): Carbon merit (lb VOC/lb carbon): O.272 Soff of equilibrium capacity Operating labor Operating labor 26,280 Number of desorbing vessels: 10 Regenerated off-site Supervisory labor 3,942 Maintenance labor 26,828 Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: 6 Capital recovery factor (carbon): 0.545 Equation 1.14 (at 1750 adsorption hrs/cycle) Maintenance labor Overhead 50,326 Carbon replacement Overhead 50,326 Taxes, insurance, admin. factor: 0.050 10.0	VOC inlet concentration (ppmv):	61449.5	Overhead rate (fraction):	0.6
Annual VOC inlet (tons): Total Adsorption time per canister (hr): Desorption time (hr): Number of canisters: Carbon price (\$/Ib): DESIGN PARAMETERS: Carbon adsorptivity (lb Toluene/lb carbon): Number of desorbing wessels: Carbon working capacity (lb VOC/lb carbon): Number of desorbing wessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon requirement (lbs carbon/yr) Superficial carbon requirement (lbs carbon/yr) Auxiliary equipment cost (\$5)-asse: Adsorber vessels (includes cost of carbon) 132,000 Tables 1.5 & 1.6 (based on carbon requirement) Purchased Equipment Cost (\$5): 846,458 Table 1.4 (less sales taxes) Acapital recovery factor (system): Carbon life (years): Capital recovery factor (system): 0.5378 ANNUAL Costs: ANNUAL Costs: ANNUAL Costs: Supervisory (abor 3,942 Maintenance labor 26,280 Maintenance labor 26,828 Maintenance materials 26,828 Maintenance materials 26,828 Maintenance materials 26,828 Alsorber vessels (includes cost of carbon) 132,000 Tables 1.5 & 1.6 (based on carbon requirement) Carbon replacement Carbon needed were replacement experies and instractive Carbon replacement Carbon re	VOC inlet partial pressure (psia):	0.9031	Annual interest rate (fraction):	0.05
Total Adsorption time per canister (hr): Desorption time (hr): Number of carbon ned velocity (ft/min): Carbon adsorptivity (lb Toluene/lb carbon): Ozarbon working capacity (lb VOC/lb carbon): Ozarbon needed per replacement cycle (lb): Number of carbon needed per replacement tycesels: Number of carbon replacement (lbs carbon): Ozarbon needed per replacement (bs carbon/yr) Squarbon replacement (lbs carbon/yr) Squarbon replacement (lbs carbon): Ozarbon replacement (lbs carbon/yr) Squarbon replacement (lbs carbon) Ozarbon replacement (lbs carbon) Auxiliary equipment (ductwork, etc.) Ozarbon replacement (lbs carbon) Ozarbon replacement (lbs carbon) Auxiliary equipment (ductwork, etc.) Ozarbon replacement (lbs carbon) Ozarbon replacement (lbs carbon) Auxiliary equipment cost (S)escalated: 736,051 apply inflation factor Recovery credits Recovered solvent not re-sold Purchased Equipment Cost (S): 846,458 Table 1.4 (less sales taxes) Total Annual Cost (without credits) Total Annual Cost (without credits)	Required VOC removal (fraction):	0.90	Control system life (years):	10.0
Desorption time (hr): Number of canisters: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): DESIGN PARAMETERS: Carbon working capacity (lb VOC/lb carbon): Number of desorbing vessels: Total Carbon needed per replacement cycle (lb): Number of carbon requirement (lbs carbon/yr) 54,329 Lbs per replacement times number of replacements Minimum carbon requirement (lbs carbon/yr) 62,828 Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$):-base: Total equipment cost (\$):-bsce: Total equipment cost (\$):	Annual VOC inlet (tons):	6.17	Capital recovery factor (system):	0.1295
Number of canisters: Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): DESIGN PARAMETERS: Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (bVOC/lb carbon): O.272 Sof equilibrium capacity Number of desorbing vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr) Adsorber vessels (includes cost of carbon) Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$): Auxiliary equipment cost (\$): Superficial carbon in ead at time Taxes, insurance, admin. factor: O.505 defaulti, page 1-35 reactivated, page 1-6 Equation 1.1 and Table 1.2 ANNUAL COSTS: ANNUAL COSTS	Total Adsorption time per canister (hr):	1,750 Operating hours between carbo	n replacement Carbon life (years):	2.0
Superficial carbon bed velocity (ft/min): Carbon price (\$/lb): DESIGN PARAMETERS: Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): Carbon working capacity (lb VOC/lb carbon): O.272 50% of equilibrium capacity Number of desorbing vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon)/yr) Addorber vessels (includes cost of carbon) Addorber vessels (includes cost of carbon) Auxillary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated: 736,051 apply inflation factor Total equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Alsorber vessels (with unceredits) Total Annual Cost (with credits) Total Annual Cost (with credits) Also ANNUAL COSTS: ANNUAL C	Desorption time (hr):	0 Regenerated off-site	Capital recovery factor (carbon):	0.5378
Carbon price (\$/lb): DESIGN PARAMETERS: Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): O.545 Equation 1.1 and Table 1.2 Carbon working capacity (lb VOC/lb carbon): O.272 50% of equilibrium capacity Operating labor O.273 50% of equilibrium capacity Operating labor Operating la	Number of canisters:	2 Only one online at a time	Taxes, insurance, admin. factor:	0.050
DESIGN PARAMETERS: Carbon adsorptivity (lb Toluene/lb carbon): Carbon working capacity (lb VOC/lb carbon): 0.272 50% of equilibrium capacity Number of desorbing vessels: 10 Regenerated off-site Supervisory labor 3,942 Total number of vessels: 2	Superficial carbon bed velocity (ft/min):	75.0 default, page 1-35		
Carbon adsorptivity (lb Toluene/lb carbon): 0.545 Equation 1.1 and Table 1.2 Operating labor 26,280 Number of desorbing vessels: 0 Regenerated off-site Supervisory labor 3,942 Total number of vessels: 0 Regenerated off-site Supervisory labor 26,828 Number of carbon needed per replacement cycle (lb): 9,055 Equation 1.14 (at 1750 adsorption hrs/cycle) Maintenance materials 26,828 Number of carbon replacements per year: 6 Electricity 867 Section 1.8.1.3 Minimum carbon requirement (lbs carbon/yr) 54,329 Lbs per replacement times number of replacements Overhead Overhead 50,326 CAPITAL COSTS: Adsorber vessels (includes cost of carbon) 132,000 Tables 1.5 & 1.6 (based on carbon requirement) Auxiliary equipment (ductwork, etc.) 0 Capital recovery 162,328 Football (account of the control of the cont	Carbon price (\$/lb):	1.25 reactivated, page 1-6		
Carbon adsorptivity (lb Toluene/lb carbon): 0.545 Equation 1.1 and Table 1.2 Operating labor 26,280 Number of desorbing vessels: 0 Regenerated off-site Supervisory labor 3,942 Total number of vessels: 0 Regenerated off-site Supervisory labor 26,828 Number of carbon needed per replacement cycle (lb): 9,055 Equation 1.14 (at 1750 adsorption hrs/cycle) Maintenance materials 26,828 Number of carbon replacements per year: 6 Electricity 867 Section 1.8.1.3 Minimum carbon requirement (lbs carbon/yr) 54,329 Lbs per replacement times number of replacements Overhead Overhead 50,326 CAPITAL COSTS: Adsorber vessels (includes cost of carbon) 132,000 Tables 1.5 & 1.6 (based on carbon requirement) Auxiliary equipment (ductwork, etc.) 0 Capital recovery 162,328 Football (account of the control of the cont				
Carbon working capacity (lb VOC/lb carbon): O.272 50% of equilibrium capacity Number of desorbing vessels: O Regenerated off-site Supervisory labor 3,942 Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr) CAPITAL COSTS: Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Operating labor Supervisory labor Adjection 1.3,942 Maintenance labor Adjection 1.3,942 Maintenance labor Adjection 1.3,942 Maintenance materials Carbon replacement Carbon replacement Carbon replacement Carbon replacement Carbon replacement Ad,326 Labor + Material (Eqs. 1.37 & 1.38) Overhead 50,326 Taxes, insurance, administrative 62,638 Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total Annual Cost (without credits) Auxiliary equipment cost (\$)base: Total equipment cost (\$)escalated: 736,051 apply inflation factor Recovery credits Recovery credits Recovered solvent not re-sold Purchased Equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Total Annual Cost (with credits) A06,272	DESIGN PARAMETERS:			
Number of desorbing vessels: Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr) CAPITAL COSTS: Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment Cost (\$): 867 Section 1.8.1.3 Supervisory labor Adaptive labor Adaptive supervisor enterials Adapt		0.545 Equation 1.1 and Table 1.2		
Total number of vessels: Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Maintenance labor Maintenance materials 26,828 Electricity 867 Section 1.8.1.3 Minimum carbon requirement (lbs carbon/yr) 54,329 Labor + Material (Eqs. 1.37 & 1.38) Overhead Overhead Total Carbon replacement Overhead Taxes, insurance, administrative 62,638 Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)—base: 700,584 Equation 1.27 Total equipment cost (\$)—escalated: 736,051 Apply inflation factor Recovery credits Recovery credits Recovered solvent not re-sold Purchased Equipment Cost (\$): 846,458 Total Annual Cost (with credits) 406,272 Total Annual Cost (with credits) 406,272	Carbon working capacity (lb VOC/lb carbon):	0.272 50% of equilibrium capacity	Operating labor	26,280
Total Carbon needed per replacement cycle (lb): Number of carbon replacements per year: Number of carbon requirement (lbs carbon/yr) 54,329 Lbs per replacement times number of replacements Carbon replacement Carbon replacement Carbon replacement Overhead 50,326 Taxes, insurance, administrative 62,638 Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated: 736,051 apply inflation factor Purchased Equipment Cost (\$): 867 Section 1.8.1.3 Adinterial (Eqs. 1.37 & 1.38) Carbon replacement Total equipment (ductwork) Carbon replacement Acaptal selectricity 867 Section 1.8.13 Labor + Material (Eqs. 1.37 & 1.38) Carbon replacement Carbon replacement Taxes, insurance, administrative 62,638 Capital recovery 162,238 Total Annual Cost (without credits) 406,272 Recovered solvent not re-sold Total Annual Cost (with credits) 406,272	Number of desorbing vessels:	· ·	Supervisory labor	•
Number of carbon replacements per year: Minimum carbon requirement (lbs carbon/yr) 54,329 Lbs per replacement times number of replacements Carbon replacement Overhead 50,326 Taxes, insurance, administrative 62,638 Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: 700,584 Equation 1.27 Total equipment cost (\$)escalated: 736,051 apply inflation factor Recovery credits Recovery credits Recovered solvent not re-sold Purchased Equipment Cost (\$): 867 Section 1.8.1.3 Labor + Material (Eqs. 1.37 & 1.38) Labor + Material (Eqs. 1.37 & 1.38) Labor + Material (Eqs. 1.37 & 1.38) Total recovery 162,238 Recovered solvent not re-sold	Total number of vessels:	2	Maintenance labor	26,828
Minimum carbon requirement (lbs carbon/yr) 54,329 Lbs per replacement times number of replacements Carbon replacement Overhead 50,326 Taxes, insurance, administrative 62,638 Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: 700,584 Equation 1.27 Total equipment cost (\$)escalated: 736,051 apply inflation factor Purchased Equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Carbon replacement Carbon replacement 46,326 Labor + Material (Eqs. 1.37 & 1.38) Coverhead 50,326 Taxes, insurance, administrative 62,638 Taxes, insuranc	Total Carbon needed per replacement cycle (lb):	9,055 Equation 1.14 (at 1750 adsorption	on hrs/cycle) Maintenance materials	26,828
CAPITAL COSTS: Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated: 736,051 apply inflation factor Purchased Equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Overhead 50,326 Capital recovery 162,238 Total Annual Cost (without credits) 406,272 Recovered solvent not re-sold 406,272 Recovered solvent not re-sold	Number of carbon replacements per year:	6	Electricity	867 Section 1.8.1.3
CAPITAL COSTS: Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated: Purchased Equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Taxes, insurance, administrative 62,638 Capital recovery 162,238 Total Annual Cost (without credits) 406,272 Recovered solvent not re-sold Recovery credits 406,272 Total Annual Cost (with credits) 406,272	Minimum carbon requirement (lbs carbon/yr)	54,329 Lbs per replacement times num	ber of replacements Carbon replacement	46,326 Labor + Material (Eqs. 1.37 & 1.38)
Adsorber vessels (includes cost of carbon) Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated: Purchased Equipment Cost (\$): 846,458 Total Annual Cost (with credits) Auxiliary equipment cost (\$)base: Total Annual Cost (with credits) Total Annual Cost (with credits) Auxiliary equipment (ductwork, etc.) Total Annual Cost (with credits) Total Annual Cost (with credits) Auxiliary equipment (ductwork, etc.) Total Annual Cost (with credits) Total Annual Cost (with credits)			Overhead	50,326
Auxiliary equipment (ductwork, etc.) Total equipment cost (\$)base: Total equipment cost (\$)escalated: Total Annual Cost (without credits) Recovery credits Recovered solvent not re-sold Total Annual Cost (with credits) 406,272 Total Annual Cost (with credits)	CAPITAL COSTS:		Taxes, insurance, administrative	62,638
Total equipment cost (\$)base: 700,584 Equation 1.27 Total Annual Cost (without credits) 406,272 Total equipment cost (\$)escalated: 736,051 apply inflation factor Recovery credits Recovered solvent not re-sold Purchased Equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Total Annual Cost (with credits) 406,272	Adsorber vessels (includes cost of carbon)	132,000 Tables 1.5 & 1.6 (based on carbo	on requirement) Capital recovery	162,238
Total equipment cost (\$)escalated: 736,051 apply inflation factor Recovery credits Recovered solvent not re-sold Purchased Equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Total Annual Cost (with credits) 406,272	Auxiliary equipment (ductwork, etc.)	0		
Purchased Equipment Cost (\$): 846,458 Table 1.4 (less sales taxes) Total Annual Cost (with credits) 406,272	Total equipment cost (\$)base:	700,584 Equation 1.27	Total Annual Cost (without credits)	406,272
	Total equipment cost (\$)escalated:	736,051 apply inflation factor	Recovery credits	Recovered solvent not re-sold
Total Capital Investment (\$): 1,252,758 Table 1.4	Purchased Equipment Cost (\$):	846,458 Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	406,272
	Total Capital Investment (\$):	1,252,758 Table 1.4		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

Table 1. VOC Control Technology Cost Analysis, Dresinate Operations
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

1a. - Ranking of Technically-Feasible Control Options, by Reduction Efficiency

Ranking	Control Technology	Control Efficiency (%)	Capture Efficiency (%)	Reduction Efficiency (%)	Inlet VOC Emissions (tons/year)	VOC Reduction (tons/year)
1.	Thermal Oxidation	98.0	98.0	96.0	5.4	5.2
2.	Catalytic Oxidation	98.0	98.0	96.0	5.4	5.2
3.	Rotary Concentrator/Oxidizer	98.0	98.0	96.0	5.4	5.2
4.	Regenerative Thermal Oxidizer	98.0	98.0	96.0	5.4	5.2
5.	Refrigerated Condenser	95.0	98.0	93.1	5.4	5.0
6.	Carbon Adsorption (Fixed Bed)	90.0	98.0	88.2	5.4	4.8
7.	Carbon Adsorption (Canister)	90.0	98.0	88.2	5.4	4.8
					*VOC Baseline =	5.5 tpy

1b. - Ranking of Annual Control Costs per Ton of VOC Reduced**

Ranking	Control Technology	Capital Cost (\$)	Capital Recovery Cost (\$/year)	Capital Only Control Cost (\$/ton/yr)	Total Annualized Cost (\$/year)	Overall Total Control Cost (\$/ton/yr)
1.	Carbon Adsorption (Fixed Bed)	283,567	36,723	7,725	186,358	39,200
2.	Rotary Concentrator/Oxidizer	470,908	45,368	8,764	229,409	44,317
3.	Catalytic Oxidation	510,810	48,685	9,405	280,531	54,193
4.	Regenerative Thermal Oxidizer	663,970	63,968	12,357	286,203	55,288
5.	Thermal Oxidation	560,299	53,980	10,428	345,875	66,816
6.	Carbon Adsorption (Canister)	652,707	84,529	17,781	336,181	70,716
7.	Refrigerated Condenser	4,349,585	419,049	83,508	1,504,896	299,894

^{*} PTE based on sum of Double Drum Dryer, Tank R-1-A, and Tank 782, from IP-12a.

^{**} Note that these costs do not include the purchase and installation cost of ductwork associated with the controls.

Table 2. Total Annual Cost Spreadsheet - Thermal Incinerator Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988				
Current Date:	1/15/2020				
Years since Cost Base Date:	32				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	2.20				
INPUT PARAMETERS			ANNUAL COST INPUTS		
Gas flowrate (scfm):	4,000	drum dryer scrubber	Operating factor (hr/yr):	8,760	
Reference temperature (oF):	77		Operating labor rate (\$/hr):	48.00	includes benefits
Inlet gas temperature (oF):	200		Maintenance labor rate (\$/hr):	49.00	includes benefits
Inlet gas density (lb/scf):	0.0739	air	Operating labor factor (hr/sh):	0.5	Table 2.12
Primary heat recovery (fraction):	0.50		Maintenance labor factor (hr/sh):	0.5	Table 2.12
Predominant VOC constituent:	Toluene		Electricity price (\$/kwh):	0.055	
Pollutant heat of combustion (Btu/scf):	4,237	Table 2.16	Natural gas price (\$/mscf):	4.00	
Pollutant molecular weight (lb/lb-mole)	92.1	based on Toluene	Annual interest rate (fraction):	0.050	
Pollutant concentration (ppmv):	26.8	based on Toluene	Control system life (years):	15	
Waste gas heat content (BTU/scf):	1.0	Equation 2.16	Capital recovery factor (CRF):	0.0963	
Waste gas heat content (BTU/lb):	13.5		Taxes, insurance, admin. factor:	0.05	
Gas heat capacity (BTU/lb-oF):	0.255	air			
Combustion temperature (oF):	1,400				
Preheat temperature (oF):	800	Equation 2.18			
Fuel heat of combustion (BTU/lb):	21,502	methane			
Fuel density (lb/ft3):	0.0408	methane	CALCULATED ANNUAL COSTS		
CALCULATED PARAMETERS			Operating labor	26,280	
Auxiliary Fuel Needed (lb/min):	2.428	Equation 2.21	Supervisory labor	3,942	Table 2.12
(scfm):	59.5		Maintenance labor	26,828	
Total Gas Flowrate (scfm):	4,060		Maintenance materials	26,828	Table 2.12
Pressure drop (in. w.c.):	12.0	Table 2.13	Natural gas	125,100	
			Electricity	4,577	Section 2.5.2.1
CALCULATED CAPITAL COSTS			Overhead	50,326	Table 2.12
Equipment Costs (EC):			Taxes, insurance, administrative	28,015	

0 Equation 2.29

0 Equation 2.30

0 Equation 2.32

136,369 =EC + Auxiliary costs

354,620 =1.18A (Table 2.10)

560,299 =1.58B (Table 2.10)

300,525 =Base cost x inflation factor

136,369 Equation 2.31

Capital recovery

Total Annual Cost

345,875

53,980 =CRF x TCI

@ 0 % heat recovery:

@ 35 % heat recovery:

@ 50 % heat recovery:

@ 70 % heat recovery:

Incinerator:

Auxiliary equipment: Total Equipment Cost--base:

Total Equipment Cost--escalated (A):

Purchased Equipment Cost (B):

Total Capital Investment (TCI):

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 3. Total Annual Cost Spreadsheet - Regenerative Thermal Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST DEFENDED DATE*.		2016			
COST REFERENCE DATE*:					
Current Date:		1/15/2020			
Years since Cost Base Date:		4			
Average inflation rate/year, %:		2.5			
Inflation adjustment factor:		1.10)		
INPUT PARAMETERS				ANNUAL COST INPUTS	
Exhaust Gas flowrate (scfm):		4,000		Operating factor (hr/yr):	8,760
Reference temperature (oF):		77		Operating labor rate (\$/hr):	48.00
Waste gas inlet temperature, Tw _i (oF):		200		Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):		0.0739	air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):		0.85		Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content, annual avg. (BTU/scf):		1.00	Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):		13.5		Natural gas price (\$/mscf):	4.00
Gas heat capacity (BTU/lb-oF):		0.255		Annual interest rate (fraction):	0.050
Combustion temperature (oF):		1,400		Control system life (years):	15
Temperature leaving heat exchanger, Tw _o (oF):		1220	Equation 2.18	Capital recovery factor:	0.0963
Fuel heat of combustion (BTU/lb):		21,502	methane	Taxes, insurance, admin. factor:	0.05
Fuel density (lb/ft3):		0.041	methane		
Pressure drop (in. w.c.):		19.0	Table 2.13		
				ANNUAL COSTS	
CALCULATED UTILITY USAGES				Item	Cost (\$/yr)
Auxiliary Fuel Requirement:	(lb/min):	0.925	Equation 2.21	Operating labor	26,280
	(scfm):	22.67		Supervisory labor	3,942 Table 2.12
	(mcf/yr):	11,913.0		Maintenance labor	26,828
Total Maximum Exhaust Gas Flowrate:	(scfm):	4,023		Maintenance materials	26,828 Table 2.12
				Natural gas	47,652
CALCULATED CAPITAL COSTS				Electricity	7,181 Section 2.5.2.1
Oxidizer Equipment Cost (EC):				Overhead	50,326 Table 2.12
@ 85% heat recovery:		322,637	Equation 2.33	Taxes, insurance, administrative	33,199
@ 95% heat recovery:		0	Equation 2.33	Capital recovery	63,968 =CRF x TCI
		0		Total Annual Cost	286,203
Auxiliary equipment :		U			
Auxiliary equipment : Total Equipment Costbase:			=EC + Auxiliary costs		
Total Equipment Costbase:		322,637	•		
Total Equipment Costbase: Total Equipment Costescalated (A):		322,637 356,131	=Base cost x inflation factor		
Total Equipment Costbase:		322,637 356,131 420,234	•		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 4. Total Annual Cost Spreadsheet - Catalytic Incinerator
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1988		
Current Date:	1/15/2020		
Years since Cost Base Date:	32		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	2.20		
·			
INPUT PARAMETERS		ANNUAL COST INPUTS	
Gas flowrate (scfm):	4,000	Operating factor (hr/yr):	8760
Reference temperature (oF):	77	Operating labor rate (\$/hr):	48.00
Inlet gas temperature (oF):	200	Maintenance labor rate (\$/hr):	49.00
Inlet gas density (lb/scf):	0.0739 air	Operating labor factor (hr/sh):	0.5 Table 2.12
Primary heat recovery (fraction):	0.50	Maintenance labor factor (hr/sh):	0.5 Table 2.12
Waste gas heat content (BTU/scf):	1.00 Equation 2.16	Electricity price (\$/kwh):	0.055
Waste gas heat content (BTU/lb):	13.53	Catalyst price (\$/ft3):	650
Gas heat capacity (BTU/lb-oF):	0.26 air	Natural gas price (\$/mscf):	4.00
Combustion temperature (oF):	850	Annual interest rate (fraction):	0.05
Preheat temperature (oF):	525 Equation 2.18	Control system life (years):	15
Fuel heat of combustion (BTU/lb):	21,502 Methane	Catalyst life (years):	2
Fuel density (lb/ft3):	0.0408 Methane	Capital recovery factor (system):	0.0963
		Capital recovery factor (catalyst):	0.5378
CALCULATED PARAMETERS		Taxes, insurance, admin. factor:	0.05
Auxiliary Fuel Needed (lb/min):	1.239 Equation 2.21		
(scfm):	30.4		
Total Gas Flowrate (scfm):	4,030	CALCULATED ANNUAL COSTS	
Catalyst Volume (ft3):	7.8	Operating labor	26,280
Pressure drop (in. w.c.):	14.0 Table 2.13	Supervisory labor	3,942 Table 2.12
		Maintenance labor	26,828
CALCULATED CAPITAL COSTS		Maintenance materials	26,828 Table 2.12
Equipment Costs (\$):		Natural gas	63,854
Incinerator:		Electricity	5,301 Section 2.5.2.1
@ 0 % heat recovery:	0 Equation 2.34	Catalyst replacement	2,947
@ 35 % heat recovery:	0 Equation 2.35	Overhead	50,326 Table 2.12
@ 50 % heat recovery:	124,324 Equation 2.36	Taxes, insurance, administrative	25,540
@ 70 % heat recovery:	0 Equation 2.37	Capital recovery	48,685 =CRF x TCI
Other equipment :	-	Total Annual Cost	280,531
Total Equipment Costbase:	124,324 =EC + Auxiliary costs		
Total Equipment Costescalated (A):	273,981 =Base cost x inflation	n factor	
Purchased Equipment Cost (B):	323,297 =1.18A (Table 2.10)		
Total Capital Investment (TCI):	510,810 =1.58B (Table 2.10)		
rotal Capital Investment (TCI):	510,810 =1.58B (Table 2.10)		

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 5. Total Annual Cost Spreadsheet - Rotary Concentrator/Oxidizer
Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1996		
Current Date:	1/15/2020		
Years since Cost Base Date:	24		
Average inflation rate/year, %:	2.5		
Inflation adjustment factor:	1.81		
PARAMETERS		ANNUAL COST INPUTS	
Flowrate (cfm)	4,000	Operating factor (hr/yr):	8,760
Control device input mass (tons/year)	5.4	Operating labor rate (\$/hr):	48.00
Concentration (avg. ppmv)	26.82 based on Toluene	Maintenance labor rate (\$/hr):	49.00
Facility operating schedule (hours/year)	8,760	Operating labor factor (hr/sh):	0.50 Table 2.12
Thermal oxidizer temperature (F)	1,400	Maintenance labor factor (hr/sh):	0.50 Table 2.12
Fuel cost, (\$/million BTU)	4.00	Electricity price (\$/kwh):	0.055
Electricity cost, (\$/kwhr)	0.055	Natural gas price (\$/mscf):	4.00
		Annual interest rate (fraction):	0.05
ENERGY CALCULATIONS		Control system life (years):	15
Heat recovery (%)	50	Capital recovery factor:	0.0963
Pressure drop (inches WC)	14 Table 2.13 (catalytic)	Taxes, insurance, admin. factor:	0.05
Electrical power (kW)	10.9 Section 2.5.2.1		
Fuel usage (Btu/hr)	600,199 Equation 2.21		
		ANNUAL OPERATING COSTS	
CAPITAL COSTS		Operating labor	26,280
Equipment cost (EC), (Durr budgetary costs, 3/15/96)	130,695	Supervisory labor	3,942 Table 2.12
Escalated Equipment Cost (A)	236,391 inflation adjustment	Maintenance labor	26,828
Other equipment:	0	Maintenance materials	26,828 Table 2.12
Total Direct Cost (TDC), (\$)	382,971 sty-cost.wk3	Natural gas	21,031
Total Capital Investment (TCI), (\$)	470,908 sty-cost.wk3	Electricity	5,261
		Overhead	50,326 Table 2.12
		Taxes, insurance, administrative	23,545
		Capital recovery	45,368 =CRF x TCI

Total Annual Cost 229,409

^{*} Date and costs based on Addendum to Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries, EPA-600/R-96-136, November 1996, and the associated spreadsheet (sty-cost.wk3) developed by EPA. Some equations in this document refer to EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.2, Chapter 2.

Table 6.	Total Annual Cost Spreadsheet - Packaged Condenser
	Eastman Chemical Resins, Inc Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2014				
Current Date:	1/15/2020				
Years since Cost Base Date:	1/13/2020				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.16				
imation adjustment factor.	1.10)			
INPUT PARAMETERS:			CAPITAL COSTS:		
Inlet stream flowrate (scfm):	4,000)	Equipment Costs (\$):		
Inlet stream temperature (oF):	200		Refrigeration unit/single-stage (< 10 tons):	0	Equation 2.26
VOC to be condensed:	Toluene	!	Refrigeration unit/single-stage (> 10 tons):	709,801	Equation 2.27
VOC inlet volume fraction:	0.000027		Multistage refrigeration unit:	1,624,706	Equation 2.28
Required VOC removal (fraction):	0.90		Total equipment cost (\$)base:	2,030,882	Equation 2.29
Antoine equation constants for VOC:			Total equipment cost (\$)escalated:	2,355,201	inflation adjusted
A	6.955	Table B below, for Toluene	Purchased Equipment Cost (\$):	2,543,617	Equation 2.30
В	1344.800	Table B below, for Toluene	Total Capital Investment (\$):	4,349,585	Table 2.3
C	219.480	Table B below, for Toluene			
VOC heat of condensation (BTU/lb-mole):	14,290.0	Table A below, for Toluene			
VOC heat capacity (BTU/lb-mole-oF):	37.5	Table A below, for Toluene	ANNUAL COST INPUTS:		
Coolant specific heat (BTU/lb-oF):	0.650	Default value	Operating factor (hr/yr):	8760	
VOC boiling point (oF):	231.0	Table A below, for Toluene	Operating labor rate (\$/hr):	48.00	
VOC critical temperature (oR):	1,065.0	Table A below, for Toluene	Maintenance labor rate (\$/hr):	49.00	
VOC molecular weight (lb/lb-mole):	92.1	Table A below, for Toluene	Operating labor factor (hr/sh):	0.5	Table 2.4
VOC condensate density (lb/gal):	7.20	Table A below, for Toluene	Maintenance labor factor (hr/sh):	0.5	Table 2.4
Air heat capacity (BTU/lb-mole-oF):	6.95	Default value	Electricity price (\$/kWhr):	0.055	
			Recovered VOC value (\$/lb):	0.00	
DESIGN PARAMETERS:			Annual interest rate (fraction):	0.05	
Outlet VOC partial pressure (mm Hg):	0.0020	Equation 2.6	Control system life (years):	15	
Condensation temperature, Tc (oF):	-112.1	Equation 2.8	Capital recovery factor:	0.0963	
VOC flowrate in (lb-moles/hr):	0.0164	Equation 2.9	Taxes, insurance, admin. factor:	0.05	
VOC flowrate out (lb-moles/hr):	0.002	Equation 2.10			
VOC condensed (lb-moles/hr):	0.015	inlet - outlet	ANNUAL COSTS:		
(lb/hr)	1.4	lb-moles x molecular weight	Operating labor	26,280	
VOC heat of condensation @ Tc (BTU/lb-mole):	18,300	Equation 2.14	Supervisory labor	3,942	
Enthalpy change, condensed VOC (BTU/hr):	444	Equation 2.12	Maintenance labor	26,828	
Enthalpy change, uncondensed VOC (BTU/hr):	19	Equation 2.16	Maintenance materials	26,828	
Enthalpy change, air (BTU/hr):	1,327,975	Equation 2.17	Electricity	734,165	
Condenser heat load (BTU/hr):	1,328,438	sum of enthalpy changes	Overhead	50,326	
Heat transfer coefficient, U (BTU/hr-ft2-oF):	20.0	Default value	Taxes, insurance, administrative	217,479	
Log-mean temperature difference (oF):	95.6	Equation 2.19	Capital recovery	419,049	_
Condenser surface area (ft2):	694.7	Equation 2.18			
Coolant flowrate (lb/hr):	81,750	Equation 2.22	Total Annual Cost (without credits)	1,504,896	
Refrigeration capacity (tons):	110.70	Equation 2.23	Recovery credits	0	
Electricity requirement (kW/ton of refrigeration) 11.7	Table 2.5 (see below)	Total Annual Cost (with credits)	1,504,896	

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 2, reflect this date. All calculated values in this table are based on equations from Chapter 2 of this manual.

Table 7.

Total Annual Cost Spreadsheet - Fixed Bed Carbon Adsorber with Steam Regeneration Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	1999				
Current Date:	1/15/2020)			
Years since Cost Base Date:	21	L			
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.68	3			
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	4,000		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.23		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	2.68E-05		Steam price (\$/1000 lb):	5.00	
VOC inlet concentration (ppmv):	26.8		Cooling water price (\$/1000 gal):	3.55	Default values in EPA Cost Manual
VOC inlet partial pressure (psia):	0.0004		Recovered VOC value (\$/lb):	-	
Required VOC removal (fraction):	0.90		Overhead rate (fraction):	0.6	
Annual VOC inlet (tons):	5.39		Annual interest rate (fraction):	0.05	
Adsorption time (hr):	12	Operating hours between carbon replacement	Control system life (years):	10.0	
Desorption time (hr):	5	S	Capital recovery factor (system):	0.1295	
Number of adsorbing vessels:	2		Carbon life (years):	2.0	
Superficial carbon bed velocity (ft/min):	75.0	default, page 1-35	Capital recovery factor (carbon):	0.5378	
Carbon price (\$/lb):	1.25	reactivated, page 1-6	Taxes, insurance, admin. factor:	0.050	
Material of construction factor:	1.30	stainless steel 316, Table 1.3			
DESIGN PARAMETERS:			ANNUAL COSTS:		
Carbon adsorptivity (lb Toluene/lb carbon):	0.233	Equation 1.1 and Table 1.2	Operating labor	26,280	
Carbon working capacity (lb VOC/lb carbon):		50% of equilibrium capacity	Supervisory labor	3,942	
Number of desorbing vessels:		Regenerated off-site	Maintenance labor	26,828	
Total number of vessels:	3	-	Maintenance materials	26,828	
Carbon requirement, total (lb):		Equation 1.14	Electricity	•	Section 1.8.1.3
Carbon requirement per vessel (lb):	63	240000.112.	Steam		Equation 1.28
Gas flowrate per adsorbing vessel (acfm):		Vertical vessel, flow under 9000 cfm	Cooling water		Equation 1.29
Adsorber vessel diameter (ft):	•	Equation 1.18 or 1.21	Carbon replacement		Equation 1.38
Adsorber vessel length or height (ft):		Equation 1.19 or 1.23	Overhead	50,326	24444600 2.55
Adsorber vessel surface area (ft2):		Equation 1.24	Taxes, insurance, administrative	14,178	
Carbon bed depth (ft):		Equation 1.31	Capital recovery	36,723	
Carbon bed pressure drop (in. w.c.):		Equation 1.30		30,7.20	_
carbon bea pressure drop (iii. w.e.).	1.200	Equation 1.30	Total Annual Cost (without credits)	186,358	
CAPITAL COSTS:			Recovery credits	200,000	Recovered solvent not re-sold
Adsorber vessels	51,124	Equation 1.25	Total Annual Cost (with credits)	186,358	
Carbon	238	Equation 1.16	•		
Auxiliary equipment (ductwork, etc.)	0				
Total equipment cost (\$)base:	99,196	Equation 1.27			
Total equipment cost (\$)escalated:	-	apply inflation factor			
Purchased Equipment Cost (\$):		Table 1.4 (less sales taxes)			
Total Capital Investment (\$):	283,567	· · · · · · · · · · · · · · · · · · ·			
1	,				

Table 8.

Total Capital Investment (\$):

Total Annual Cost Spreadsheet - Carbon Adsorber Canister (with carbon replacement) Eastman Chemical Resins, Inc. - Jefferson Site, West Elizabeth PA

COST REFERENCE DATE*:	2018				
Current Date:	1/15/2020				
Years since Cost Base Date:	2				
Average inflation rate/year, %:	2.5				
Inflation adjustment factor:	1.05				
INPUT PARAMETERS:			ANNUAL COST INPUTS:		
Inlet stream flowrate (acfm):	4,000		Operating factor (hr/yr):	8760	
Inlet stream temperature (oF):	200		Operating labor rate (\$/hr):	48.00	
Inlet stream pressure (atm):	1		Maintenance labor rate (\$/hr):	49.00	
VOC to be condensed:	Toluene		Operating labor factor (hr/sh):	0.5	
Inlet VOC flowrate (avg. lb/hr):	1.23		Maintenance labor factor (hr/sh):	0.5	
VOC molecular weight (lb/lb-mole):	92		Electricity price (\$/kWhr):	0.055	
VOC inlet volume fraction:	2.68E-05		Recovered VOC value (\$/lb):	-	
VOC inlet concentration (ppmv):	26.8		Overhead rate (fraction):	0.6	
VOC inlet partial pressure (psia):	0.0004		Annual interest rate (fraction):	0.05	
Required VOC removal (fraction):	0.90		Control system life (years):	10.0	
Annual VOC inlet (tons):	5.39		Capital recovery factor (system):	0.1295	
Total Adsorption time per canister (hr):	850 o	Operating hours between carbon replacement	Carbon life (years):	2.0	
Desorption time (hr):	0 R	Regenerated off-site	Capital recovery factor (carbon):	0.5378	
Number of canisters:	2 0	Only one online at a time	Taxes, insurance, admin. factor:	0.050	
Superficial carbon bed velocity (ft/min):	75.0 d	default, page 1-35			
Carbon price (\$/lb):	1.25 re	eactivated, page 1-6			
, , , ,					
DESIGN PARAMETERS:					
Carbon adsorptivity (lb Toluene/lb carbon):	0.233 E	equation 1.1 and Table 1.2	ANNUAL COSTS:		
Carbon working capacity (lb VOC/lb carbon):	0.116 5	50% of equilibrium capacity	Operating labor	26,280	
Number of desorbing vessels:	0 R	Regenerated off-site	Supervisory labor	3,942	
Total number of vessels:	2		Maintenance labor	26,828	
Total Carbon needed per replacement cycle (lb):	8,993 E	Equation 1.14 (at 850 adsorption hrs/cycle)	Maintenance materials	26,828	
Number of carbon replacements per year:	11		Electricity	467	Section 1.8.1.3
Minimum carbon requirement (lbs carbon/yr)	98,918 LI	bs per replacement times number of replacements	Carbon replacement	84,346	Labor + Material (Eqs. 1.37 & 1.38)
			Overhead	50,326	
CAPITAL COSTS:			Taxes, insurance, administrative	32,635	
Adsorber vessels (includes cost of carbon)	189,000 Ta	Tables 1.5 & 1.6 (based on carbon requirement)	Capital recovery	84,529	
Auxiliary equipment (ductwork, etc.)	0				=
Total equipment cost (\$)base:	365,015 E	Equation 1.27	Total Annual Cost (without credits)	336,181	
Total equipment cost (\$)escalated:	383,494 a _l	apply inflation factor	Recovery credits		Recovered solvent not re-sold
Purchased Equipment Cost (\$):	441,018 Ta	Table 1.4 (less sales taxes)	Total Annual Cost (with credits)	336,181	

652,707 Table 1.4

^{*} Original equipment costs in EPA's OAQPS Control Cost Manual, 7th Edition, Section 3.1, Chapter 1, reflect this date. All calculated values in this table are based on equations from this manual.

ALLEGHENY COUNTY HEALTH DEPARTMENT

IN RE:

Hercules Incorporated
State Highway 837
Allegheny County
West Elizabeth, PA 15088

PLAN APPROVAL ORDER
AND AGREEMENT NO. 257
UPON CONSENT

UPON CONSENT

AND NOW, this 14th day of January, 1996,97

whereas, the Allegheny County Health Department, (hereafter referred to as "Department"), has determined that the Hercules Incorporated (hereafter referred to as "HERCULES"), State Highway 837, Allegheny County, West Elizabeth, PA 15088, is the owner and operator of synthetic hydrocarbon resin production facilities at State Highway 837, Allegheny County, West Elizabeth, PA 15088 (hereafter referred to as "the facility"), is a major stationary source of volatile organic compounds (hereafter referred to as "VOCs") emissions as defined in Section 2101.20 of Article XXI, Rules and Regulations of the Allegheny County Health Department, Air Pollution Control (hereafter referred to as "Article XXI"); and

WHEREAS, the Department has determined that Section 2105.06.a. of Article XXI, entitled "Major Sources of NO, & VOCs" is applicable to HERCULES's operations at this facility; and

WHEREAS, HERCULES promptly submitted to the Department all documents required by Section 2105.06.b of Article XXI (hereafter referred to as "the proposal"); and

whereas, the Department, after a review of the submitted proposal, has determined the proposal to be complete; and

whereas, the Department has further determined, after review of the submitted proposal, that it constitutes Reasonably Available Control Technology (hereafter referred to as "RACT") for control of VOC emissions from HERCULES; and

WHEREAS, the Department and HERCULES desire to memorialize the details of the submitted proposal by entry of a Plan Approval Order and Agreement Upon Consent; and

WHEREAS, pursuant to Section 2109.03 of Article XXI, the Director of the Allegheny County Health Department or his designated representative may issue such orders as are necessary to aid in the enforcement of the provisions of Article XXI;

NOW, THEREFORE, this day first written above, the Department, pursuant to Section 2109.03 of Article XXI, and upon agreement of the parties as hereinafter set forth, hereby issues this Plan Approval Order and Agreement upon Consent:

I. ORDER

1.1. HERCULES shall at no time operate the following process equipment while generating VOC emissions unless all non-fugitive emissions are processed through cooling tower water-cooled condensers. Such condensers shall be properly maintained and operated at all times while treating VOC emissions from the subject equipment, with the exception of activities to mitigate emergency conditions, with a coolant inlet temperature no greater than ten degrees fahrenheit above ambient air temperature, except that at no time will coolant temperature be required to be less than 50°F.

- A. V-8 Polymerization Unit Process Equipment:
 - First and second flashers and OVDHS accumulators
 - 2. Mixpot
 - 3. No. twenty-five (25) agitator
- B. Water-White Polymerizatyion Unit Process
 Equipment:

- 1. Reclaimer
- C. MP Polymerization Unit
 - 1. Reactor
- D. Suspension Polymerization Unit Process
 Equipment:
 - 1. North, South and West reactors
- E. Pilot Plant Process Equipment:
 - 1. Reactor
 - 2. Neutralizer
 - 3. Funda Filter
- F. No. three (3) LTC Finishing Unit Process
 Equipment:
 - First and second stage reactor vacuum jets
- G. C-5 Polymerization Unit Process Equipment:
 - Resin kettles no. eight (8), when containing volatile organic compounds.
 - 2. Solvent flush, irganox, reclaim and precoat tanks
- H. No.s one (1) and two (2) LTC Finishing Unit Process Equipment:
 - 1. No.s one (1) and two (2) flasher feed

- 2. No.s one (1) and two (2) flasher jets
- I. C-Polymerization Unit Process Equipment:
 - 1. Reactors no. 1-1, 1-2, 2-1 and 2-2

1.2. HERCULES shall at no time operate the following process equipment while generating VOC emissions unless all such non-fugitive emissions are processed through refrigerated condensers. Such condensers shall be properly maintained and operated at all times while treating VOC emissions, with the exception of activities to mitigate emergency conditions, with coolant inlet temperatures no greater than those listed below.

- A. MP Polymerization Unit Process Equipment:
 - Preblend, receiver, solvent filtrate and filtrate receiver tanks
 with inlet coolant temperatures no greater

than ten (10) degrees centigrade.

- B. C-5 Polymerization Unit Process Equipment:
 - 1. Neutralizers and Filtrate Receiver
 - 2. Reactor
 - 3. Toluene column

with inlet coolant temperatures no greater than zero (0) degrees Fahrenheit.

1.3. By no later than May 1, 1997, HERCULES shall complete installation of refrigerated condenser systems, for the purpose of reducing VOC emissions, from the subject process equipment listed below.

- A. Hydrogenation Unit Process Equipment:
 - 1. Storage tanks no.s T-101, T-102, T-105 and T-106
 - 2. Autoclave vent tank
 - 3. Product tank, T-501 & Solvent tank, T-502
 - 2. Metering tank
 - 3. Pall and Sweetland filter blowing
 - 4. Autoclaves no.s one (1) and two (2)

- B. Water-White Polymerization Unit Process
 Equipment:
 - 1. Feed dryers
 - 2. Reactors
 - 3. Neutralizer
 - 4. Filtrate receiver
- 1.4. By no later than August 1, 1997, HERCULES shall commence operation of the refrigerated condenser Systems, for the purpose of reducing VOC emissions, from the subject equipment listed in paragraph 1.3 above. Such condensers shall be properly maintained and operated at all times while treating VOC emissions, with the exception of activities to mitigate emergency conditions, with coolant inlet temperatures no greater than ten (10) degrees centigrade.
- appropriate records to demonstrate compliance with the requirements of both Section 2105.06 Article XXI and this Order. Data and information required to determine compliance shall be recorded and maintained by HERCULES and shall include, but not be limited, the following.

- A. Production records and condenser coolant temperatures
- 1.6. HERCULES shall retain all records required by both Section 2105.06 of Article XXI and this Order for the facility for at least two (2) years and shall make the same available to the Department upon request.
- 1.7. HERCULES shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices.

II. AGREEMENT

The foregoing Order shall be enforced in accordance with and is subject to the following agreement of the parties, to wit:

2.1. The contents of this Order shall be submitted to The U.S. Environmental Protection Agency as a revision to the Commonwealth of Pennsylvania's State Implementation Plan (hereafter referred to as "SIP").

- 2.2. This Order establishes the extent of HERCULES' obligation with respect to the control of VOCs from this facility. Compliance with the requirements stated in the Order portion of this Order and Agreement shall be deemed compliance with all VOC control requirements for equipment described in HERCULES' RACT Plan. Failure of HERCULES to comply with this Enforcement Order and Agreement by Consent shall subject HERCULES to only the remedies provided for violations of Article XXI.
- 2.3. If any event occurs which is beyond the control of HERCULES and which causes or may cause delays in the achievement of the deadlines contained in paragraphs 1.3 and 1.4 of this Order.
 - a. HERCULES shall notify the Department in writing within ten (10) days of the delay or anticipated delay, describing in detail the nature of the delay, the anticipated length of the delay, the precise cause or causes of the delay, the measures taken and to be taken by HERCULES to prevent or minimize the delay,

and the timetable by which those measures will be implemented. HERCULES shall adopt all reasonable measures to avoid or minimize any such delay. Failure by HERCULES to comply with the notice requirement of this subparagraph, (2.3.a.) specifically may in sole discretion of the Department render the remaining provisions of this paragraph (2.3.b. - 2.3.c.) void and of no effect as to the particular incident involved.

- b. If the Department agrees that the delay or anticipated delay in complying with this Order has been or will be caused by circumstances beyond the control of HERCULES, the time for performance hereunder may be extended for a period no longer than the delay resulting from such circumstances.
- c. The burden of proving that any delay is
 caused by circumstances beyond the control of
 HERCULES shall rest with HERCULES. Increased
 costs or expenses associated with the
 implementation of actions called for by this
 Order shall not, in any event, be a basis for
 changes in this Order or extensions of time

under this paragraph. Delay in achievement of one interim step shall not necessarily justify or excuse delay in achievement of subsequent steps.

- 2.4. HERCULES hereby consents to the foregoing Order and hereby knowingly waives all rights to appeal said Order, and the undersigned represents that he is authorized to consent to the Order and to enter into this Agreement on behalf of HERCULES.
- 2.5. The County shall, upon request by HERCULES, accept and evaluate requests for amendments to Allegheny County's portion of the SIP and if appropriate, submit the amendments to the U.S. EPA for incorporation into the SIP. HERCULES hereby reserves its appeal rights to Article XXI, Rules and Regulations of the ACHD, Hearings and Appeals, for any subject amendments made or failure to make such amendments.

IN WITNESS WHEREOF, and intending to be legally bound, the parties hereby consent to all of the terms and conditions of the foregoing Order and Agreement as of the date of the above written.

HERCULES INC.
By: fourt Bust (signature)
Print or type Name: Joseph P. Ziegler
Title: Plant Manager
Date: 1/3/97
ALLEGHENY COUNTY HEALTH DEPARTMENT
By: Brueil. Dwan 1/4/97
Bruce W. Dixon, M.D., Director Allegheny County Health Department
and By: Thom f. Pagned

ALLEGHENY COUNTY HEALTH DEPARTMENT

July 22, 1996

Review of VOC RACT Submittal SUBJECT:

Hercules, Incorporated

State Highway 837 West Elizabeth, PA Allegheny County

Order and Agreement No. 257

George A Manown, Assistant 9 all Manager, Air Out THROUGH:

FROM:

T. J. Novack, P.E. Air Quality Engineer

SOURCE DESCRIPTION:

The Hercules, Inc., West Elizabeth facility produces synthetic hydrocarbon resins and is a major source of VOCs and NO. NO. RACT was addressed in a separate submittal. The facility produces a variety of resins from resin oils, monomers, solvents and catalysts and is comprised of the following processes.

- Water white polymerization unit WW Poly
- 2. C polymerization unit - C Poly
- MP polymerization unit MP Poly 3.
- C-5 unit
- 5. LTC 1&2 unit
- LTC 3 unit
- V-8 unit 7.
- 8. HSI unit
- 9. Hydrogenation unit Hydro
- 10. Wastewater treatment plant WWTP
- 11. Boilerhouse
- 12. Pilot Plant

The main polymerization units are the C poly, MP poly, WW poly, HSI & C-5. The LTCs and V-8 units are finishing processes that treat resin produced by the main polymerization units. The Hydro unit hydrogenizes resins produced in the main polymerization units prior to the finishing processes.

PROCESS COMPONENTS, VOC MAXIMUM POTENTIAL TO EMIT AND EXISTING CONTROL EFFICIENCY:

All VOC emitting process components, along with existing VOC controls, existing VOC control efficiency, uncontrolled maximum potential VOC emissions per component and per process and existing controlled maximum potential VOC emissions per component and per process are presented in appendix A, " Process Data."

VOLATILE ORGANIC STORAGE TANKS:

All existing volatile organic storage tanks at the facility not regulated by Section 2105.12 of Article XXI, "Volatile Organic Compound Storage Tanks", along with the maximum potential VOC emissions per tank are presented in appendix B, "Tank Data."

REGULATORY ANALYSIS:

This facility is a major source NO_x and VOC emissions, therefore, this facility is subject to the requirements of the Reasonably Available Control Technology regulation of section 2105.06 of Article XXI, Allegheny County Health Department, Rules and Regulations, Air Pollution Control.

VOC RACT ANALYSIS:

The VOC RACT analysis was conducted with guidance from EPA-453/R-93-017, "Control of Volatile Organic Compound Emissions from Batch Processes", Draft, November 1993 and EPA's OAQPS Cost Manual. References 1 and 2 respectively.

Processes:

- have either water-cooled processes condensers refrigerated condensers for VOC control with the exception of the WWTP. Based on the above references 1 and 2, the most inexpensive additional control options were 1) to add water cooled condensers to process units which are presently uncontrolled 2) to upgrade existing cooling tower water condenser systems with refrigerated units, 3) installation of separate thermal oxidation units as secondary treatment on the various plant processes and 4) to install a thermal oxidation unit that would process the existing controlled emissions from the facility. Since all other options are less cost effective than those stated, they were not considered in this RACT analysis.
- 1. Installation of water cooled condensers on process units that are presently uncontrolled is economically infeasible. See appendix for the cost analysis.
- 2. Installation of refrigerated condenser systems as secondary VOC controls following existing water cooled condensers were considered the most inexpensive technically feasible options for the following

processes:

- 1. V-8 Polymerization Unit
- 2. Hydrogenation Unit
- 3. Water-white Polymerization Unit
- 4. HSI Polymerization Unit
- 5. No. 3 LTC Finishing Unit
- 6. No.s 1 & 2 LTC Finishing Unit
- 7. C-Poly Polymerization Unit
- 8. Pilot Plant

This option was found to be cost prohibitive for all the above processes except the Hydrogenation Unit and the Water-white polymerization unit. The economic analysis for the no. 3 LTC unit demonstrates that this option is also cost prohibitive for the pilot plant. See appendix C for the cost analyses.

- 2. Installation of separate thermal oxidizers as secondary VOC control systems following the existing refrigerated condenser systems were considered the most inexpensive technically feasible control options for the following processes:
- 1. C-5 Polymerization Unit
- 2. MP Polymerization Unit

This option was found to be cost prohibitive for the C-5 polymerization unit which also demonstrates that it is cost prohibitive for the MP polymerization unit.

- 3. Installation of a thermal oxidation system to treat all processes in the facility was found to be cost prohibitive. In addition, a thermal oxidation unit would pose special problems in construction and operation which include the following:
- 1. A minimum of at least one mile of main conduit is required to join all the processes at the facility.
- 2. A main CONRAIL railroad line would have to be crossed with main line conduit.
- 3. The processes are not continuous VOC emission units which would require extensive instrumentation on the various processes to vent the emissions when they occur without disrupting the processes themselves.
- 4. The thermal oxidation system would have to be placed at the plant boundary as far away from all storage tanks and processes as possible due to the flammable nature of the components stored and used at the facility. This would require that the system be placed along the Ohio river where flooding would have to be taken into consideration.

See appendix C for the cost analysis.

Waste water treatment plant:

The installation of covers and a refrigerated condenser system was considered the most inexpensive control system for this unit. This system is technically feasible but cost prohibitive. See appendiX C for the cost analysis.

Boiler house:

With a VOC potential to emit of less than 5 TPY operation and maintenance costs alone would make any controls cost prohibitive. See appendix C for the cost analysis.

Storage Tanks:

There are 171 volatile organic storage tanks located at the facility. 37 of these tanks are subject to Section 2105.12 of Article XXI, "Volatile Organic Compound Storage Tanks", and therefor have VOC RACT in place. 134 tanks are not subject to the referenced regulation and are subject to VOC RACT analysis.

The facility is approximately 2,200 feet by 1,200 feet with the storage tanks placed throughout the plant. The storage tanks are grouped in areas in the facility with the largest VOC potential to emit from a group being approximately 62 TPY from 15 tanks.

VOC emission controls were analyzed for 1) the individual storage tank with the largest VOC potential to emit and 2) a group of tanks with a single control system.

1. Tank no. 151 has the largest potential to emit of 49.5 TPY
The possible control options consist of thermal oxidation and
refrigerated condenser systems. The analysis of thermal
oxidation as a secondary control system for the C-5
polymerization process with a VOC potential to emit of 62 TPY,
demonstrates that thermal oxidation for this tank is cost
prohibitive. The emissions from the C-5 unit are greater than
this tank and cost prohibitive making it cost prohibitive for
this tank also.

Based on the analysis of a refrigerated condenser system for the no. 1 & 2 LTC finishing unit with a VOC potential to emit of 54.8 TPY, a condenser system on a single tank would be cost prohibitive.

2. Thermal oxidation or refrigerated condenser systems for a group of tanks with a VOC potential to emit of 62 TPY would be cost prohibitive for the same reasons given in paragraph 1. above. In addition all groups of tanks at the facility individually contain different volatile organics, i.e. styrene, toluene and resin oil, This means that any group of tanks would require numerous individual condensation units or separation units to recover the mixed condensate from a single condensation unit.

CONCLUSIONS AND RECOMMENDATIONS:

Installation of refrigerated condenser systems for the hydrogenation and water-white polymerization units are cost effective and will be considered VOC RACT for these units. The installation of these systems will reduce potential VOC emissions by approximately 300 TPY and raise the overall plant process VOC control efficiency to 89.4%, See appendix D for this summary.

All VOC controls beyond existing controls for all other process units and storage tanks not regulated by Section 2105.12 of Article XXI are cost prohibitive. VOC RACT will be the continued proper operation and maintenance of all VOC emission units, storage tanks and VOC controls, i.e. existing water cooled and refrigerated condensers.

The facility will be subject to following VOC RACT conditions:

HERCULES shall at no time operate the following process equipment while generating VOC emissions unless all non-fugitive emissions are processed through cooling tower water-cooled condensers. Such condensers shall be properly maintained and operated at all times while treating VOC emissions from the subject equipment, with the exception of activities to mitigate emergency conditions, with a coolant inlet temperature no greater than ten degrees fahrenheit above ambient air temperature, except that at no time will coolant temperature be required to be less than 50°F,

- A. V-8 Polymerization Unit Process Equipment:
 - 1. First and second flashers and OVDHS accumulators
 - 2. Mixpot
 - No. twenty-five (25) agitator
- B. Water-White Polymerization Unit Process Equipment:
 - 1. Reclaimer
- C. MP Polymerization Unit
 - 1. Reactor
- D. Suspension Polymerization Unit Process Equipment:
 - 1. North, South and West reactors
- E. Pilot Plant Process Equipment:
 - 1. Reactor
 - 2. Neutralizer
 - 3. Funda Filter
- F. No. three (3) LTC Finishing Unit Process Equipment:
 - First and second stage reactor vacuum jets
- G. C-5 Polymerization Unit Process Equipment:
 - Resin kettles no. eight (8), when

- containing volatile organic compounds.
- Solvent flush, irganox, reclaim and precoat tanks
- H. No.s one (1) and two (2) LTC Finishing Unit Process Equipment:
 - 1. No.s one (1) and two (2) flasher feed
 - 2. No.s one (1) and two (2) flasher jets
- I. C-Polymerization Unit Process Equipment:
 - 1. Reactors no.s 1-1, 1-2, 2-1 and 2-2
- J. Solution Polymerization Unit Process Equipment:
 - 1. Reactor
- 2. HERCULES shall at no time operate the following process equipment while generating VOC emissions unless all such non-fugitive emissions are processed through refrigerated condensers. Such condensers shall be properly maintained and operated at all times while treating VOC emissions, with the exception of activities to mitigate emergency conditions, with coolant inlet temperatures no greater than those listed below.

Subject Process Equipment Per Process Unit:

- A. MP Polymerization Unit Process Equipment:
 - 1. Preblend, receiver, solvent filtrate and filtrate receiver tanks
 - with inlet coolant temperatures no greater than ten (10) degrees centigrade.
 - B. C-5 Polymerization Unit Process Equipment:
 - 1. Neutralizers and Filtrate Receiver
 - 2. Reactor
 - 3. Toluene column

with inlet coolant temperatures no greater than zero (0) degrees Fahrenheit.

3. By no later than May 1, 1997, HERCULES shall complete installation of refrigerated condenser systems, for the purpose of reducing VOC emissions, from the subject process equipment listed below.

- A. Hydrogenation Unit Process Equipment:
 - 1. Storage tanks no.s T-101, T-102, T-105 and T-106
 - 2. Autoclave vent tank
 - Product tank, T-501 & Solvent tank, T-502
 - 2. Metering tank
 - 3. Pall and Sweetland filter blowing

- 4. Autoclaves no.s one (1) and two (2)
- B. Water-White Finishing Unit Process Equipment:
 - 1. Feed dryers
 - 2. Reactors
 - 3. Neutralizer
 - 4. Filtrate receiver
- By no later than August 1, 1997, HERCULES shall commence operation of the refrigerated condenser Systems, for the purpose of reducing VOC emissions, from the subject equipment listed in paragraph 1.3 above. Such condensers shall be properly maintained and operated at all times while treating VOC emissions, with the exception of activities to mitigate emergency conditions, with coolant inlet temperatures no greater than ten (10) degrees centigrade.
- 5. HERCULES shall at all times maintain all appropriate records to demonstrate compliance with the requirements of both Section 2105.06 Article XXI and Order no. 257. Data and information required to determine compliance shall be recorded and maintained by HERCULES and shall include, but not be limited, the following.
 - A. Production records and condenser coolant temperatures
- 6. HERCULES shall retain all records required by both Section 2105.06 of Article XXI and Order no. 257 for the facility for at least two (2) years and shall make the same available to the Department upon request.
- 7. HERCULES shall properly maintain and operate all existing process equipment and VOC control equipment at all times while such equipment is emitting VOCs, with the exception of activities to mitigate emergency situations, according to good engineering and air pollution control practices.

APPENDIX A

PROCESS DATA

EXISTING CONTROL DEVICE CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	NO CONTROLS PTE TPY 28.30 68.33 0.09 0.09 0.09	7.37 7.37 7.37 0.09 0.09	VOC PTE REDUCTION TPY 20.93 60.96 0.0 0.0	% VOC CONTR 73 89
CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	68.33 0.09 0.09 0.09	7.37 0.09 0.09	60.96 0.0	89
CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	68.33 0.09 0.09 0.09	7.37 0.09 0.09	60.96 0.0	89
UNCONTROLLED UNCONTROLLED UNCONTROLLED	0.09	0.09		0
UNCONTROLLED UNCONTROLLED	0.09		חחו	
UNCONTROLLED				0
	4.76	0.09	0.0	0
UNCONTROLLED	4.76	4.76 4.76	0.0	0
UNCONTROLLED	0.07	0.07	0.0	0
				Ö
UNCONTROLLED	0.01	0.01		ō
UNCONTROLLED	0.06	0.06	0.0	0
CONDENSER @ AMBIENT	2.87	0.66	2.2	77
CONDENSER @ AMBIENT	2.87	0.66	2.2	77
DECORES TOTAL -	440.05		22.01	
PRODESS TOTAL	112.55			76
UNCONTROLLED	12.93	12.93	0.00	0
UNCONTROLLED	0.80	0.80	0.00	0
CONDENSER @ AMBIENT	48.86	6.24	42.62	87
				88
				88
				48
				93
				91
CONDENSER @ AMBIENT	70.16			90
CONDENSER @ AMBIENT		4.00	-4.00	
UNCRONTROLLED	1.04	1.04	0.00	Ó
UNCRONTROLLED	0.03	0.03	0.00	0
PROCESS TOTAL =	1302.99	354.56	948.4	72
CONDENSER @ 10 C	403.97	13 69	390.3	96
CONDENSER @ AMBIENT				79
CONDENSER @ AMBIENT	14.26	14.26	0.0	0
UNCONTROLLED	0.71	0.71	0.0	0
CONDENSER @ AMBIENT	2.61	1.37	1.2	47
UNCONTROLLED	2.49	2.49	0.0	0
				59
UNCONTROLLED	1.31	1.31	0.0	0 86
		0.74		
CONDENSER @ AMBIENT	5.25	0.71 3.65	4.5	
		0.71 3.65 3.86	24.0 0.0	86 0
	UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT PROCESS TOTAL = UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCRONTROLLED UNCRONTROLLED UNCRONTROLLED UNCRONTROLLED CONDENSER @ AMBIENT UNCRONTROLLED UNCRONTROLLED UNCRONTROLLED UNCRONTROLLED UNCRONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT	UNCONTROLLED 0.01 UNCONTROLLED 0.06 CONDENSER @ AMBIENT 2.87 CONDENSER @ AMBIENT 2.87 PROCESS TOTAL = 112.35 UNCONTROLLED 12.93 UNCONTROLLED 0.80 CONDENSER @ AMBIENT 67.66 CONDENSER @ AMBIENT 157.29 CONDENSER @ AMBIENT 157.29 CONDENSER @ AMBIENT 10.43 UNCONTROLLED 1.20 CONDENSER @ AMBIENT 10.43 CONDENSER @ AMBIENT 324.05 CONDENSER @ AMBIENT 324.05 CONDENSER @ AMBIENT 70.16 UNCONTROLLED 1.04 UNCRONTROLLED 1.06 UNCONTROLLED 1.07	UNCONTROLLED 0.01 0.01 0.01 UNCONTROLLED 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	UNCONTROLLED 0.01 0.01 0.01 0.00 UNCONTROLLED 0.06 0.06 0.06 0.06 0.00 0.00 0.00 0.0

PROCESS - SOLUTION POLY		* * * * * * * * * * * * * * * * * * * 			
EMISSION UNIT	EXISTING CONTROL DEVICE	UNCONTROLLED PTE TPY	CONTROLLED PTE TPY	EXISTING REDUCTION TPY	PERCENT VOC CONTROL
1 PREBLEND TNK	UNCONTROLLED	0.54	0.54	0.0	0.00
2 CATALYST MIX TNK	UNCONTROLLED	0.10	0.10	0.0	0.00
3 REACTOR CHARGE	UNCONTROLLED	0.20	0.20	0.0	0.00
4 REACTOR STRIP #1 AT 1 ATM	CONDENSER @ AMBIENT	2.42	0.53	1.9	78.10
5 REACTOR STRIP #1 AT VACUUM	CONDENSER @ AMBIENT	21.32	2.98	18.3	86.02
6 REACTOR STRIP #2 AT VACUUM	CONDENSER @ AMBIENT	2.17	0.30	1.9	86.18
7 POLY SOLUTION TNK 8 AUX RECEIVERS	UNCONTROLLED UNCONTROLLED	0.15	0.15 0.03	0.0	0.00
9 DOUBLE BELT FLAKER	ENCLOSED FLAKER	0.49	0.49	0.0	0.00
	PROCESS TOTAL =	27.41	5.31	22.1	80.6
ROCESS - SUSPENSION POLY					
1 N&S MONOMER MIX TNK	UNCONTROLLED	0.38	0.38	0.0	0.0
2 W MONOMER MIX TNK	UNCONTROLLED	0.31	0.31	0.0	0.00
3 NORTH REACTOR	CONDENSER @ AMBIENT	6.15	0.59	5.6	90.4
4 SOUTH REACTOR	CONDENSER @ AMBIENT	10.54	1.02	9.5	90.3
5 WEST REACTOR	CONDENSER @ AMBIENT	6.15	0.59	5.6	90.4
	PROCESS TOTAL =	23.53	2.89	20.6	87.7
ROCESS - BOILER HOUSE					
1 #5 BOILER	UNCONTROLLED	1.24	1.24	0.0	0.0
2 #1-2 BOILERS	UNCONTROLLED	1.45	1.45	0.0	0.0
3 #3-4 BOILERS	UNCONTROLLED	1.95	1.95	0.0	0.0
	PROCESS TOTAL =	4.64	4.64	0.0	0.0
ROCESS - WWTP	PROCESS TOTAL =	4.64	4.64	0.0	0.0
1 701 TNKS	UNCONTROLLED	16.7535	16.7535	0.0	0.0
1 701 TNKS 2 RSW SUMP	UNCONTROLLED UNCONTROLLED	16.7535 8.3765	16.7535 8.3765	0.0	0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF	UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599	16.7535 8.3765 7.599	0.0 0.0 0.0	0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143	16.7535 8.3765 7.599 0.143	0.0 0.0 0.0 0.0	0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049	16.7535 8.3765 7.599 0.143 1.049	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165	16.7535 8.3765 7.599 0.143 1.049 0.0165	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049	16.7535 8.3765 7.599 0.143 1.049	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS ROCESS - PILOT PLANT	UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED PROCESS TOTAL =	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS ROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET	UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS	UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS ROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING	UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING	UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 6.87 5.62	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS ROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING	UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 6.87 5.62 22.25	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA	UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 3.24 0.43 2.57 0.76 7.37	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY	UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 6.87 5.62 22.25	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY	UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07 0.05 2.17	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY 10 SMALL AUTOCLAVES	UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17	16.7535 8.3765 7.599 0.143 1.049 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY 10 SMALL AUTOCLAVES	UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07 0.05 2.17	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY 10 SMALL AUTOCLAVES	UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17 47.34	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 0.43 2.57 0.76 7.37 0.07 2.17 22.81	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY 10 SMALL AUTOCLAVES PROCESS - #3 LTC 1 VA-POWER FURNACE	UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 3.24 0.43 2.57 0.76 7.37 0.07 0.05 2.17	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 701 TNKS 2 RSW SUMP 3 DAF 4 BIO AERATION 5 ACID & FINAL SUMPS 6 BIO CLARIFIER 7 PRIMARY CLARIFIER 8 702 TNKS PROCESS - PILOT PLANT 1 BLDG EXHAUST 2 #1 VACUUM JET 3 #2 VACUUM JET 4 FEED TNKS 5 REACTOR VENTING 6 NEUTRALIZER VENTING 7 STRIPPING VENTING 8 FUNDA 9 THERMAL POLY 10 SMALL AUTOCLAVES PROCESS - #3 LTC 1 VA-POWER FURNACE 2 1ST STAGE VAC JETS	UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 44.27 2.91 3.24 3.24 3.24 0.43 6.87 5.62 22.25 0.55 0.05 2.17 47.34	16.7535 8.3765 7.599 0.143 1.049 0.0165 0.0025 10.327 44.27 2.91 3.24 0.43 2.57 0.76 7.37 0.07 2.17 22.81	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PROCESS - C5 POLY EMISSION UNIT	EXISTING CONTROL DEVICE	UNCONTROLLED PTE TPY	CONTROLLED PTE TPY	EXISTING REDUCTION TPY	PERCENT VOC CONTROL
1 HOT OIL HEATER	UNCONTROLLED	0.16	0.16	0.0	0.00%
2 SOLV FLUSH TNK	CONDENSER @ AMBIENT	45.59	0.94	44.7	97.94%
3 REACTOR, SOAKER, NEUTRALIZERS		0.00	0.00	0.0	
4 AND FILTRATE RECEIVER	CONDENSER @ -23 C	298.09	26.20	271.9	91.219
5 PRECOAT TNK	CONDENSER @ AMBIENT	4.99	0.21	4.8	95.79%
6 TOLUENE COLUMN	CONDENSER @ -23 C	0.12	0.003	0.1	97.50%
7 IRNX SOLN TNK & RECLAIM TNK	CONDENSER @ AMBIENT	29.70	0.84	28.9	97.17%
8 RSN KETTLE #8	CONDENSER @ AMBIENT	10.81	80.0	10.7	99.26%
9 RSN KETTLE #9	UNCONTROLLED	0.09	0.09	0.0	0.00%
10 RSN KETTLE #10	UNCONTROLLED	16.40	16.40	0.0	0.00%
11 FUME SCRUBBER	UNCONTROLLED	49.63	49.63	0.0	0.00%
	PROCESS TOTAL =	455.6	94.6	361.0	79.2%
PROCESS - LTC #1 & #2					
PROCESS - LTC #1 & #2		0.08	0.081	0.0	
1 #1 LTC CB FURNACE	UNCONTROLLED	0.08	0.08	0.0	0.00%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE	UNCONTROLLED UNCONTROLLED	0.11	0.11	0.0	0.00%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT	0.11 224.56	0.11 19.25	0.0 205.3	0.00% 0.00% 91.43%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT	0.11 224.56 7.73	0.11 19.25 4.07	0.0 205.3 3.7	0.00% 0.00% 91.43% 47.35%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT	0.11 224.56 7.73 7.73	0.11 19.25 4.07 4.07	0.0 205.3 3.7 3.7	0.00% 0.00% 91.43% 47.35% 47.35%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT	0.11 224.56 7.73 7.73 5.36	0.11 19.25 4.07 4.07 2.82	0.0 205.3 3.7 3.7 2.5	0.00% 0.00% 91.43% 47.35% 47.35%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED	0.11 224.56 7.73 7.73 5.36 0.77	0.11 19.25 4.07 4.07 2.82 0.77	0.0 205.3 3.7 3.7 2.5 0.0	0.00% 0.00% 91.43% 47.35% 47.35% 47.39% 0.00%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6 8 RK-7	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED	0.11 224.56 7.73 7.73 5.36 0.77 0.77	0.11 19.25 4.07 4.07 2.82 0.77 0.77	0.0 205.3 3.7 3.7 2.5 0.0	0.00% 0.00% 91.43% 47.35% 47.35% 47.39% 0.00%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6 8 RK-7 9 #2 FLASHER FEED	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT	0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56	0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25	0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3	0.00% 0.00% 91.43% 47.35% 47.35% 47.39% 0.00% 0.00% 91.43%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6 8 RK-7 9 #2 FLASHER FEED 10 DRUMMING STATION	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED	0.11 224.56 7.73 7.73 5.36 0.77 0.77	0.11 19.25 4.07 4.07 2.82 0.77 0.77	0.0 205.3 3.7 3.7 2.5 0.0	0.00% 0.00% 91.43% 47.35% 47.35% 0.00% 0.00% 91.43%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6 8 RK-7	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED	0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56	0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25	0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3	0.00% 0.00% 91.43% 47.35% 47.35% 47.39% 0.00% 0.00% 91.43% 0.00% 25.00%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6 8 RK-7 9 #2 FLASHER FEED 0 DRUMMING STATION 1 FUME SCRUBBER	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED	0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56 0.01 4.76	0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01 3.57	0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3 0.0 1.2	0.00% 0.00% 91.43% 47.35% 47.35% 47.39% 0.00% 0.00% 91.43% 0.00% 25.00%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6 8 RK-7 9 #2 FLASHER FEED 10 DRUMMING STATION	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT PROCESS TOTAL =	0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56 0.01 4.76	0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01 3.57	0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3 0.0 1.2 421.7	0.00% 91.43% 47.35% 47.35% 47.39% 0.00% 91.43% 0.00% 25.00% 88.50%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6 8 RK-7 9 #2 FLASHER FEED 10 DRUMMING STATION 11 FUME SCRUBBER	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT PROCESS TOTAL =	0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56 0.01 4.76 476.44	0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01 3.57 54.77	0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3 0.0 1.2 421.7	0.00% 0.00% 91.43% 47.35% 47.35% 47.39% 0.00% 91.43% 0.00% 25.00% 88.50% 65.69% 66.74%
1 #1 LTC CB FURNACE 2 #2 LTC VAPWR FURNACE 3 #1 FLASHER FEED 4 #1 LTC FLASHER/ACCUMULATOR 5 #2 LTC FLASHER/ACCUMULATOR 6 RK-5 7 RK-6 8 RK-7 9 #2 FLASHER FEED 10 DRUMMING STATION 11 FUME SCRUBBER PROCESS - C POLY 1 #1 REACTOR	UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT CONDENSER @ AMBIENT UNCONTROLLED UNCONTROLLED CONDENSER @ AMBIENT UNCONTROLLED CONDENSER @ AMBIENT PROCESS TOTAL =	0.11 224.56 7.73 7.73 5.36 0.77 0.77 224.56 0.01 4.76	0.11 19.25 4.07 4.07 2.82 0.77 0.77 19.25 0.01 3.57	0.0 205.3 3.7 3.7 2.5 0.0 0.0 205.3 0.0 1.2 421.7	0.00% 91.43% 47.35% 47.35% 47.39% 0.00% 91.43% 0.00% 25.00% 88.50%

APPENDIX B

TANK DATA

VOC POTENTIAL TO EMIT FOR ALL VOLATILE ORGANIC STORAGE TANKS NOT REGULATED BY ARTICLE XXI, SECTION 2105.02, "VOLATILE ORGANIC COMPOUND STORAGE TANKS."

	TANK	EXISTING	CAPACITY	PTE
	DESIG.	VOC CONTROLS	GAL	TPY
1	2		169194	7.57
2	4		88122	11.12
3	5		88122	5.51
4	7		110152	5.59
5	8		169194	8.45
6	9		110152	13.00
7	10	and the second	110152	13.23
8	11		169194	4.38
9	12		110152	4.15
10	13		110152	6.80
11	14		110152	9.89
12	15		110152	9.89
13	16	, And the state of	110152	10.28
14	17	11.10.10.10.1	110152	5.59
15	18		110152	4.17
16	19	Laborate Control Fol	169194	6.52
17	20		169194	6.14
18	21		24936	5.71
19	22		15862	4.44
20	23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15862	4.42
21	24		15862	5.73
22	25		15862	6.59
23	30		22669	4.30
24	31		22669	3.34
25	34		169194	20.09
26	35		169194	20.09
27	40		24880	13.87
28	41		24880	13.87
29	50		268037	23.84
30	51		268037	23.84
31	52		268037	23.84
32	53		528730	28.26
33	57		1909	0.43
34	58		1909	0.43
35	59		1909	0.28
36	60		24880	7.07
37	61		24880	7.07
38	62		3196	0.55

39	63	11885	1.10
40	65	8565	3.30
41	66	75197	8.92
42	67	75197	7.52
43	68	75197	14.13
44	69	75197	14.13
45	71	75197	16.65
46	72	75197	11.41
47	73	75197	7.52
48	74	75197	6.47 7.52
49 50	75 76	75197 75197	7.52
51	77	75197	6.47
52	78	169194	17.97
53	80	11982	0.01
54	81	24880	0.01
55	82	24880	< 0.0
56	83	25379	4.77
57	100	7896	1.88
58	101	7896	2.78
59	103	1500	0.53
60	106	12032	1.47
61	120	19413	0.01
62	121	19413	0.01
63	122	19413 19413	0.01 0.01
64 65	123 125	19413	4.16
66	126	12690	3.76
67	150	1503943	48.88
68	151	1503943	49.47
69	160	158619	5.69
70	161	158619	2.40
71	162	158619	5.96
72	206	25379	5.00
73	207	25379	5.00
74	208	25379	4.34
75	212	6016 30455	2.58
76	250	30455	1.15
77 78	251 252	30455	1.15
79	253	20726	5.43
80	254	15274	1.36
81	255	14981	0.01
82	256	9987	0.01
83	257	15274	1.36
84	258	10152	0.98
85	259	11280	4.78
86	260	20079	0.60
87	262	20079	6.30
88	263	20726	5.33
89	301	75197 75197	5.96
90	302	75197	5.96 5.96
91 92	303 360	15274	1.23
92	361	20079	1.23
94	362	15274	4.12
95	368	2632	0.91
96	369	25379	0.9
97	500	100000	0.10
98	501	62420	7.27

100		===	00400	7.07
101 504 61000 2.40 102 505 9400 1.59 103 506 9400 1.59 104 1000 16919 2.53 105 1001 16919 2.51 106 1002 16919 2.51 107 1003 11750 2.77 108 1004 16919 1.86 109 1005 16919 1.86 110 1201 4018 1.48 111 1202 4018 1.48 112 2.3-B 12043 2.74 113 3-3 9517 3.28 114 3.2-B 24880 3.62 115 4.3-A 24880 0.12 116 4.3-B 24880 0.12 117 6-3 11885 3.19 118 8-1-C 3008 2.79 120 8-1-E 3008 2.79 121 FO-2 88122 4.23 122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.91 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 133 R-1-A 67361 3.83 133 R-1-D 67361 3.83 133 R-1-A 67361 4.72	99	502	62420	7.27
102 505 9400 1.59 103 506 9400 1.59 104 1000 16919 2.53 105 1001 16919 2.51 106 1002 16919 2.51 107 1003 11750 2.77 108 1004 16919 1.86 109 1005 16919 1.88 110 1201 4018 1.48 111 1202 4018 1.48 111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 <0.01				
103 506 9400 1.59 104 1000 16919 2.53 105 1001 16919 2.51 106 1002 16919 2.51 107 1003 11750 2.77 108 1004 16919 1.86 109 1005 16919 1.88 110 1201 4018 1.48 111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 0.01 117 6-3 11885 3.19 118 8-1-C 3008 2.79 119 8-1-D 3008 2.79 120 8-1-E 3008 2.79 121 FO-2 88122 4.23				
104 1000 16919 2.53 105 1001 16919 2.51 106 1002 16919 2.51 107 1003 11750 2.77 108 1004 16919 1.86 109 1005 16919 1.88 110 1201 4018 1.48 111 1202 4018 1.48 111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 <0.01				
105 1001 16919 2.51 106 1002 16919 2.51 107 1003 11750 2.77 108 1004 16919 1.86 109 1005 16919 1.88 110 1201 4018 1.48 111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 0.12 116 4-3-B 24880 0.01 117 6-3 11885 3.19 118 8-1-C 3008 2.79 119 8-1-D 3008 2.79 120 8-1-E 3008 2.79 121 FO-2 88122 4.23 122 FO-3 88122 4.23				
106 1002 16919 2.51 107 1003 11750 2.77 108 1004 16919 1.86 109 1005 16919 1.88 110 1201 4018 1.48 111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 0.12 117 6-3 11885 3.19 118 8-1-C 3008 2.79 119 8-1-D 3008 2.79 120 8-1-E 3008 2.79 121 FO-2 88122 4.23 122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.91 125 PD-2-1-B 14981 3.91				
107 1003 11750 2.77 108 1004 16919 1.86 109 1005 16919 1.88 110 1201 4018 1.48 111 1202 4018 1.48 112 2.3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 <0.01		ì		
108 1004 16919 1.86 109 1005 16919 1.88 110 1201 4018 1.48 111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 < 0.01	106	1002	I	
109 1005 16919 1.88 110 1201 4018 1.48 111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 < 0.01	107			
110 1201 4018 1.48 111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 < 0.01	108			
111 1202 4018 1.48 112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 < 0.01	109	1005		
112 2-3-B 12043 2.74 113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 < 0.01	110	1201		
113 3-3 9517 3.28 114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 < 0.01	111	1202		1.48
114 3-2-B 24880 3.62 115 4-3-A 24880 0.12 116 4-3-B 24880 < 0.01	112	2-3-B	12043	
115 4-3-A 24880 0.12 116 4-3-B 24880 < 0.01	113	3-3	9517	
116 4-3-B 24880 < 0.01	114	3-2-B	24880	3.62
117 6-3 11885 3.19 118 8-1-C 3008 2.79 119 8-1-D 3008 2.79 120 8-1-E 3008 2.79 121 FO-2 88122 4.23 122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.41 124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	115	4-3-A	24880	0.12
118 8-1-C 3008 2.79 119 8-1-D 3008 2.79 120 8-1-E 3008 2.79 121 FO-2 88122 4.23 122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.41 124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 130 R-100-B 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	116	4-3-B	24880	< 0.01
118 8-1-C 3008 2.79 119 8-1-D 3008 2.79 120 8-1-E 3008 2.79 121 FO-2 88122 4.23 122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.41 124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	117	6-3	11885	3.19
120 8-1-E 3008 2.79 121 FO-2 88122 4.23 122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.41 124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	118			2.79
121 FO-2 88122 4.23 122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.41 124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	119	8-1-D	3008	2.79
122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.41 124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	120	8-1-E	3008	2.79
122 FO-3 88122 4.23 123 PD-1-1-A 14981 3.41 124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	121	FO-2	88122	4.23
123 PD-1-1-A 14981 3.41 124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72		FO-3	88122	4.23
124 PD-1-1-B 14981 0.51 125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	123	PD-1-1-A	14981	3.41
125 PD-2-1-A 14981 3.91 126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72		PD-1-1-B	14981	0.51
126 PD-2-1-B 14981 3.91 127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72		PD-2-1-A	14981	3.91
127 PD9-3 6054 3.69 128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72				3.91
128 R-100-A 67361 3.83 129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72			MANUTE	3.69
129 R-100-B 67361 3.83 130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72				
130 R-100-C 67361 3.83 131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72			The state of the s	
131 R-100-D 67361 3.83 132 R-100-E 67361 3.83 133 R-1-A 67361 4.72	4			
132 R-100-E 67361 3.83 133 R-1-A 67361 4.72				3.83
133 R-1-A 67361 4.72	<u></u> L		67361	3.83
				4.72
	134	R-1-B	67361	4.38

TOTAL TPY = 798.17

APPENDIX C

ECONOMIC ANALYSIS

COST ANALYSIS FOR VOC CONTROLS FOR THE BOILER HOUSE: AND WATER COOLED CONDENSERS FOR UNCONTROLLED PROCESS UNITS:

Assumptions:

1. Capital investment = \$0.0 2. Utility costs = \$0.0 3. Process costs = \$0.0 4. Labor & maint. costs = \$24/Hr. 5. Operating hours = 8,760/Yr.

Using cost factors from U.S. EPA's OAQPS cost manual, the following is a cost analysis based on labor and maintenance costs only:

Direct annual costs

Operating labor	\$13,140
Supervisor	\$1,971
Maintenance labor	\$14,454
Material	\$14,454
Consumables replacement	\$0.0
Utilities	\$0.0
Waste disposal	\$0.0

Indirect annual costs

Overhead	\$26,411
Administration	\$0.0
Property taxes/insurance	\$0.0
Capital recovery	\$0.0
Total annual costs =	\$70,430

VOC emissions reduction @ 100% control = 5 TPY Cost effectiveness = \$14,086/ton VOC removed

The potential uncomtrolled VOC emissions from the processes with the exception of the waste water treatment plant rang from 0.25 TPY to 12.5 TPY. At these levels no controls are econamically feasible.

VOC emissions reduction @ 100% control = 12.5 Cost effectiveness = &5,630/ton VOC removed

V-8 UNIT

1995年,4月月日至1915年(5

PURCHASED EQUI EC	PMENT COST CONDENSERS (11) AND AUXILLAI REFRIGERATION UNIT	RY EQUIPMENT	\$203,500 \$65,000
1.08 EC	PURCHASED EQUIPM	ENT COST TOTAL ,PEC	\$219,801
;			
(3 FOR SMALLER P	AL INVESTMENT IS 3 - 4 TIMES THE ECROJECTS WITHOUT MUCH INSTRUME	ENTATION)	
TOTAL CAPITAL IN			\$879,202
ANNUAL COSTS			
Annual costs consist	of direct and indirect annual costs minus	recovery credits.	
DIRECT ANNUAL C	COSTS, DC	·	
	OPERATING LABOR		40.040
	0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232
	MAINTANENCE		#0.004
	0.5 hr/shift 100% maint labor	\$16.50	\$9,034 \$9,034
	UTILITIES ELECTRICITY	\$0.07 kW/hr	\$10,424
TOTAL DIRECT AN	NUAL COSTS, DC		\$37,93 6
INDIRECT ANNUAL	. COSTS, IC		
	OVERHEAD (60% total labor & main	nt	\$16,507
0.01 TCI	materials cost) PROPERTY TAX		\$8,792
0.01 TCI	INSURANCE		\$8,792
0.1315 TCI	ADMINISTRATIVE & CAPITAL REC	COVERY TAX	\$ 115,615
THIS U	NIT WILL BE SHUT DOWN AFTER THIS	S YEAR.	
TOTAL INDIRECT	ANNUAL COSTS, IC		\$149,706
RECOVERY CRED	TS		
	RECOVERED VOC (quantity recov	ered X op hrs)	. \$0
TOTAL ANNUAL C	OST (DC + IC - RC)		\$187,64 3
			,
SUMMARY	WLVD VP UNCON @6C CON	L	
MAX POT	23.7 112.3 17.7	,	
FOR A REDUCTIO		6 TPY MAX POTEN	TIAL
	F REDUCTION - MAX POTENTIAL	\$ 31,275	

HYDRO UNIT

PURCHASED EQUIL	PMENT COST CONDENSERS (8) AND AUXIL REFRIGERATION UNIT	LARY EQUIPMENT	\$148,000 \$65,000	
1.08 EC	PURCHASED EQUIPMENT COST TOTAL, PEC			
(3 FOR SMALLER P	AL INVESTMENT IS 3 - 4 TIMES TH ROJECTS WITHOUT MUCH INSTR	E EQUIPMENT COSTS UMENTATION)		
TOTAL CAPITAL IN	VESTMENT (TCI)		\$639,442	
ANNUAL COSTS				
Annual costs consist	of direct and indirect annual costs m	inus recovery credits.		
DIRECT ANNUAL C	OSTS, DC			
	OPERATING LABOR 0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232	
	MAINTANENCE 0.5 hr/shift 100% maint labor	\$16.50	\$9,034 \$9,034	
	UTILITIES ELECTRICITY	\$0.07 kW/hr	\$10,424	
TOTAL DIRECT AN	NUAL COSTS, DC		\$37,936	
INDIRECT ANNUAL	. COSTS, IC			
	OVERHEAD (60% total labor & materials cost)	maint	\$16,507	
0.01 TCI	PROPERTY TAX		\$6,394	
0.01 TCI	INSURANCE		\$6,394	
1.1 TCI	CRF = ADMINISTRATIVE & CA		\$703,386	
	$CRF = (i(1+i)^n) / ((1+i)^n)$	-1)	6722.692	
	ANNUAL COSTS, IC		\$ 732,682	
RECOVERY CRED		······································	\$0	
	RECOVERED VOC (quantity r			
TOTAL ANNUAL C	OST (DC + IC - RC)		\$770,619	
SUMMARY	CURRENT UNCON @6C	CON		
MAX PTE	355 1,303 10	08 .		
FOR A REDUCTIO		247. TPY MAX POTEN	TIAL	
COST PER TON O	F REDUCTION - MAX POTENTIAL	ė 2 120		

RACT COST ANALYSIS

Esta Longo Colono

WW POLY

PURCHASED EQUIP	MENT COST CONDENSERS (4) AND AUXILLA REFRIGERATION UNIT IS TO BE	RY EQUIPMENT SHARED WITH WW TANKS	\$74,000
1,08 EC	PURCHASED EQUIP	MENT COST TOTAL ,PEC	\$79,941
3 FOR SMALLER PE	L INVESTMENT IS 3 - 4 TIMES THE E ROJECTS WITHOUT MUCH INSTRUM	MENTATION)	9= ===
TOTAL CAPITAL INV			\$319,762 ==========
ANNUAL COSTS			
Annual costs consist	of direct and indirect annual costs minu	us recovery credits.	
DIRECT ANNUAL CO	OSTS, DC		
	OPERATING LABOR 0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232
	MAINTANENCE 0.5 hr/shift 100% maint labor	\$16.50	\$9,034 \$9,034
	UTILITIES ELECTRICITY	\$0.07 kW/hr	\$10,424
TOTAL DIRECT ANI	NUAL COSTS, DC		\$37,936
INDIRECT ANNUAL	COSTS, IC		
	OVERHEAD (60% total labor & materials cost)	aint	\$16,507
0.01 TCI	PROPERTY TAX		\$3,198
0.01 TCI	INSURANCE		\$3,198
0.1315 TCI	ADMINISTRATIVE & CAPITAL R	ECOVERY TAX	\$42,049
TOTAL INDIRECT A	NNUAL COSTS, IC		\$ 64,951
RECOVERY CRED	ITS .		
	RECOVERED VOC (quantity reco	overed X op hrs)	\$0
	DST (DC + IC - RC)		\$102,887
SUMMARY.	WHYD VP UNCON @6C CO	DN_	
MAX POT	94 706.8 60	1. Kee	
FOR A REDUCTION	N OF	34 TPY MAX POTENT	IAL
	F REDUCTION - MAX POTENTIAL	\$ 3,030	

HSI - SUSPENSION & SOLUTION POLY

REFRIGERATED CONDENSERS

PURCHASED EQUIPMENT COST CONDENSERS (11) AND AUXILLARY EQUIPMENT REFRIGERATION UNIT \$65,000 1.08 EC PURCHASED EQUIPMENT COST TOTAL ,PEC \$219,801 THE TOTAL CAPITAL INVESTMENT IS 3 - 4 TIMES THE EQUIPMENT COSTS

AECEWED \$203,500

.IAN 09 1996

ALLEY,

\$37,936

WITH DEPT lateration or one countity Engineering Section

(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION)

TOTAL CAPITAL INVESTMENT (TCI) \$879,202

ANNUAL COSTS

Annual costs consist of direct and indirect annual costs minus recovery credits.

DIRECT ANNUAL COSTS, DC

OPERATING LABOR 0.5 hr/shift \$15.00 \$8,213 \$1,232 0.15operator MAINTANENCE \$9 034 0.5 hr/shift \$16.50 100% maint labor \$9,034 UTILITIES **ELECTRICITY** \$0.07 kW/hr \$10,424

INDIRECT ANNUAL COSTS, IC

TOTAL DIRECT ANNUAL COSTS, DC

OVERHEAD (60% total labor & maint \$16,507 materials cost) PROPERTY TAX 0.01 TCI \$8,792 \$8,792 INSURANCE 0.01 TCI ADMINISTRATIVE & CAPITAL RECOVERY TAX \$115,615 0.1315 TCI

THIS UNIT WILL BE SHUT DOWN AFTER THIS YEAR.

\$149,706 TOTAL INDIRECT ANNUAL COSTS, IC

RECOVERY CREDITS

RECOVERED VOC (quantity recovered X op hrs) \$0

\$187,643 TOTAL ANNUAL COST (DC + IC - RC)

SUSPENSION & SOLUTION POLY EMISSIONS SUMMARY 1994 AND MAX

SUSPENSION SUMM ACTUAL UNCON @6C CON

23.5 0.6 MAX POT 2.9

USING XYLENE AS SOLVENT:

USING TOLUENE AS SOLVENT:

SOLUTION SUMM ACTUAL UNCON @6C COND

MAX POT

FOR A REDUCTION OF **5.8 TPY MAX POTENTIAL COST PER TON OF REDUCTION - MAX POTENTIAL**

SOLUTION SUMM ACTUAL UNCON @6C COND

MAX POT 9.0 45.6 2.3

FOR A REDUCTION OF 9.0 TPY MAX POTENTIAL

COST PER TON OF REDUCTION - MAX POTENTIAL \$20,849

, LTC3 UNIT

KLIKIGLIVATI	LD CON	DLINGE	<u> </u>			
PURCHASED EQUIPM EC			O AUXILLARY	'EQUIPME	NT	\$92,500 \$65,000
1.08 EC		PURCHAS	ED EQUIPME	ENT COST	TOTAL ,PEC	\$99,921
THE TOTAL CAPITAL I		OUT MUCH	INSTRUME	NTATION)	costs	
TOTAL CAPITAL INVES	STMENT (TCI)				\$399,682
ANNUAL COSTS						
Annual costs consist of	direct and ind	irect annua	l costs minus	recovery ci	redits.	
DIRECT ANNUAL COS	TS, DC					
	OPERATING 0.5 hr/shift 0.15operator			\$15.00	·	\$8,213 \$1,232
	MAINTANEN 0.5 hr/shift 100% maint			\$16.50		\$9,034 \$9,034
	UTILITIES ELECTRICIT	Υ		\$0.07	kW/hr	\$10,424
TOTAL DIRECT ANNUA	AL COSTS, D	С				\$37,936
INDIRECT ANNUAL CO	STS, IC					
			labor & maint			\$16,507
0.01 TCI	PROPERTY	materials co TAX	osij			\$3,997
0.01 TCI	INSURANCE	:				\$3,997
0.1315 TCI	ADMINISTR	ATIVE & CA	APITAL RECO	VERY TAX	ζ	\$52,558
THIS UNIT	WILL BE SHU	JT DOWN A	AFTER THIS	YEAR.		
TOTAL INDIRECT ANN	UAL COSTS,	IC				\$77,059
RECOVERY CREDITS						
	RECOVERE	D VOC (qua	antity recover	ed X op hrs)	\$0
TOTAL ANNUAL COST		RC)				\$114,995
LTC 3 UNIT EMISSIO						
SUMMARY	WLVD VP	UNCON	@6C CON			
MAX POT	24.6	122.1	3.1			
FOR A REDUCTION OF					TPY MAX POTENTIAL	
COST PER TON OF RE	DUCTION - N	MAX POTE	NTIAL			\$5,358

ECONOMIC ANALYSIS FOR THE INSTALLATION OF A REFRIGERATED CONDENSER SYSTEM ON THE PILOT PLANT:

See the economic analysis for the #3 LTC Finishing Unit. This unit would require the same controls but has a lower VOC potential to emit than the LTC Unit making this option cost prohibitive.

LTC 1 & 2 REFRIGERATED CONDENSERS

PURCHASED EQUI	PMENT COST CONDENSERS (6) AND AU REFRIGERATION UNIT	IXILLARY EQUIPMENT	\$111,000 \$65,000
1.08 EC	PURCHASED E	EQUIPMENT COST TOTAL ,PEC	\$119,901
(3 FOR SMALLER P	AL INVESTMENT IS 3 - 4 TIMES PROJECTS WITHOUT MUCH IN		
TOTAL CAPITAL IN	VESTMENT (TCI)		\$479,602
ANNUAL COSTS			
	t of direct and indirect annual co	sts minus recovery credits.	
DIRECT ANNUAL C		·	
	OPERATING LABOR		
	0.5 hr/shift 0.15operator	\$15.00	\$8,213 \$1,232
	MAINTANENCE		
	0.5 hr/shift 100% maint labor	\$16.50	\$9,034 \$9,034
	UTILITIES ELECTRICITY	\$0.07 kW/hr	\$10,424
TOTAL DIRECT AN	NUAL COSTS, DC		\$37,936
INDIRECT ANNUAL	. COSTS, IC		
	OVERHEAD (60% total labo	or & maint	\$16,507
0.01 TCI	materials cost) PROPERTY TAX		\$4,796
0.01 TCI	INSURANCE		\$4,796
0.1315 TCI	ADMINISTRATIVE & CAPIT	AL RECOVERY TAX	\$63,068
TOTAL INDIRECT A	ANNUAL COSTS, IC		\$89,167
RECOVERY CREDI	TS		¢.
	RECOVERED VOC (quantit	y recovered X op hrs)	\$0
TOTAL ANNUAL CO	=== ==================================	=======================================	==== ====== \$127,103
LTC 1 & 2 UNIT EN	MISSIONS SUMMARY 1994 AN	===== ===== ==== ===== ===== ID MAX	
SUMMARY	WHVD VP UNCON @6	C CON	
MAX POT	54.8 476.5	25.4	
FOR A REDUCTION	I OF	29.4 TPY MAX POTEN	ΓIAL
COST PER TON OF	REDUCTION - MAX POTENTI		\$4,330

C-POLY UNIT REFRIGERATED CONDENSERS

ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC \$37 INDIRECT ANNUAL COSTS, IC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX \$5 0.01 TCI INSURANCE \$5 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX \$68 CRF = (i (1 + i)^n) / (i (1 + i)^n - 1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC \$95 RECOVERY CREDITS RECOVERED VOC (quantity recovered X op hrs) TOTAL ANNUAL COST (DC + IC - RC) \$133 CPOLY EMISSIONS SUMMARY 1994 AND MAX SUMMARY WLYD VP UNCON \$66C CON. ACTUAL 1.4 3.9 0.2 MAX POT 32.8 98.2 8.0 FOR A REDUCTION OF REDUCTION \$111.	\$5,375
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520 ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$11.00 \$9 100% maint labor \$9 100% maint labor \$9 11LITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC INDIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) \$5 0.01 TCI INSURANCE \$5 0.01 TCI INSURANCE \$5 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX \$68. CRF = (((1+i)*n)/((1+i)*n-1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC \$95 RECOVERED VOC (quantity recovered X op hrs) TOTAL ANNUAL COST (DC + IC - RC) \$133. CPOLY EMISSIONS SUMMARY 1994 AND MAX SUMMARY WLYD VP UNCON \$66C CON. ACTUAL 1.4 3.9 0.2 MAX POT 32.8 98.2 8.0 FOR A REDUCTION OF 1.2 TPY 44.8 TPY MAX POTENTIAL	======
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520 ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC S37 INDIRECT ANNUAL COSTS, IC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX \$5 0.01 TCI INSURANCE \$5 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX \$68 CRF = (i (1 + i)^n) / ((1 + i)^n - 1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC \$95 RECOVERED VOC (quantity recovered X op hrs) TOTAL ANNUAL COST (DC + IC - RC) \$133 CPOLY EMISSIONS SUMMARY 1994 AND MAX SUMMARY WLVD VP UNCON &6C CON ACTUAL 1.4 3.9 0.2 MAX POT 32.8 98.2 8.0	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) ***TOTAL CAPITAL INVESTMENT (TCI)** ***ANNUAL COSTS** Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX \$5 0.01 TCI INSURANCE \$5 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX \$68 CRF = (1 (1 + i)^n) / ((1 + i)^n - 1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC \$95 RECOVERED VOC (quantity recovered X op hrs) ***TOTAL ANNUAL COST (DC + IC - RC) \$133 C POLY EMISSIONS SUMMARY 1994 AND MAX SUMMARY WLYD VP UNCON @6C CON	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hir/shift 0.15operator 0.5 hir/shift \$16.50 \$9 100% maint labor 99 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX 0.01 TCI INSURANCE 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX CRF = (i (1 + i)^n) / ((1 + i)^n - 1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC \$95. RECOVERED VOC (quantity recovered X op hrs) TOTAL ANNUAL COST (DC + IC - RC) \$133. CPOLY EMISSIONS SUMMARY 1994 AND MAX	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hir/shift 0.15operator 0.5 hir/shift \$16.50 \$9 100% maint labor 99 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX 0.01 TCI INSURANCE 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX CRF = (i (1 + i)^n) / ((1 + i)^n - 1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC \$95. RECOVERED VOC (quantity recovered X op hrs) TOTAL ANNUAL COST (DC + IC - RC) \$133. CPOLY EMISSIONS SUMMARY 1994 AND MAX	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift 0.15 operator MAINTANENCE 0.5 hr/shift 100% maint labor UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX \$5, 0.01 TCI INSURANCE \$5, 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX \$68, CRF = (i (1 + i)^n) / ((1 + i)^n - 1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC \$95, RECOVERED VOC (quantity recovered X op hrs)	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift 0.15operator MAINTANENCE 0.5 hr/shift 100% maint labor UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX \$5 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX \$68 CRF = (i (1 + i)^n) / ((1 + i)^n - 1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC RECOVERED VOC (quantity recovered X op hrs)	\$133,295 ======
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520 ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC INDIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX \$5 0.01 TCI INSURANCE 0.131474 TCI CRF = ADMINISTRATIVE & CAPITAL RECOVERY TAX CRF = (i (1 + i)^n) / ((1 + i)^n - 1) i = 10% n = 15 YRS TOTAL INDIRECT ANNUAL COSTS, IC \$95 RECOVERY CREDITS	•
3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION	\$0
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS ANNUAL COSTS OPERATING LABOR 0.5 hr/shift 0.15operator MAINTANENCE 0.5 hr/shift 100% maint labor UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX CRF = (i (1 + i)^n) / ((1 + i)^n - 1) i = 10% n = 15 YRS	\$95,358
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15 operator \$1 MAINTANIENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX \$5.00	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost) 0.01 TCI PROPERTY TAX	\$68,440
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520 ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15 operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC OVERHEAD (60% total labor & maint materials cost)	\$5,206
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520 ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15 operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC \$37 INDIRECT ANNUAL COSTS, IC	\$5,206
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10 TOTAL DIRECT ANNUAL COSTS, DC	\$16,507
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES ELECTRICITY \$0.07 kW/hr \$10	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9 100% maint labor \$9 UTILITIES	\$37,936
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520 ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8 0.15operator \$1 MAINTANENCE 0.5 hr/shift \$16.50 \$9	\$10,424
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520 ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits. DIRECT ANNUAL COSTS, DC OPERATING LABOR 0.5 hr/shift \$15.00 \$8	\$9,034 \$9,034
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS Annual costs consist of direct and indirect annual costs minus recovery credits.	\$8,213 \$1,232
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) ANNUAL COSTS S\$20	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION) TOTAL CAPITAL INVESTMENT (TCI) \$520	
(3 FOR SMALLER PROJECTS WITHOUT MUCH INSTRUMENTATION)	\$520,560
1.08 EC PURCHASED EQUIPMENT COST TOTAL ,PEC \$130	\$130,140
	\$55,500 \$65,000

.C-5 UNIT

THERMAL OXIDIZER

DIRECT COSTS	DOLLARS		
PURCHASED EQ	JIPMENT COSTS		
EC	EQUIPMENT COSTS - THERMA AUXILLARY - DUCTWORK	L OXIDIZER (3)	\$145,000 \$100,000
A	SUM		\$245,000
0.03A 0.05A	SALES TAX FREIGHT		\$7,350 \$12,250
В	PURCHASED EQUIP	PMENT COSTS TOTAL	\$264,600
(3 FOR SMALLER	TAL INVESTMENT IS 3 - 4 TIMES PROJECTS WITHOUT MUCH INS		
TOTAL CAPITAL I	NVESTMENT (TCI)		\$1,058,400
ANNUAL COSTS		*** ******** =====*** ********	
DIRECT ANNUAL	COSTS DC	RATE/HR	
OPERATING LABO	OPERATOR	\$15.00	\$8,213 \$1,222
0.15operator MAINTANENCE 0.5 hr/shift 100% maint labor	SUPERVISOR LABOR MATERIAL	\$16.50	\$1,232 \$9,034 \$9,034
UTILITIES	NATURAL GAS ELECTRICITY	\$6.00 MMbtu/hr \$0.07 kW/hr	\$319,160 \$10,424
	TOTAL DIRECT COS	STS	\$357,096
INDIRECT ANNUA	AL COSTS IC		
60% op,super,mai			\$16,507
2% TCI 1% TCI 1% TCI 0.1628 TCI	ADMINISTRATIVE CHARGES PROPERTY TAXES INSURANCE CAPITAL RECOVERY (10 YEAR	LICE & 40% INTEDEST	\$21,168 \$10,584 \$10,584 \$172,308
0.1020 101	TOTAL INDIRECT COSTS	Ell Ed 10% INTERESTY	\$231,151
TOTAL ANNUAL O			\$588.247
			V
C-5 UNIT EMISSIO	ons = 62.1 TPYY	July 1988	
100% of			
the	e VOC point sources goes to the Th	ermal oxidizer	
TO THERMAL OX	- 02 • i II I		
AT 99% DESTRUC	CTION, THE EMISSIONS WOULD I	BE = 0.166 TPY	
FOR A REDUCTION	ON OF 56.1 TPY		
COST PER TON C	= =====================================	'\$\$ 10,4	

WWTP

COVER THE 2 SUMPS AND THE DAF TANK AND CALCULATE THE EMISSIONS AS A FIXED ROOF TANK USING AP-42 FORTH EDITION 10/92

ADD	REFRIGFERATION UNIT, I	BLOWER,
AND	COVERS TO ACID & FINAL	CIMAD

AND COVERS TO ACID & FINAL S				
		FTER 6C OND		
701 A & B RAW SUMP	5655 3246	2405 1365		
ACID & FINAL SUMP	3248	26		
DAF TANK BIO AERATION TANK	15198 286	247 286		
PRIMARY CLARIFIER	5	5		
SECONDARY CLARIFIER 702 A & B & C	33 20654	33 20654		
TOTAL	48325 24.2	25021 12.5		
REDUCTION		11.7 TPY	,	
DUDOUAGED COURTS COOT				
PURCHASED EQUIPMENT COST EC	3 TANK ROOF	FS		\$60,000
	REFRIGERAT			\$65,000
1.08 EC			QUIPMENT COST TOTAL ,PEC	\$135,000 ======
TOTAL CAPITAL INVESTMENT (TO				\$540,000
ANNUAL COSTS				
Annual costs consist of direct and in				
DIRECT ANNUAL COSTS, DC				
	OPERATING	LABOR		
	0.5 hr/shift 0.15operator		\$15.00	\$8,213 \$1,232
	MAINTANENO 0.5 hr/shift 100% maint la		\$16 .50	\$9,034 \$ 9,034
	UTILITIES ELECTRICITY	(\$0.07 kW/hr	\$10,424
TOTAL DIRECT ANNUAL COSTS,	DC			\$37,936
INDIRECT ANNUAL COSTS, IC				
	OVERHEAD (60% total labo	r & maint	\$16 ,507
0.01 TCI	PROPERTY T	aterials cost) AX		\$5,400
0.01 TCI	INSURANCE			\$5,400
0.1315 TCI	ADMINISTRA'	TIVE & CAPIT	AL RECOVERY TAX	\$71,010
TOTAL INDIRECT ANNUAL COSTS	3, IC			\$98,317
RECOVERY CREDITS				
	RECOVERED	VOC (quantity	recovered X op hrs)	\$0
TOTAL ANNUAL COST (DC + IC	- RC)			\$136,253
COST PER TON OF REDUCTION	== ===================================			\$10,891

WHOLE FACILITY - THERMAL INCINERATOR

(Total flowrate > 50,000 scfm)

COST BASE DATE: April 1988 [1]

VAPCCI (Third Quarter 1995): [2]

INPUT PARAMETERS

Total gas flowrate (scfm):	100000
Flowrate per unit (scfm):	50000
Flowrate/unit, 2nd iter. (scfm):	50000
Number of units:	2
Reference temperature (oF):	77
Inlet gas temperature (oF):	77
Inlet gas density (lb/scf):	0.0739
Primary heat recovery (fraction):	0.35
Waste gas heat content (BTU/scf):	4
Waste gas heat content (BTU/lb):	56.56
Gas heat capacity (BTU/lb-oF):	0.255
Combustion temperature (oF):	1600
Preheat temperature (oF):	610
Fuel heat of combustion (BTU/lb):	21502
Fuel density (lb/ft3):	0.0408

DESIGN PARAMETERS

Auxiliary Fuel Regrmnt (lb/min):		82.466
	(scfm):	2021.2
Total Gas Flowrate (scfm):	, .	102021

CAPITAL COSTS

Equipment Costs (\$):

-- Incinerator:

@ 0 % heat recovery:	0
@ 35 % heat recovery:	442,470
@ 50 % heat recovery:	0
@ 70 % heat recovery:	0
Other (auxiliary equipment, etc.):	1000000
Total Equipment Costbase:	1,442,470
' 'escalated:	1,923,306
Purchased Equipment Cost (\$):	2,269,501
Total Capital Investment (\$):	3,653,897

ANNUAL COST INPUTS

Operating factor (hr/yr):	8760
Operating labor rate (\$/hr):	13
Maintenance labor rate (\$/hr):	14.26
Operating labor factor (hr/sh):	1
Maintenance labor factor (hr/sh):	1
Electricity price (\$/kwh):	0
Natural gas price (\$/mscf):	3
Annual interest rate (fraction):	0
Control system life (years):	10
Capital recovery factor:	0.1424
Taxes, insurance, admin. factor:	0
Pressure drop (in. w.c.):	8.0

ANNUAL COSTS

Item	Cost (\$/yr)	
Operating labor	7,096	
Supervisory labor	1,064	
Maintenance labor	7,805	
Maintenance materials	7,805	
Natural gas	3,505,762	
Electricity	82,261	
Overhead	14,262	
Taxes, insurance, administrative	146,156	
Capital recovery	520,233	
Total Annual Cost	4,292,444	= \$7,150/TON VOC REMOVED
NOTES:		@ AN ASSUMED MAXIMUM POTENTIAL TREATMENT OF 75% OF ALL PROCESS
***************************************		EMISSIONS = 600 TPY

[1] Original equipment costs reflect this date.

[2] VAPCCI = Vatavuk Air Pollution Control Cost Index (for thermal incinerators) corresponding to year and quarter shown. Original equipment cost, purchased equipment cost, and total capital investment have been escalated to this date via the VAPCCI and control equipment vendor data.

COST ANALYSIS FOR VOC CONTROLS FOR THE BOILER HOUSE:

Assumptions:

- 1. Capital investment = \$0.0 2. Utility costs = \$0.0 3. Process costs = \$0.0 4. Labor & maint. costs = \$24/Hr.
- 5. Operating hours = 8,760/Yr.

Using cost factors from U.S. EPA's OAQPS cost manual, the following is a cost analysis based on labor and maintenance costs only:

Direct annual costs

Operating labor	\$13,140
Supervisor	\$1,971
Maintenance labor	\$14,454
Material	\$14,454
Consumables replacement	\$0.0
Utilities	\$0.0
Waste disposal	\$0.0

Indirect annual costs

Overhead	\$26,411
Administration	\$0.0
Property taxes/insurance	\$0.0
Capital recovery	\$0.0

Total annual costs = \$70,430

VOC emissions reduction @ 100% control = 5 TPY Cost effectiveness = \$14,086/ton VOC removed

APPENDIX D

PRE AND POST CONTROL INSTALLATION SUMMARY

£ P4	· ·
^	, *
	V/ 3 PROPOSED POTENTIAL TO EMIT AND CONTROL EFFICIENCY:
*	1

PROCESS INVERSORIATION					
PRÒCESS - HYDROGENATION		UNCONTROLLED	CONTROLLED	PROPOSED	PERCENT
EMISSION	EXISTING CONTROL	PTE	PTE	REDUCTION	VOC
UNIT	DEVICE	TPY	TPY	TPY	CONTROL
1 TANKS T-100 & T- 101	CONDENSER @ 6 C	12.93	2.3	10.6	82.21%
2 TANK T-106	CONDENSER @ 6 C	0.80	0.2	0.6	75.00%
3 METERING TNK	CONDENSER @ 6 C	48.86	1.59	47.3	96.75%
4 FILTER BLOW #1	CONDENSER @ 6 C	67.66	1.770	65.9	97.38%
5 FILTER BLOW #2	CONDENSER @ 6 C	157.29	4.12	153.2	97.38%
6 AUTOCLAVES 1 & 2 AND TNK - 303	CONDENSER @ 6 C	508.91	61.47	447.4	87.92%
7 OB TANK	UNCRONTROLLED	1.20	1.2	0.0	0.00%
8 TNK T- 501	CONDENSER @ 6 C	110.43	1.63	108.8	98.52%
9 AUTOCLAVE BLOWOUT	UNCRONTROLLED	324.05	6.17	317.9	98.10%
11 TNKS T-102 & T-105	CONDENSER @ 6 C	70.16	1.83	68.3	97.39%
12 SWEETLAND BLOWOUT	CONDENSER @ 6 C	4.00	1.43	2.6	64.25%
13 CATALYST TANK	UNCRONTROLLED	1.04	1.04	0.0	0.00%
14 PRECOAT TANK	UNCRONTROLLED	0.03	0.03	0.0	0.00%
TA THEODAY TANK	ONONO MINO ELED	0.00	0.00	0.0	U.50 A
	PROCESS TOTAL =	1307.36	84.78	1222.6	93.52%
PROCESS - WATER WHITE POLY					
1 FEED DRYERS	CONDENSER @ 6 C	403.97	13.69	390.3	96.61%
2 REACTORS	CONDENSER @ 6 C	225.42	15.38	210.0	93.18%
3 BLEND TANKS	UNCONTROLLED	14.26	14.26	0.0	0.00%
4 SLURRY TNK	UNCONTROLLED	0.71	0.71	0.0	0.00%
5 RECLAIMER	CONDENSER @ AMBIENT	2.61	1.37	1.2	47.51%
6 RECLAIMER STORAGE TNK	UNCONTROLLED	2.49	2.49	0.0	0.00%
7 NEUTRALIZER	CONDENSER @ 6 C	19.26	3.00	16.3	84.40%
8 NEUTRALIZER EXHAUST	UNCONTROLLED	1.31	1.31	0.0	0.00%
9 FILTRATE RECIEVER	CONDENSER @ 6 C	27.67	3.33	24.3	87.95%
10 FUNDA FILTER	UNCONTROLLED	5.25	5.25	0.0	0.00%
11 AUX RECIEVER	UNCONTROLLED	3.86	3.86	0.0	0.00%
	PROCESS TOTAL =	706.81	64.66	642.2	90.85%
TOTAL AFTER PROPOSED	CONTROLS =	2014.17	149.44	1864,74	92.58%
FOR HDROGENATION AND	WATER WHITE POLY				
TOTAL WITH EXISTING CO		2009.80	451.42	1558.38	77.54%
TOTAL WITH EXISTING CO		4408.37	793.74	3614.63	81.99%
TOTAL AFTER PROPOSED FOR ALL PROCESSES	CONTROLS =	4412.74	491.76	3920.98	88.86%
FOR ALL PROCESSES					

AIR QUALITY PROGRAM 301 39th Street, Bldg. #7 Pittsburgh, PA 15201-1811

Major Source INSTALLATION PERMIT

Issued To: Eastman Chemical Resins, Inc.

Jefferson Site

2200 State Highway 837

West Elizabeth, PA 15088-0545

ACHD Permit#: 0058-I026

Date of Issuance:

April 21, 2020

Expiration Date:

(See Section III.12)

Issued By:

Dig Tru Dat -04'

Digitally signed by JoAnn Truchan, PE Date: 2020.04.22 09:09:00 -04'00'

JoAnn Truchan, P.E. Section Chief, Engineering

Prepared By:

Digitally signed by Helen Gurvich Date: 2020.04.22 08:54:50 -04'00'

Helen O. Gurvich Air Quality Engineer

Helm Cerwick

TABLE OF CONTENTS

I.	- CO	NTACT INFORMATION	4
II.		CILITY DESCRIPTION	
III.		NERAL CONDITIONS	
IV.	SIT	TE LEVEL TERMS AND CONDITIONS	11
V.	EM	IISSION UNIT LEVEL TERMS AND CONDITIONS	19
	A.	C-5 – STORAGE TANKS	19
	В.	C-5 OPERATIONS – PASTILLATING BELTS #1 AND #2 (S055)	20
	C.	MP POLY UNIT (S034)	21
	D.	WW POLY UNIT (S013, S020, S023, S027)	23
	E.	WW POLY STORAGE TANKS (S025)	25
	F.	LTC Process Operations (S108, S109, S110, S111, S112, S113, S114)	26
	G.	DRESINATE PRODUCTION LINE (S085)	28
	Н.	Hydrogenation Unit (S004, S007, S012)	29
	I.	WASTEWATER TREATMENT PLANT (F027, F033, F034, F035)	30
VI	ΔΙ	TERNATIVE OPERATING SCENARIOS	31

AMENDMENTS:

DATE SECTION(S)

I. CONTACT INFORMATION

Facility Location: Eastman Chemical Resins, Inc.

Jefferson Site

2200 State Highway 837

West Elizabeth, PA 15088-0545

Permittee/Owner: Eastman Chemical Resins, Inc.

Jefferson Site

2200 State Highway 837

West Elizabeth, PA 15088-0545

Responsible Official: Eugene M. Ingram

Title: Jefferson Site Manager

Company: Eastman Chemical Resins, Inc.

Jefferson Site

Address: 2200 State Highway 837

P.O. Box 545

West Elizabeth, PA 15088-0545

Telephone Number: 412-384-2520 **Fax Number:** 412-384-7311

Facility Contact: Janice Kane

Title: Senior Environmental Coordinator

Telephone Number: 412-384-2520, ext. 2243

Fax Number: 412-384-7311

E-mail Address: jsnyderkane@eastman.com

AGENCY ADDRESSES:

ACHD Contact: Chief Engineer

Allegheny County Health Department

Air Quality Program

301 39th Street, Building #7 Pittsburgh, PA 15201-1811 appermits@alleghenycounty.us

EPA Contact: Enforcement Programs Section (3AP12)

USEPA Region III 1650 Arch Street

Philadelphia, PA 19103-2029

II. FACILITY DESCRIPTION

FACILITY DESCRIPTION

The Eastman Chemical Resins, Inc., Jefferson Site facility (Eastman) produces synthetic hydrocarbon resins from C5 feedstock, monomers, solvents and catalysts by way of cationic polymerization. Resins produced include aliphatic, aliphatic/aromatic, aromatic and liquid resins for use in adhesives, plastics, rubber, graphic arts and numerous other products. The plant is comprised of three polymerization processes (C5, MP-Poly, and WW-Poly), a resin hydrogenation process, four finishing processes (LTC1, LTC2, and C-5), and an emulsion process, five boilers ranging from 18.6 MM Btu/hr to 38.2 MM Btu/hr, a wastewater treatment plant, a pilot plant for testing formulations and processes and approximately 200 storage tanks of various sizes.

The facility is a major source of volatile organic compounds (VOCs) and Hazardous Air Pollutants (HAPs); and a minor source of particulate matter (PM), particulate matter <10 μ m in diameter (PM₁₀), particulate matter <2.5 μ m in diameter (PM_{2.5}), nitrogen oxides (NO_X), sulfur oxides (SO_X), as defined in §2102.20 of Article XXI. The facility is also a minor source of greenhouse gas emissions (CO₂e) as defined in the U.S. EPA Greenhouse Gas Tailoring Rule.

INSTALLATION DESCRIPTION

This permit is an installation addressing the requirements for case-by-case Reasonably Achievable Control Technology (2008 Ozone RACT, or RACT II) for incorporation into the Pennsylvania State Implementation Plan.

DECLARATION OF POLICY

Pollution prevention is recognized as the preferred strategy (over pollution control) for reducing risk to air resources. Accordingly, pollution prevention measures should be integrated into air pollution control programs wherever possible, and the adoption by sources of cost-effective compliance strategies, incorporating pollution prevention, is encouraged. The Department will give expedited consideration to any permit modification request based on pollution prevention principles.

The permittee is subject to the terms and conditions set forth below. These terms and conditions constitute provisions of Allegheny County Health Department Rules and Regulations, Article XXI Air Pollution Control. The subject equipment has been conditionally approved for operation. The equipment shall be operated in conformity with the plans, specifications, conditions, and instructions which are part of your application, and may be periodically inspected for compliance by the Department. In the event that the terms and conditions of this permit or the applicable provisions of Article XXI conflict with the application for this permit, these terms and conditions and the applicable provisions of Article XXI shall prevail. Additionally, nothing in this permit relieves the permittee from the obligation to comply with all applicable Federal, State and Local laws and regulations.

III. GENERAL CONDITIONS

1. Prohibition of Air Pollution (§2101.11)

It shall be a violation of this permit to fail to comply with, or to cause or assist in the violation of, any requirement of this permit, or any order or permit issued pursuant to authority granted by Article XXI. The permittee shall not willfully, negligently, or through the failure to provide and operate necessary control equipment or to take necessary precautions, operate any source of air contaminants in such manner that emissions from such source:

- a. Exceed the amounts permitted by this permit or by any order or permit issued pursuant to Article XXI;
- b. Cause an exceedance of the ambient air quality standards established by Article XXI §2101.10; or
- c. May reasonably be anticipated to endanger the public health, safety, or welfare.

2. Nuisances (§2101.13)

Any violation of any requirement of this Permit shall constitute a nuisance.

3. **Definitions (§2101.20)**

- a. Except as specifically provided in this permit, terms used retain the meaning accorded them under the applicable provisions and requirements of Article XXI or the applicable federal or state regulation. Whenever used in this permit, or in any action taken pursuant to this permit, the words and phrases shall have the meanings stated, unless the context clearly indicates otherwise.
- b. Unless specified otherwise in this permit or in the applicable regulation, the term "year" shall mean any twelve (12) consecutive months.

4. **Certification (§2102.01)**

Any report or compliance certification submitted under this permit shall contain written certification by a responsible official as to truth, accuracy, and completeness. This certification and any other certification required under this permit shall be signed by a responsible official of the source, and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

5. Operation and Maintenance (§2105.03)

All air pollution control equipment required by this permit or Article XXI, and all equivalent compliance techniques that have been approved by the Department, shall be properly installed, maintained, and operated consistent with good air pollution control practice.

6. Conditions (§2102.03.c)

It shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02, for any person to fail to comply with any terms or conditions set forth in this permit.

7. Transfers (§2102.03.e)

This permit shall not be transferable from one person to another, except in accordance with Article XXI §2102.03.e and in cases of change-in-ownership which are documented to the satisfaction of the Department, and shall be valid only for the specific sources and equipment for which this permit was issued. The transfer of permits in the case of change-in-ownership may be made consistent with the administrative permit amendment procedure of Article XXI §2103.14.b.

8. Effect (§2102.03.g)

Issuance of this permit shall not in any manner relieve any person of the duty to fully comply with the requirements of Article XXI or any other provision of law, nor shall it in any manner preclude or affect the right of the Department to initiate any enforcement action whatsoever for violations of Article XXI or this Permit, whether occurring before or after the issuance of such permit. Further, the issuance of this permit shall not be a defense to any nuisance action, nor shall such permit be construed as a certificate of compliance with the requirements of Article XXI or this Permit.

9. General Requirements (§2102.04.a)

It shall be a violation of this Permit giving rise to the remedies set forth in Article XXI §2109 for any person to install, modify, replace, reconstruct, or reactivate any source or air pollution control equipment to which this Permit applies unless either:

- a. The Department has first issued an Installation Permit for such source or equipment; or
- b. Such action is solely a reactivation of a source with a current Operating Permit, which is approved under §2103.13 of Article XXI.

10. Conditions (§2102.04.e)

Further, the initiation of installation, modification, replacement, reconstruction, or reactivation under this

Installation Permit and any reactivation plan shall be deemed acceptance by the source of all terms and conditions specified by the Department in this permit and plan.

11. Revocation (§2102.04.f)

- a. The Department may, at any time, revoke this Installation Permit if it finds that:
 - 1) Any statement made in the permit application is not true, or that material information has not been disclosed in the application;
 - 2) The source is not being installed, modified, replaced, reconstructed, or reactivated in the manner indicated by this permit or applicable reactivation plan;
 - 3) Air contaminants will not be controlled to the degree indicated by this permit;
 - 4) Any term or condition of this permit has not been complied with;
 - 5) The Department has been denied lawful access to the premises or records, charts, instruments and the like as authorized by this Permit; or
- b. Prior to the date on which construction of the proposed source has commenced the Department may, revoke this Installation Permit if a significantly better air pollution control technology has become available for such source, a more stringent regulation applicable to such source has been adopted, or any other change has occurred which requires a more stringent degree of control of air contaminants.

12. Term (§2102.04.g)

This Installation Permit shall expire in 18 months if construction has not commenced within such period or shall expire 18 months after such construction has been suspended, if construction is not resumed within such period. In any event, this Installation Permit shall expire upon completion of construction, except that this Installation Permit shall authorize temporary operation to facilitate shakedown of sources and air cleaning devices, to permit operations pending issuance of a related subsequent Operating Permit, or to permit the evaluation of the air contamination aspects of the source. Such temporary operation period shall be valid for a limited time, not to exceed 180 days, but may be extended for additional limited periods, each not to exceed 120 days, except that no temporary operation shall be authorized or extended which may circumvent the requirements of this Permit.

13. Annual Installation Permit Administrative Fee (§2102.10.c & e)

No later than 30 days after the date of issuance of this Installation Permit and on or before the last day of the month in which this permit was issued in each year thereafter, during the term of this permit until a subsequent corresponding Operating Permit or amended Operating Permit is properly applied for, the owner or operator of such source shall pay to the Department, in addition to all other applicable emission and administration fees, an Annual Installation Permit Administration Fee in an amount of \$750.

14. Severability Requirement (§2103.12.l)

The provisions of this permit are severable, and if any provision of this permit is determined to by a court of competent jurisdiction to be invalid or unenforceable, such a determination will not affect the remaining provisions of this permit.

15. Reporting Requirements (§2103.12.k)

a. The permittee shall submit reports of any required monitoring at least every six (6) months. All

instances of deviations from permit requirements must be clearly identified in such reports. All required reports must be certified by the Responsible Official.

- b. Prompt reporting of deviations from permit requirements is required, including those attributable to upset conditions as defined in this permit and Article XXI §2108.01.c, the probable cause of such deviations, and any corrective actions or preventive measures taken.
- c. All reports submitted to the Department shall comply with the certification requirements of General Condition III.4 above.
- d. Semiannual reports required by this permit shall be submitted to the Department as follows:
 - 1) One semiannual report is due by July 31 of each year for the time period beginning January 1 and ending June 30.
 - 2) One semiannual report is due by February 1 of each year for the time period beginning July 1 and ending December 31.
 - 3) The first semiannual report shall be due July 31, 2020 for the time period beginning on the issuance date of this permit through June 30, 2020.
- e. Reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

16. Minor Installation Permit Modifications (§2102.10.d)

Modifications to this Installation Permit may be applied for but only upon submission of an application with a fee in the amount of \$300 and where:

- a. No reassessment of any control technology determination is required; and
- b. No reassessment of any ambient air quality impact is required.

17. Violations (§2104.06)

The violation of any emission standard established by this Permit shall be a violation of this Permit giving rise to the remedies provided by Article §2109.02.

18. Other Requirements Not Affected (§2105.02)

Compliance with the requirements of this permit shall not in any manner relieve any person from the duty to fully comply with any other applicable federal, state, or county statute, rule, regulation, or the like, including, but not limited to, any applicable NSPSs, NESHAPs, MACTs, or Generally Achievable Control Technology standards now or hereafter established by the EPA, and any applicable requirement of BACT or LAER as provided by Article XXI, any condition contained in this Installation Permit and/or any additional or more stringent requirements contained in an order issued to such person pursuant to Part I of Article XXI.

19. Other Rights and Remedies Preserved (§2109.02.b)

Nothing in this permit shall be construed as impairing any right or remedy now existing or hereafter created in equity, common law or statutory law with respect to air pollution, nor shall any court be deprived of such jurisdiction for the reason that such air pollution constitutes a violation of this permit

GENERAL CONDITIONS

Eastman Chemical Resins, Inc.

Jefferson Site
Installation Permit #0058-I026

20. Penalties, Fines, and Interest (§2109.07.a)

A source that fails to pay any fee required under this Permit or article XXI when due shall pay a civil penalty of 50% of the fee amount, plus interest on the fee amount computed in accordance with of Article XXI §2109.06.a.4 from the date the fee was required to be paid. In addition, the source may have its permit revoked.

21. Appeals (§2109.10)

In accordance with State Law and County regulations and ordinances, any person aggrieved by an order or other final action of the Department issued pursuant to Article XXI shall have the right to appeal the action to the Director in accordance with the applicable County regulations and ordinances.

IV. SITE LEVEL TERMS AND CONDITIONS

1. Reporting of Upset Conditions (§2103.12.k.2)

The permittee shall promptly report all deviations from permit requirements, including those attributable to upset conditions as defined in Article XXI §2108.01.c, the probable cause of such deviations, and any corrective actions or preventive measures taken.

2. Visible Emissions (§2104.01.a)

Except as provided for by Article XXI §2108.01.d pertaining to a cold start, no person shall operate, or allow to be operated, any source in such manner that the opacity of visible emissions from a flue or process fugitive emissions from such source, excluding uncombined water:

- a. Equal or exceed an opacity of 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- b. Equal or exceed an opacity of 60% at any time.

3. Odor Emissions (§2104.04) (County-only enforceable)

No person shall operate, or allow to be operated, any source in such manner that emissions of malodorous matter from such source are perceptible beyond the property line.

4. Materials Handling (§2104.05)

The permittee shall not conduct, or allow to be conducted, any materials handling operation in such manner that emissions from such operation are visible at or beyond the property line.

5. Operation and Maintenance (§2105.03)

All air pollution control equipment required by this permit or any order under Article XXI, and all equivalent compliance techniques approved by the Department, shall be properly installed, maintained, and operated consistently with good air pollution control practice.

6. Open Burning (§2105.50)

No person shall conduct, or allow to be conducted, the open burning of any material, except where the Department has issued an Open Burning Permit to such person in accordance with Article XXI §2105.50 or where the open burning is conducted solely for the purpose of non-commercial preparation of food for human consumption, recreation, light, ornament, or provision of warmth for outside workers, and in a manner which contributes a negligible amount of air contaminants.

7. Shutdown of Control Equipment (§2108.01.b)

a. In the event any air pollution control equipment is shut down for reasons other than a breakdown, the person responsible for such equipment shall report, in writing, to the Department the intent to shut down such equipment at least 24 hours prior to the planned shutdown. Notwithstanding the submission of such report, the equipment shall not be shut down until the approval of the Department is obtained; provided, however, that no such report shall be required if the source(s)

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

served by such air pollution control equipment is also shut down at all times that such equipment is shut down.

- b. The Department shall act on all requested shutdowns as promptly as possible. If the Department does not take action on such requests within ten (10) calendar days of receipt of the notice, the request shall be deemed denied, and upon request, the owner or operator of the affected source shall have a right to appeal in accordance with the provisions of Article XI.
- c. The prior report required by Site Level Condition IV.7.a above shall include:
 - 1) Identification of the specific equipment to be shut down, its location and permit number (if permitted), together with an identification of the source(s) affected;
 - 2) The reasons for the shutdown;
 - 3) The expected length of time that the equipment will be out of service;
 - 4) Identification of the nature and quantity of emissions likely to occur during the shutdown;
 - 5) Measures, including extra labor and equipment, which will be taken to minimize the length of the shutdown, the amount of air contaminants emitted, or the ambient effects of the emissions;
 - 6) Measures which will be taken to shut down or curtail the affected source(s) or the reasons why it is impossible or impracticable to shut down or curtail the affected source(s) during the shutdown; and
 - 7) Such other information as may be required by the Department.
- d. Shutdown reports may be emailed to the Department at aqreports@alleghenycounty.us in lieu of mailing a hard copy.

8. **Breakdowns (§2108.01.c)**

- a. In the event that any air pollution control equipment, process equipment, or other source of air contaminants breaks down in such manner as to have a substantial likelihood of causing the emission of air contaminants in violation of this permit, or of causing the emission into the open air of potentially toxic or hazardous materials, the person responsible for such equipment or source shall immediately, but in no event later than sixty (60) minutes after the commencement of the breakdown, notify the Department of such breakdown and shall, as expeditiously as possible but in no event later than seven (7) days after the original notification, provide written notice to the Department.
- b. To the maximum extent possible, all oral and written notices required shall include all pertinent facts, including:
 - 1) Identification of the specific equipment which has broken down, its location and permit number (if permitted), together with an identification of all related devices, equipment, and other sources which will be affected.
 - 2) The nature and probable cause of the breakdown.
 - 3) The expected length of time that the equipment will be inoperable or that the emissions will continue.
 - 4) Identification of the specific material(s) which are being, or are likely to be emitted, together with a statement concerning its toxic qualities, including its qualities as an irritant, and its potential for causing illness, disability, or mortality.
 - 5) The estimated quantity of each material being or likely to be emitted.

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

- 6) Measures, including extra labor and equipment, taken or to be taken to minimize the length of the breakdown, the amount of air contaminants emitted, or the ambient effects of the emissions, together with an implementation schedule.
- 7) Measures being taken to shut down or curtail the affected source(s) or the reasons why it is impossible or impractical to shut down the source(s), or any part thereof, during the breakdown.
- c. Notices required shall be updated, in writing, as needed to advise the Department of changes in the information contained therein. In addition, any changes concerning potentially toxic or hazardous emissions shall be reported immediately. All additional information requested by the Department shall be submitted as expeditiously as practicable.
- d. Unless otherwise directed by the Department, the Department shall be notified whenever the condition causing the breakdown is corrected or the equipment or other source is placed back in operation by no later than 9:00 AM on the next County business day. Within seven (7) days thereafter, written notice shall be submitted pursuant to Paragraphs a and b above.
- e. Breakdown reporting shall not apply to breakdowns of air pollution control equipment which occur during the initial startup of said equipment, provided that emissions resulting from the breakdown are of the same nature and quantity as the emissions occurring prior to startup of the air pollution control equipment.
- f. In no case shall the reporting of a breakdown prevent prosecution for any violation of this permit or Article XXI.
- g. Breakdown reports may be emailed to the Department at <u>aqreports@alleghenycounty.us</u> in lieu of mailing a hard copy.

9. Cold Start (§2108.01.d)

In the event of a cold start on any fuel-burning or combustion equipment, except stationary internal combustion engines and combustion turbines used by utilities to meet peak load demands, the person responsible for such equipment shall report in writing to the Department the intent to perform such cold start at least 24 hours prior to the planned cold start. Such report shall identify the equipment and fuel(s) involved and shall include the expected time and duration of the startup. Upon written application from the person responsible for fuel-burning or combustion equipment which is routinely used to meet peak load demands and which is shown by experience not to be excessively emissive during a cold start, the Department may waive these requirements and may instead require periodic reports listing all cold starts which occurred during the report period. The Department shall make such waiver in writing, specifying such terms and conditions as are appropriate to achieve the purposes of Article XXI. Such waiver may be terminated by the Department at any time by written notice to the applicant. Cold start notifications may be emailed to the Department at agreports@alleghenycounty.us.

10. Monitoring of Malodorous Matter Beyond Facility Boundaries (§2104.04)

The permittee shall take all reasonable action as may be necessary to prevent malodorous matter from becoming perceptible beyond facility boundaries. Further, the permittee shall perform such observations as may be deemed necessary along facility boundaries to insure that malodorous matter beyond the facility boundary in accordance with Article XXI §2107.13 is not perceptible and record all findings and corrective action measures taken.

11. Emissions Inventory Statements (§2108.01.e & g)

- a. Emissions inventory statements in accordance with §2108.01.e shall be submitted to the Department by March 15 of each year for the preceding calendar year. The Department may require more frequent submittals if the Department determines that more frequent submissions are required by the EPA or that analysis of the data on a more frequent basis is necessary to implement the requirements of Article XXI or the Clean Air Act.
- b. The failure to submit any report or update within the time specified, the knowing submission of false information, or the willful failure to submit a complete report shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

12. Orders (§2108.01.f)

In addition to meeting the requirements Site Level Conditions IV.7 through IV.11, inclusive, the person responsible for any source shall, upon order by the Department, report to the Department such information as the Department may require in order to assess the actual and potential contribution of the source to air quality. The order shall specify a reasonable time in which to make such a report.

13. Violations (§2108.01.g)

The failure to submit any report or update thereof required by Site Level Conditions IV.7 through IV.12 above, inclusive, within the time specified, the knowing submission of false information, or the willful failure to submit a complete report shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

14. Emissions Testing (§2108.02)

- a. **Orders:** No later than 60 days after achieving full production or 120 days after startup, whichever is earlier, the permittee shall conduct, or cause to be conducted, such emissions tests as are specified by the Department to demonstrate compliance with the applicable requirements of this permit and shall submit the results of such tests to the Department in writing. Upon written application setting forth all information necessary to evaluate the application, the Department may, for good cause shown, extend the time for conducting such tests beyond 120 days after startup but shall not extend the time beyond 60 days after achieving full production. Emissions testing shall comply with all applicable requirements of Article XXI, §2108.02.e.
- b. **Tests by the Department:** Notwithstanding any tests conducted pursuant to this permit, the Department or another entity designated by the Department may conduct emissions testing on any source or air pollution control equipment. At the request of the Department, the permittee shall provide adequate sampling ports, safe sampling platforms and adequate utilities for the performance of such tests.
- c. **Testing Requirements:** No later than 45 days prior to conducting any tests required by this permit, the person responsible for the affected source shall submit for the Department's approval a written test protocol explaining the intended testing plan, including any deviations from standard testing procedures, the proposed operating conditions of the source during the test, calibration data for specific test equipment and a demonstration that the tests will be conducted under the direct supervision of persons qualified by training and experience satisfactory to the Department to conduct such tests. In addition, at least 30 days prior to conducting such tests, the person responsible

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

shall notify the Department in writing of the time(s) and date(s) on which the tests will be conducted and shall allow Department personnel to observe such tests, record data, provide pre-weighed filters, analyze samples in a County laboratory and to take samples for independent analysis. Test results shall be comprehensively and accurately reported in the units of measurement specified by the applicable emission limitations of this permit.

- d. Test methods and procedures shall conform to the applicable reference method set forth in this permit or Article XXI Part G, or where those methods are not applicable, to an alternative sampling and testing procedure approved by the Department consistent with Article XXI §2108.02.e.2.
- e. **Violations:** The failure to perform tests as required by this permit or an order of the Department, the failure to submit test results within the time specified, the knowing submission of false information, the willful failure to submit complete results, or the refusal to allow the Department, upon presentation of a search warrant, to conduct tests, shall be a violation of this permit giving rise to the remedies provided by Article XXI §2109.02.

15. Abrasive Blasting (§2105.51)

- a. Except where such blasting is a part of a process requiring an operating permit, no person shall conduct or allow to be conducted, abrasive blasting or power tool cleaning of any surface, structure, or part thereof, which has a total area greater than 1,000 square feet unless such abrasive blasting complies with all applicable requirements of Article XXI §2105.51.
- b. In addition to complying with all applicable provisions of §2105.51, no person shall conduct, or allow to be conducted, abrasive blasting of any surface unless such abrasive blasting also complies with all other applicable requirements of Article XXI unless such requirements are specifically addressed by §2105.51.

16. Asbestos Abatement (§2105.62, §2105.63)

In the event of removal, encasement, or encapsulation of Asbestos-Containing Material (ACM) at a facility or in the event of the demolition of any facility, the permittee shall comply with all applicable provisions of Article XXI §2105.62 and §2105.63.

17. Volatile Organic Compound Storage Tanks (§2105.12.a)

No person shall place or store, or allow to be placed or stored, a volatile organic compound having a vapor pressure of 1.5 psia or greater under actual storage conditions in any aboveground stationary storage tank having a capacity equal to or greater than 2,000 gallons but less than or equal to 40,000 gallons, unless there is in operation on such tank pressure relief valves which are set to release at the higher of 0.7 psig of pressure or 0.3 psig of vacuum or at the highest possible pressure and vacuum in accordance with State or local fire codes, National Fire Prevention Association guidelines, or other national consensus standard approved in writing by the Department. Petroleum liquid storage vessels that are used to store produced crude oil and condensate prior to lease custody transfer are exempt from these requirements.

18. Permit Source Premises (§2105.40)

a. **General.** No person shall operate, or allow to be operated, any source for which a permit is required by Article XXI Part C in such manner that emissions from any open land, roadway, haul road, yard, or other premises located upon the source or from any material being transported within such source

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.

Jefferson Site
Installation Permit #0058-I026

or from any source-owned access road, haul road, or parking lot over five (5) parking spaces:

- 1) Are visible at or beyond the property line of such source;
- 2) Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or
- 3) Have an opacity of 60% or more at any time.
- b. **Deposition on Other Premises:** Visible emissions from any solid or liquid material that has been deposited by any means from a source onto any other premises shall be considered emissions from such source within the meaning of Site Level Condition IV.18.a above.

19. Parking Lots and Roadways (§2105.42)

- a. The permittee shall not maintain for use, or allow to be used, any parking lot over 50 parking spaces or used by more than 50 vehicles in any day or any other roadway carrying more than 100 vehicles in any day or 15 vehicles in any hour in such manner that emissions from such parking lot or roadway:
 - 1) Are visible at or beyond the property line;
 - 2) Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any 60 minute period; or
 - 3) Have an opacity of 60% or more at any time.
- b. Visible emissions from any solid or liquid material that has been deposited by any means from a parking lot or roadway onto any other premises shall be considered emissions from such parking lot or roadway.
- c. Site Level Condition IV.19.a above shall apply during any repairs or maintenance done to such parking lot or roadway.
- d. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.19 may be enforced by any municipal or local government unit having jurisdiction over the place where such parking lots or roadways are located. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.19.

20. Permit Source Transport (§2105.43)

- a. No person shall transport, or allow to be transported, any solid or liquid material outside the boundary line of any source for which a permit is required by Article XXI Part C in such manner that there is any visible emission, leak, spill, or other escape of such material during transport.
- b. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.20 may be enforced by any municipal or local government unit having jurisdiction over the place where such visible emission, leak, spill, or other escape of material during transport occurs. Such enforcement shall be in accordance with the laws governing such municipal or local government

unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violation of Site Level Condition IV.20.

21. Construction and Land Clearing (§2105.45)

- a. No person shall conduct, or allow to be conducted, any construction or land clearing activities in such manner that the opacity of emissions from such activities:
 - 1) Equal or exceed 20% for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or
 - 2) Equal or exceed 60% at any time.
- b. Notwithstanding any other provision of this permit, the prohibitions of Site Level Condition IV.21 may be enforced by any municipal or local government unit having jurisdiction over the place where such construction or land clearing activities occur. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.21.

22. Mining (§2105.46)

No person shall conduct, or allow to be conducted, any mining activities in such manner that emissions from such activities:

- a. Are visible at or beyond the property line;
- b. Have an opacity of 20% or more for a period or periods aggregating more than three (3) minutes in any sixty (60) minute period; or,
- c. Have an opacity of 60% or more at any time.

23. **Demolition (§2105.47)**

- a. No person shall conduct, or allow to be conducted, any demolition activities in such manner that the opacity of the emissions from such activities equal or exceed 20% for a period or periods aggregating more than three (3) minutes in any 60 minute period.
- b. Notwithstanding any other provisions of this permit, the prohibitions of Site Level Condition IV.23 may be enforced by any municipal or local government unit having jurisdiction over the place where such demolition activities occur. Such enforcement shall be in accordance with the laws governing such municipal or local government unit. In addition, the Department may pursue the remedies provided by Article XXI §2109.02 for any violations of Site Level Condition IV.23.

24. Fugitive Emissions (§2105.49)

The person responsible for a source of fugitive emissions, in addition to complying with all other applicable provisions of this permit shall take all reasonable actions to prevent fugitive air contaminants from becoming airborne. Such actions may include, but are not limited to:

- a. The use of asphalt, oil, water, or suitable chemicals for dust control;
- b. The paving and maintenance of roadways, parking lots and the like;
- c. The prompt removal of earth or other material which has been deposited by leaks from transport,

SITE LEVEL TERMS AND CONDITIONS

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

erosion or other means;

- d. The adoption of work or other practices to minimize emissions;
- e. Enclosure of the source; and
- f. The proper hooding, venting, and collection of fugitive emissions.

25. Episode Plans (§2106.02)

The permittee shall upon written request of the Department, submit a source curtailment plan, consistent with good industrial practice and safe operating procedures, designed to reduce emissions of air contaminants during air pollution episodes. Such plans shall meet the requirements of Article XXI §2106.02.

26. New Source Performance Standards (§2105.05)

- a. It shall be a violation of this permit giving rise to the remedies provided by §2109.02 of Article XXI for any person to operate, or allow to be operated, any source in a manner that does not comply with all requirements of any applicable NSPS now or hereafter established by the EPA, except if such person has obtained from EPA a waiver pursuant to Section 111 or Section 129 of the Clean Air Act or is otherwise lawfully temporarily relieved of the duty to comply with such requirements.
- b. Any person who operates, or allows to be operated, any source subject to any NSPS shall conduct, or cause to be conducted, such tests, measurements, monitoring and the like as is required by such standard. All notices, reports, test results and the like as are required by such standard shall be submitted to the Department in the manner and time specified by such standard. All information, data and the like which is required to be maintained by such standard shall be made available to the Department upon request for inspection and copying.

27. Miscellaneous Organic Chemical Manufacturing NESHAP (40 CFR Part 63, Subpart FFFF)

The permittee shall comply with all applicable requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart FFFF – the "Miscellaneous Organic Chemical Manufacturing NESHAP" or "MON". [25 PA Code §129.99; 25 PA Code §129.100]

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

V. EMISSION UNIT LEVEL TERMS AND CONDITIONS

A. <u>C-5 – Storage Tanks</u>

1. Restrictions:

The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the C5 VOC storage tanks. [§2102.04.b.5]

- a. The permittee shall do the following for all VOC storage tanks and associated equipment: [§2105.03, 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in according with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The VOC storage tanks shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

Eastman Chemical Resins, Inc. Jefferson Site Installation Permit #0058-I026

B. C-5 Operations – Pastillating Belts #1 and #2 (S055)

1. Restrictions:

The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with Pastillating Belts #1 and #2. [2102.04.b.5]

- a. The permittee shall do the following for Pastillating Belts #1 and #2 and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Pastillating Belts #1 and #2 shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

C. MP Poly Unit (S034)

1. Restrictions:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the MP Poly Unit. [2102.04.b.5]
- b. The permittee shall properly maintain and operate the condensers E-500-5, E-701-5, and E-701-4 at all times when emissions are routed to them. [§2105.03; RACT Order #257, condition 1.7; 25 PA Code §129.99]
- c. The inlet coolant temperature to the condenser E-701-4 (S034) shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.2.A; 25 PA Code §129.99]
- d. If measured one-hour block average exit vapor temperatures for the condenser E-701-4 (S034) exceed 35°C from the condenser, the permittee shall take the following actions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.C; 25 PA Code §129.99]
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-701-4 condenser that continuously monitors the coolant inlet temperature at all times when emissions are routed to it. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, condition 1.1 and 1.2; 25 PA Code §129.99]

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

3. Record Keeping Requirements:

a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for MP Poly Unit (filtrate system: filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The MP Poly Unit (filtrate system: filtrate receiver, neutralizer, solvent wash tank, heel tank, Funda filter) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

D. WW Poly Unit (S013, S020, S023, S027)

1. Restrictions:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit(s) associated with the WW Poly Unit. [2102.04.b.5]
- b. Refrigerated vent condensers [E-200-7 (S013), E-900-7 (S020), E-903-3 (S023), and E-901-7 (S027)]: The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°C in any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions;
 - 2) The exit vapor temperature of each condenser shall not exceed 35°C over any one-hour block average when emissions are being routed through them, except as specified in condition V.A.1.e.3) below:
 - 3) If measured one-hour block average exit vapor temperatures exceed 35°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the glycol cooler is operating properly by reviewing current operating conditions (e.g. that the chiller system is operating and circulating coolant, and that glycol coolant is being supplied at less than 10°C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°C. Exit vapor temperature exceeding 35°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 35°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 50°F (10°C), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 35°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.

2. Monitoring Requirements:

a. The permittee shall install, operate, and maintain an inlet coolant temperature instrument on E-200-7, E-900-7, E-901-7, and E-903-3 condensers that continuously monitor the coolant inlet temperature. The temperature probes used shall be certified by the manufacturer to be accurate to within 2% of the temperature measured in Celsius or to within 2.5°C, whichever is greater. The permittee shall record the coolant inlet temperature at least once every 15 minutes while the

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

equipment associated with the temperature probe and transmitter is in operation. [§2102.04.b.6; §2103.12.i; RACT Order #257, conditions 1.1 -1.3; 25 PA Code §129.99]

3. Record Keeping Requirements:

- a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for WW Poly Unit (feed dryers and regeneration, west filtrate receiver, solvent wash receiver, and east filtrate receiver) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The WW Poly Unit (feed dryers and regeneration, west filtrate receiver, solvent wash receiver, and east filtrate receiver) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

E. WW Poly Storage Tanks (S025)

1. Restrictions:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the WW Poly Storage Tanks. [2102.04.b.5]
- b. The inlet coolant temperature to the condenser E-202-1 shall not exceed 10°C (50°F) over any one-hour block average when emissions are routed through the condensers with the exception of activities to mitigate emergency conditions. [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.4; 25 PA Code §129.99]

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

- a. The permittee shall do the following for WW Poly storage tanks (73, 75, 76, 77) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The WW Poly storage tanks (73, 75, 76, 77) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

F. LTC Process Operations (S108, S109, S110, S111, S112, S113, S114)

1. Restrictions:

- a. The permittee shall continue to comply with all applicable regulatory requirements and the VOC requirements in the applicable Installation Permit associated with the LTC Process Operations. [2102.04.b.5]
- b. Cooling tower water chilled vent condensers [E-301B-E3 (S109); E-301-4 (S108); E-607-2 (S110); E-RK5-4 (S111); E-RK6-3 (S112); E-RK7-4 (S113)]: The condensers shall be properly operated and maintained according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, condition 1.1.H; 25 PA Code §129.99]
 - 1) The inlet coolant temperature to each condenser shall not exceed 10°F (5.6°C) above ambient air temperature over any one-hour block average when emissions are routed through the condenser with the exception of activities to mitigate emergency conditions and except that at no time will coolant temperature be required to be less than 50°F (10°C).
 - 2) The exit vapor temperature of each condenser shall not exceed 40°C over any one-hour block average when emissions are being routed through them, except as specified in paragraph 3).
 - 3) If measured one-hour block average exit vapor temperatures exceed 40°C from a condenser, the permittee shall take the following actions:
 - a) Confirm that the cooling tower is operating properly by reviewing current operating conditions (e.g. that the cooling system is operating and circulating cooling water, and that cooling water is being supplied at less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to less than 50°F (10 °C). Corrective actions are required to be taken to correct loss of coolant supply or to return the coolant supply temperature to less than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to less than 50°F (10 °C)). Exit vapor temperature exceeding 40°C due to solely to high ambient temperatures shall be documented per paragraph b.
 - b) The following documentation will be maintained for the period when the condenser exit vapor temperature exceeds 40°C for any one-hour average during current operating conditions and when the coolant supply temperature is more than 10°F (5.6°C) above ambient (except that at no time will coolant temperature be required to be less than 50°F (10°C)), or when the coolant supply is interrupted:
 - i) Identification of the tank and condenser.
 - ii) The nature and probable cause of the event.
 - iii) The temperature of the outlet gas and coolant supply.
 - iv) The ambient air temperature at the time of the exceedance.
 - v) The estimated quantity of VOC and total hap emitted, if any.
 - vi) Appropriate corrective actions taken.
 - c) Periods of exit vapor temperatures in excess of 40°C not due solely to high ambient temperature shall be considered a breakdown in accordance with §2108.01.
- c. The vacuum leak rate from the #1 shall not exceed 10 lb/hr. The vacuum leak rate from #2 LTC Vacuum System shall not exceed 15 lb/hr. Compliance with this condition shall be demonstrated during regular compliance testing performed at least once every five years after the most recent stack test. [§2102.04.b.6; §2102.04.e; 25 PA Code §129.99 & §129.100]

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain the following data on-site for these operations [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]:
 - 1) All records of monitoring required by V.A.3 above.
 - 2) Records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment.
 - 3) Maximum resin (lb/min) and polymerizate (gal/min) feed rates (daily).
 - 4) Amount (lbs.) and type of resin and polymerizate (monthly, 12-month rolling total)
 - 5) Changes in #4 LTC Vacuum System vacuum pump status (upon occurrence).

- a. The permittee shall do the following for LTC Process (#1 and #2 Vacuum systems and #1/#2 Pastillator Belt) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The LTC Process (#1 and #2 Vacuum systems and #1/#2 Pastillator Belt) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

Eastman Chemical Resins, Inc.

Jefferson Site
Installation Permit #0058-I026

G. <u>Dresinate Production Line (S085)</u>

1. Restrictions:

The permittee shall continue to comply with all regulatory and Permit requirements. [2102.04.b.5]

- a. The permittee shall do the following for Dresinate Production Line (Double Drum Dryer) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Dresinate Production Line (Double Drum Dryer) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

H. Hydrogenation Unit (S004, S007, S012)

1. Restrictions:

- a. The maximum production rate for Hydrogenation Unit process shall not exceed 22 million pounds per 12-month rolling period. [§2102.04.e; 25 PA Code §129.99]
- b. Refrigerated vent condensers E-104-2 (S012), E-201-2 (S004), E-403-2 (S007): The condensers shall be properly maintained and operated according to good engineering practices, manufacturer's recommendations and the following conditions at all times while treating process emissions: [§2105.06.b.3; §2102.04.e; §2103.12.a.2.B; RACT Order #257, conditions 1.3 and 1.4; 25 PA Code §129.99]
 - 1) The outlet coolant temperature shall not exceed at any time 40°F.
 - 2) Instrumentation shall be provided to continuously monitor the coolant outlet temperature of each condenser to within one (1) degree Fahrenheit at all times.

2. Record Keeping Requirements:

- a. The permittee shall keep and maintain production records and records of condenser coolant temperature. [§2103.12.j, RACT Order #257, condition 1.5; 25 PA Code §129.100]
- b. The permittee shall keep records of operation, inspection, calibration, maintenance and/or replacement of process or control equipment. [§2103.12.j & k; RACT Order #257, condition 1.5; 25 PA Code §129.100]

3. Monitoring Requirements:

a. The permittee shall monitor and record the exit vapor temperature of each refrigerated vent condensers at least once every 15 minutes when the process is in operation. [§2102.04.b.6, §2102.04.e., §2103.12.i]

- a. The permittee shall do the following for Hydrogenation Unit (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank, Vent tanks, Autoclaves #1 and #2, Storage tanks 102, 105, 106) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Hydrogenation Unit (tanks 103 and 104, catalyst catch tank, Mott filter, Heel tank, Vent tanks, Autoclaves #1 and #2, Storage tanks 102, 105, 106) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

Eastman Chemical Resins, Inc.
Jefferson Site
Installation Permit #0058-I026

I. Wastewater Treatment Plant (F027, F033, F034, F035)

- a. The permittee shall do the following for Wastewater Treatment Plant (Bioaeration tank, tanks 702A, 702B, and 702C) and associated equipment: [§2105.03; 25 PA Code §129.99; 25 PA Code §129.100]
 - 1) Perform regular maintenance in accordance with the manufacturer's or the operator's maintenance procedures;
 - 2) Keep records of any maintenance; and
 - 3) Keep a copy of either the manufacturer's or the operator's maintenance procedures.
- b. The Wastewater Treatment Plant (Bioaeration tank, tanks 702A, 702B, and 702C) shall be properly operated and maintained at all times according to good engineering practices, with the exception of activities to mitigate emergency conditions. [RACT Order #257, condition 1.7; §2105.03; 25 PA Code §129.99]

Eastman Chemical Resins, Inc. Jefferson Site Installation Permit #0058-I026

VI. ALTERNATIVE OPERATING SCENARIOS

There are no alternative operating scenarios for this permit

Allegheny County Health Department

EMISSIONS LIMITATIONS SUMMARY

Eastman Chemical Resins, Inc. Jefferson Site Installation Permit #0058-I026