State Waste Composition - Estimate of the Current Composition of Discarded Municipal Waste Stream by Material Available for Recovery in Allegheny County Based on Southwest Region of Pennsylvania

		Material Categories	Tons Disposed	Mean Composition
Paper			293,849	32.2\%
	1	Newspaper	51,104	5.6\%
	2	Corrugated Cardboard	69,356	7.6\%
	3	Office	28,290	3.1\%
	4	Magazine/Glossy	20,077	2.2\%
	5	Polycoated/Aseptic Containers	4,563	0.5\%
	6	Mixed Paper	42,891	4.7\%
	7	Non-recyclable Paper	77,569	8.5\%
Plastic			101,296	11.1\%
	8	\#1 PET Bottles	10,038	1.1\%
	9	\#2 HDPE Bottles	8,213	0.9\%
	10	\#3-\#7 Bottles	2,738	0.3\%
	11	Expanded Polystyrene	6,388	0.7\%
	12	Film Plastic	42,891	4.7\%
	13	Other Rigid Plastic	31,028	3.4\%
Glass			18,251	2.0\%
	14	Clear Glass	10,038	1.1\%
	15	Green Glass	1,825	0.2\%
	16	Amber Glass	3,650	0.4\%
	17	Non-recyclable Glass	2,738	0.3\%
Metals			62,055	6.8\%
	18	Steel Cans	10,951	1.2\%
	19	Aluminum Cans	4,563	0.5\%
	20	Other Ferrous	35,590	3.9\%
	21	Other Aluminum	5,475	0.6\%
	22	Other Non-Ferrous	5,475	0.6\%
Organics			313,925	34.4\%
	23	Yard Waste - Grass	28,290	3.1\%
	24	Yard Waste - Other	27,377	3.0\%
	25	Wood - Unpainted	43,804	4.8\%
	26	Wood - Painted	30,115	3.3\%
	27	Food Waste	98,558	10.8\%
	28	Textiles	38,328	4.2\%
	29	Diapers	27,377	3.0\%
	30	Fines	8,213	0.9\%
	31	Other organics	11,863	1.3\%
Inorganics			122,285	13.4\%
	32	Electronics	14,601	1.6\%
	33	Carpet	15,514	1.7\%
	34	Drywall	9,126	1.0\%
	35	Other C\&D	40,153	4.4\%
	36	HHW	2,738	0.3\%
	37	Other Inorganics	38,328	4.2\%
	38	Furniture	1,825	0.2\%
		Total	912,574	100\%

National Waste Composition - Estimate of the Current Composition of Discarded Municipal Waste Stream by Material Available for Recovery in Allegheny County Based on EPA National Study

	Material Categories	Tons Disposed	Mean Composition
Paper		$\mathbf{1 2 7 , 7 6 0}$	$\mathbf{1 4 . 0 \%}$
Plastic		$\mathbf{1 7 3 , 3 8 9}$	19.0%
Glass		$\mathbf{4 5 , 6 2 9}$	5.0%
Metals		$\mathbf{8 2 , 1 3 2}$	$\mathbf{9 . 0 \%}$
Organics		$\mathbf{4 4 7 , 1 6 1}$	$\mathbf{4 9 . 0 \%}$
	Yard Trimmings	73,006	8.0%
	Wood	73,006	8.0%
	Food Waste	200,766	22.0%
	Rubber,leather and textiles	100,383	11.0%
Inorganics		$\mathbf{3 6 , 5 0 3}$	4.0%
		$\mathbf{9 1 2 , 5 7 4}$	100%

GHG Emissions Analysis -- Summary Report
 Geg Emissions Analysis -- Summary Report Veston 1missions Waste Management Analysis for Barton $\&$ Loguidice Crreared by: Allegheny County Solid Waste Management Plan

GHG Emissions trom Baseline Waste Management (MTCO2E):						36,281
Masoal		Tons Landllued	Tons Combusted	Tons Composed	Tons Anaerobically Digested	Tonal 1 Tro, E
Alumium Cans		${ }_{7220}$		NA	${ }^{\mathrm{NA}}$	
Stael Cans		${ }^{218,5}$		${ }^{\text {Na }}$	NA	
		${ }^{61.7448}$		${ }^{\mathrm{NA}}$	NA	
		${ }^{7}$		${ }^{\text {Na }}$	${ }^{\text {NA }}$	
	NA	${ }^{20.0}$		${ }^{\mathrm{NA}}$	NA	
Pt	\cdots	${ }_{4}^{60.4}$		${ }_{\text {NA }}$	${ }_{\text {NA }}$	
Ps	NA	${ }^{26,9}$		NA	NA	
Cormasaed Comatioss		56,1999		${ }_{\text {NA }}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	${ }_{13,672}^{10}$
Magaziosestird cass mal		41.5		Na	NA	
aper		1.7893		Na	NA	
Oince Paper		${ }_{13,014}^{13}$		${ }^{\text {Na }}$	${ }^{\text {NA }}$	5.861
aboors		${ }^{3.6}$		${ }^{\mathrm{Na}}$	NA	
Ratammin	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$					${ }_{\text {b }}^{6.568}$
	,	${ }_{\text {S.9.933.9 }}$.	NA	NA	${ }_{87}$
		${ }^{17,5826}$			${ }^{\mathrm{Na}}$	
Mwoor Pasatics		1.6478		Na	NA	
Mreed foorchabos		${ }^{224,7443}$		Na	${ }^{\mathrm{Na}}$	448
Food Wasio	${ }^{\mathrm{NA}}$	${ }_{1,585}$				
Msee Oranacs	Na	47,688				,
Personal Compulas		${ }^{2,3379}$		${ }^{\mathrm{NA}}$	${ }^{\mathrm{Na}}$	
Stios		${ }_{\text {2.4,924 }}^{1.7206}$	NA	${ }_{\text {NA }}$	${ }_{\text {Na }}$	

Note: a negative value (i.e., a value in parenthesess indicates an emission reduction: a positive value
a) For explanation of methodology, see the EPA WARM Documentaio

Solid Waste Managemement and Greenhouse Gases: A Lite -Cycle Assessment of Emissions and Sinks

a) The GirG emissons resuls estimaledin wains nicate the turfie-cycle benents waste management

Matatal	$\substack{\text { Tons Suuree } \\ \text { Reduced }}$	Tons feocyled	Tons Landullod	Tons Comusised	Tons Composed	Tons Aneorobicaly Digsed	Toal Mrico,	
Aummum Cans		${ }^{7220}$			${ }^{\mathrm{Na}}$	${ }^{\mathrm{NA}}$		
Stael Cans		${ }^{21295}$			${ }^{\mathrm{Na}}$	${ }^{\mathrm{Na}}$		(400)
		$\frac{61.7448}{70.0}$			$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	(17.074)	
Lope	20.0	${ }_{\text {NA }}$			${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{186}$	${ }^{(186)}$
${ }_{\text {Pet }}^{\text {Pex }}$	4.3	$\xrightarrow{\text { b0, }}$.		$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	(107)	
Ps	${ }^{26.9}$	NA		-	NA	NA	(67)	168
PVC Comgatec Contaness	3.1	${ }_{\text {50,1999 }}$			$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	${ }_{\text {[181, } 622}$ (6)	${ }_{\text {(195294 }}$
Nagazesestridcolass mal		4.5			NA	${ }^{\mathrm{NA}}$	(127)	(111)
Saper		1.8893			NA	NA		
		${ }_{\text {13,04. }}^{36}$			${ }_{\text {NA }}$,	(37221)	
Varat Timinge		${ }^{\mathrm{NA}}$			${ }_{4}^{47.658,8}$		16.970	1.598
隹	Na	${ }_{6.939}{ }^{\text {Na }}$			${ }_{\text {Na }}$	NA	${ }^{(1,988)}$	
Mreod heals	.	${ }_{17,5826}$	\cdots	-	NA	NA	[76.36]	${ }^{(20,6,52}$
Mreed Pastes		${ }_{\text {L }}^{1,6778}$,	${ }^{\mathrm{Na}}$	${ }_{\text {NA }}$		
M, Mrach Paycrabes	NA	${ }^{224,743}$			NA	Na	(634,887)	644,35
\%ersose	${ }^{\text {NA }}$	${ }_{\text {NA }}$			${ }_{4}^{47.5888}$		${ }^{182065}$	${ }^{(1,7,322}$
Pesonal Compues		${ }_{2}^{2,3379}$			NA	NA	(5.584)	(59,92)
Sorse	NA	${ }_{\substack{2.9,124 \\ 1.720 .6}}$		NA	${ }_{\text {Na }}^{\mathrm{Na}}$	$\frac{\mathrm{Na}}{\mathrm{NA}}$	$\xrightarrow[(168)]{(667)}$	${ }_{(683)}^{(682)}$
Asphat Conceate		${ }^{20.270 .9}$		NA	NA	NA	(1.648)	${ }^{12.059}$

Total Change in GHG Emissions ($\mathrm{MTCO}_{2} \mathrm{E}$)
(1,047,84)

This is equivalent to.. annual	
rom	220,586 Passenger Velicics
eving	117,900,808 Gallons of Gasoline
Consening	43,657,687 Cylinders of Propane Used for Home Barbeques
Conserving	5,618 Railway Cars of Coal
	$\mathbf{0 . 0 6 0 2 3} \%$ Annual CO_{2} emissions from the U.S. transportation sector

Energy Analysis -- Summary Report

 Versison 4 A.GHa
Prissions Waste Management Analysis for Barton \& Loguidice
CHeg Emissions Waste Management Analysis for Barto
Prepard by: Allegney County Solid Waste Managem
Project Period for this Analysis: $01 / 01 / 16$ to $12 / 11 / 16$
Project Period for this Analysis: $01 / 01 / 16$ to $12 / 31 / 1 /$
Note: It y ou wish to suve these esesuls enamen this

Note: a negative value (i.e., a value in parentheses) indicates a reduction in energy consumption; a positive value indicates an
increase.
a) For explanation of methodology, see the EPA WARM Documentation:

Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks

- available on the Internet at http://epa.gov/epawaste/conserve/tools/warm/SWMGHGrepor.thtml
b) Emissions estimates srovided by this model are intended to support voluntary GHG measurement
and reporting intitiaitivs.

Energy Use from Alternative Waste Management Scenario (million BTU):

Materal	Tons Source Reduced	Tons Recycled	Tons Landtlled	${ }_{\text {Tombsted }} \begin{gathered}\text { Toms }\end{gathered}$	Tons Composted	Tons Anaerobically Digested	Total Million BTU
Aluminum Cans		7920			NA	NA	(12,989
Steel Cans	.	218.5			NA		
Giass	.	61.744 .8	.	.	Na	NA	
HDPE		0.0	.	.	NA	NA	
LDPE	20.0	NA	.	-	NA	Na	
PET		60.1			NA	NA	
PP	4.3	NA		.	NA	NA	
Ps	26.9	Na			va	va	
PvC	3.1	NA			NA	Na	
Corrugated Containers		58,199.9			NA	NA	(877,330)
Magazinesthird.class mal	-	4.5			NA	NA	(28)
Newspaper		${ }^{1,789.3}$			NA	Na	[29,499)
Office Paper	.	${ }^{13,014.5}$			NA	NA	(131,200)
Phonebooks		3.6			NA	NA	
Yard Timmings	NA	NA			8.8		
aches	NA	NA					
Mixed Paper (general)		6.933.9			NA	NA	(141,008)
Mxed Meals		${ }^{17,582.6}$	-		NA	NA	${ }^{1,160,95}$
Mreed Plasics		1,647.8			NA	NA	(63,96)
Mxed Reocylables	NA	224,734.3			NA	NA	(3,331,491
Food Waste		NA			1.852.6		1.082
Mxxed Organics	NA	NA		.	$47,688.8$		
Personal Computers		2,387.9			NA	NA	(68,160)
	NA	${ }^{24.912 .4}$		NA	NA		
Tires		+1,720.6			NA	${ }^{\mathrm{NA}}$	
Asphat Concrete		20.270 .9		NA	NA	NA	(24,742)

Total Change in Energy Use (million BTU):

This is equivalent to...	
Consenving	52,564
Housenolds' Annual Energy Consumption	
Conserving	$\mathbf{1 , 0 4 0 , 4 4 1}$ Barels of Oil
Conserving	$48,656,283$

GHG Emissions Analysis -- Summary Repor

GHG Emissions Waste Management Analysis for Barton \& Loguidice

GHG Emissions from	seline Waste	Management (N)	TCE):			, 895
Materal	Tons Recycled	Tons Landifled	${ }_{\text {combusted }}^{\text {Tons }}$	Tons Composted	${ }^{\text {Tons Anearobically }}$ Digested	Total MTCE
Auminum Cans		${ }^{7920}$		NA	${ }^{\mathrm{NA}}$	
Steel Cans				NA		
St		61.7		NA	NA	${ }^{341}$
HOPE	NA	$\frac{70.0}{20}$		${ }^{\text {NA }}$	NA	
LOPE	NA	${ }^{20.0}$		NA	NA	
	${ }^{\text {NA }}$	${ }_{6} 6$		NA	A	
Ps						
PvC	${ }^{\mathrm{NA}}$	${ }_{3.1}^{20.1}$,	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	
aled Conlaners		58.199.9		NA	NA	3.729
nesethrid class mal				NA	NA	
$\frac{\text { Neespaper }}{\text { Office }}$		${ }^{1.7893}{ }^{130145}$		$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	
Office Paper				${ }^{\text {NA }}$	${ }_{\text {NA }}$	326
Phonebooks	NA	${ }^{477.638 .8}$				${ }_{(2,336)}$
ches	NA	${ }^{13,5000}$				${ }^{(1,883}$
MMxed Paper (general)		${ }_{6}^{6,933.9}$.	${ }^{\mathrm{NA}}$	NA	
M, Mxed Mealas		${ }_{17,526}^{1,648}$		VA	NA	
Recricables		${ }^{224,734.3}$.	${ }^{\text {NA }}$	NA	2.577
Waste	NA					
Mreed Organics	NA	47.638				2.65
Pesonal Compueirs		${ }^{2,337.9}$,	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	
Tires		1,720,6		NA	NA	10
Asphal Conceete		20.270 .9	NA	NA	NA	112

Note. a negative value (i.e., a value in parentheses) indicates an emission reduction: a positive value indicates an emission
a) For explanation of methodology, see the EPA WARM Documentation:

Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks
-available on the Internet at http://epa.gov/epawaste/conserve/tools/warm/SWMGHGreport.htm
b) Emissions estimates provided by this model are intended to support voluntary $\mathbf{G H G}$ measurement and reporting intititives.
(i) The GHG emissions results estimated in WARM indicate the full life-cycle benefitis waste management atermatives. Due to the Iming of the GHG emissions riom the waste management pathways, (e.9., avoided landtiling and increased recycling), the actual all in one year, but ratheret through time.

(285,759)

This is equivalent to... Removing annual emissions from	220,586 Passenger Vehicles
Conserving	117,900,808 Gallons of Gasoline
Conserving	43,657,687 Cylinders of Propane Used for Home
Conserving	5,618 Railway Cars of Coal
	$\mathbf{0 . 0 6 0 2 3} \%$ Annual CO_{2} emissions from the U.S. transportation sector 0.05180% Annual CO2 emissions from the U.S. electricity sector

